Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 26,578 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 |
(* ========================================================================= *)
(* Pascal's hexagon theorem for projective and affine planes. *)
(* ========================================================================= *)
needs "Multivariate/cross.ml";;
(* ------------------------------------------------------------------------- *)
(* A lemma we want to justify some of the axioms. *)
(* ------------------------------------------------------------------------- *)
let NORMAL_EXISTS = prove
(`!u v:real^3. ?w. ~(w = vec 0) /\ orthogonal u w /\ orthogonal v w`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[ORTHOGONAL_SYM] THEN
MP_TAC(ISPEC `{u:real^3,v}` ORTHOGONAL_TO_SUBSPACE_EXISTS) THEN
REWRITE_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY; DIMINDEX_3] THEN
DISCH_THEN MATCH_MP_TAC THEN MATCH_MP_TAC LET_TRANS THEN
EXISTS_TAC `CARD {u:real^3,v}` THEN CONJ_TAC THEN
SIMP_TAC[DIM_LE_CARD; FINITE_INSERT; FINITE_EMPTY] THEN
SIMP_TAC[CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Type of directions. *)
(* ------------------------------------------------------------------------- *)
let direction_tybij = new_type_definition "direction" ("mk_dir","dest_dir")
(MESON[BASIS_NONZERO; LE_REFL; DIMINDEX_GE_1] `?x:real^3. ~(x = vec 0)`);;
parse_as_infix("||",(11,"right"));;
parse_as_infix("_|_",(11,"right"));;
let perpdir = new_definition
`x _|_ y <=> orthogonal (dest_dir x) (dest_dir y)`;;
let pardir = new_definition
`x || y <=> (dest_dir x) cross (dest_dir y) = vec 0`;;
let DIRECTION_CLAUSES = prove
(`((!x. P(dest_dir x)) <=> (!x. ~(x = vec 0) ==> P x)) /\
((?x. P(dest_dir x)) <=> (?x. ~(x = vec 0) /\ P x))`,
MESON_TAC[direction_tybij]);;
let [PARDIR_REFL; PARDIR_SYM; PARDIR_TRANS] = (CONJUNCTS o prove)
(`(!x. x || x) /\
(!x y. x || y <=> y || x) /\
(!x y z. x || y /\ y || z ==> x || z)`,
REWRITE_TAC[pardir; DIRECTION_CLAUSES] THEN VEC3_TAC);;
let PARDIR_EQUIV = prove
(`!x y. ((||) x = (||) y) <=> x || y`,
REWRITE_TAC[FUN_EQ_THM] THEN
MESON_TAC[PARDIR_REFL; PARDIR_SYM; PARDIR_TRANS]);;
let DIRECTION_AXIOM_1 = prove
(`!p p'. ~(p || p') ==> ?l. p _|_ l /\ p' _|_ l /\
!l'. p _|_ l' /\ p' _|_ l' ==> l' || l`,
REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`p:real^3`; `p':real^3`] NORMAL_EXISTS) THEN
MATCH_MP_TAC MONO_EXISTS THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN VEC3_TAC);;
let DIRECTION_AXIOM_2 = prove
(`!l l'. ?p. p _|_ l /\ p _|_ l'`,
REWRITE_TAC[perpdir; DIRECTION_CLAUSES] THEN
MESON_TAC[NORMAL_EXISTS; ORTHOGONAL_SYM]);;
let DIRECTION_AXIOM_3 = prove
(`?p p' p''.
~(p || p') /\ ~(p' || p'') /\ ~(p || p'') /\
~(?l. p _|_ l /\ p' _|_ l /\ p'' _|_ l)`,
REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN MAP_EVERY
(fun t -> EXISTS_TAC t THEN SIMP_TAC[BASIS_NONZERO; DIMINDEX_3; ARITH])
[`basis 1 :real^3`; `basis 2 : real^3`; `basis 3 :real^3`] THEN
VEC3_TAC);;
let DIRECTION_AXIOM_4_WEAK = prove
(`!l. ?p p'. ~(p || p') /\ p _|_ l /\ p' _|_ l`,
REWRITE_TAC[DIRECTION_CLAUSES; pardir; perpdir] THEN REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`orthogonal (l cross basis 1) l /\ orthogonal (l cross basis 2) l /\
~((l cross basis 1) cross (l cross basis 2) = vec 0) \/
orthogonal (l cross basis 1) l /\ orthogonal (l cross basis 3) l /\
~((l cross basis 1) cross (l cross basis 3) = vec 0) \/
orthogonal (l cross basis 2) l /\ orthogonal (l cross basis 3) l /\
~((l cross basis 2) cross (l cross basis 3) = vec 0)`
MP_TAC THENL [POP_ASSUM MP_TAC THEN VEC3_TAC; MESON_TAC[CROSS_0]]);;
let ORTHOGONAL_COMBINE = prove
(`!x a b. a _|_ x /\ b _|_ x /\ ~(a || b)
==> ?c. c _|_ x /\ ~(a || c) /\ ~(b || c)`,
REWRITE_TAC[DIRECTION_CLAUSES; pardir; perpdir] THEN
REPEAT STRIP_TAC THEN EXISTS_TAC `a + b:real^3` THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN VEC3_TAC);;
let DIRECTION_AXIOM_4 = prove
(`!l. ?p p' p''. ~(p || p') /\ ~(p' || p'') /\ ~(p || p'') /\
p _|_ l /\ p' _|_ l /\ p'' _|_ l`,
MESON_TAC[DIRECTION_AXIOM_4_WEAK; ORTHOGONAL_COMBINE]);;
let line_tybij = define_quotient_type "line" ("mk_line","dest_line") `(||)`;;
let PERPDIR_WELLDEF = prove
(`!x y x' y'. x || x' /\ y || y' ==> (x _|_ y <=> x' _|_ y')`,
REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN VEC3_TAC);;
let perpl,perpl_th =
lift_function (snd line_tybij) (PARDIR_REFL,PARDIR_TRANS)
"perpl" PERPDIR_WELLDEF;;
let line_lift_thm = lift_theorem line_tybij
(PARDIR_REFL,PARDIR_SYM,PARDIR_TRANS) [perpl_th];;
let LINE_AXIOM_1 = line_lift_thm DIRECTION_AXIOM_1;;
let LINE_AXIOM_2 = line_lift_thm DIRECTION_AXIOM_2;;
let LINE_AXIOM_3 = line_lift_thm DIRECTION_AXIOM_3;;
let LINE_AXIOM_4 = line_lift_thm DIRECTION_AXIOM_4;;
let point_tybij = new_type_definition "point" ("mk_point","dest_point")
(prove(`?x:line. T`,REWRITE_TAC[]));;
parse_as_infix("on",(11,"right"));;
let on = new_definition `p on l <=> perpl (dest_point p) l`;;
let POINT_CLAUSES = prove
(`((p = p') <=> (dest_point p = dest_point p')) /\
((!p. P (dest_point p)) <=> (!l. P l)) /\
((?p. P (dest_point p)) <=> (?l. P l))`,
MESON_TAC[point_tybij]);;
let POINT_TAC th = REWRITE_TAC[on; POINT_CLAUSES] THEN ACCEPT_TAC th;;
let AXIOM_1 = prove
(`!p p'. ~(p = p') ==> ?l. p on l /\ p' on l /\
!l'. p on l' /\ p' on l' ==> (l' = l)`,
POINT_TAC LINE_AXIOM_1);;
let AXIOM_2 = prove
(`!l l'. ?p. p on l /\ p on l'`,
POINT_TAC LINE_AXIOM_2);;
let AXIOM_3 = prove
(`?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
~(?l. p on l /\ p' on l /\ p'' on l)`,
POINT_TAC LINE_AXIOM_3);;
let AXIOM_4 = prove
(`!l. ?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
p on l /\ p' on l /\ p'' on l`,
POINT_TAC LINE_AXIOM_4);;
(* ------------------------------------------------------------------------- *)
(* Mappings from vectors in R^3 to projective lines and points. *)
(* ------------------------------------------------------------------------- *)
let projl = new_definition
`projl x = mk_line((||) (mk_dir x))`;;
let projp = new_definition
`projp x = mk_point(projl x)`;;
(* ------------------------------------------------------------------------- *)
(* Mappings in the other direction, to (some) homogeneous coordinates. *)
(* ------------------------------------------------------------------------- *)
let PROJL_TOTAL = prove
(`!l. ?x. ~(x = vec 0) /\ l = projl x`,
GEN_TAC THEN
SUBGOAL_THEN `?d. l = mk_line((||) d)` (CHOOSE_THEN SUBST1_TAC) THENL
[MESON_TAC[fst line_tybij; snd line_tybij];
REWRITE_TAC[projl] THEN EXISTS_TAC `dest_dir d` THEN
MESON_TAC[direction_tybij]]);;
let homol = new_specification ["homol"]
(REWRITE_RULE[SKOLEM_THM] PROJL_TOTAL);;
let PROJP_TOTAL = prove
(`!p. ?x. ~(x = vec 0) /\ p = projp x`,
REWRITE_TAC[projp] THEN MESON_TAC[PROJL_TOTAL; point_tybij]);;
let homop_def = new_definition
`homop p = homol(dest_point p)`;;
let homop = prove
(`!p. ~(homop p = vec 0) /\ p = projp(homop p)`,
GEN_TAC THEN REWRITE_TAC[homop_def; projp; MESON[point_tybij]
`p = mk_point l <=> dest_point p = l`] THEN
MATCH_ACCEPT_TAC homol);;
(* ------------------------------------------------------------------------- *)
(* Key equivalences of concepts in projective space and homogeneous coords. *)
(* ------------------------------------------------------------------------- *)
let parallel = new_definition
`parallel x y <=> x cross y = vec 0`;;
let ON_HOMOL = prove
(`!p l. p on l <=> orthogonal (homop p) (homol l)`,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [homop; homol] THEN
REWRITE_TAC[on; projp; projl; REWRITE_RULE[] point_tybij] THEN
REWRITE_TAC[GSYM perpl_th; perpdir] THEN BINOP_TAC THEN
MESON_TAC[homol; homop; direction_tybij]);;
let EQ_HOMOL = prove
(`!l l'. l = l' <=> parallel (homol l) (homol l')`,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o BINOP_CONV) [homol] THEN
REWRITE_TAC[projl; MESON[fst line_tybij; snd line_tybij]
`mk_line((||) l) = mk_line((||) l') <=> (||) l = (||) l'`] THEN
REWRITE_TAC[PARDIR_EQUIV] THEN REWRITE_TAC[pardir; parallel] THEN
MESON_TAC[homol; direction_tybij]);;
let EQ_HOMOP = prove
(`!p p'. p = p' <=> parallel (homop p) (homop p')`,
REWRITE_TAC[homop_def; GSYM EQ_HOMOL] THEN
MESON_TAC[point_tybij]);;
(* ------------------------------------------------------------------------- *)
(* A "welldefinedness" result for homogeneous coordinate map. *)
(* ------------------------------------------------------------------------- *)
let PARALLEL_PROJL_HOMOL = prove
(`!x. parallel x (homol(projl x))`,
GEN_TAC THEN REWRITE_TAC[parallel] THEN ASM_CASES_TAC `x:real^3 = vec 0` THEN
ASM_REWRITE_TAC[CROSS_0] THEN MP_TAC(ISPEC `projl x` homol) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [projl] THEN
DISCH_THEN(MP_TAC o AP_TERM `dest_line`) THEN
REWRITE_TAC[MESON[fst line_tybij; snd line_tybij]
`dest_line(mk_line((||) l)) = (||) l`] THEN
REWRITE_TAC[PARDIR_EQUIV] THEN REWRITE_TAC[pardir] THEN
ASM_MESON_TAC[direction_tybij]);;
let PARALLEL_PROJP_HOMOP = prove
(`!x. parallel x (homop(projp x))`,
REWRITE_TAC[homop_def; projp; REWRITE_RULE[] point_tybij] THEN
REWRITE_TAC[PARALLEL_PROJL_HOMOL]);;
let PARALLEL_PROJP_HOMOP_EXPLICIT = prove
(`!x. ~(x = vec 0) ==> ?a. ~(a = &0) /\ homop(projp x) = a % x`,
MP_TAC PARALLEL_PROJP_HOMOP THEN MATCH_MP_TAC MONO_FORALL THEN
REWRITE_TAC[parallel; CROSS_EQ_0; COLLINEAR_LEMMA] THEN
GEN_TAC THEN ASM_CASES_TAC `x:real^3 = vec 0` THEN
ASM_REWRITE_TAC[homop] THEN MATCH_MP_TAC MONO_EXISTS THEN
X_GEN_TAC `c:real` THEN ASM_CASES_TAC `c = &0` THEN
ASM_REWRITE_TAC[homop; VECTOR_MUL_LZERO]);;
(* ------------------------------------------------------------------------- *)
(* Brackets, collinearity and their connection. *)
(* ------------------------------------------------------------------------- *)
let bracket = define
`bracket[a;b;c] = det(vector[homop a;homop b;homop c])`;;
let COLLINEAR = new_definition
`COLLINEAR s <=> ?l. !p. p IN s ==> p on l`;;
let COLLINEAR_SINGLETON = prove
(`!a. COLLINEAR {a}`,
REWRITE_TAC[COLLINEAR; FORALL_IN_INSERT; NOT_IN_EMPTY] THEN
MESON_TAC[AXIOM_1; AXIOM_3]);;
let COLLINEAR_PAIR = prove
(`!a b. COLLINEAR{a,b}`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `a:point = b` THEN
ASM_REWRITE_TAC[INSERT_AC; COLLINEAR_SINGLETON] THEN
REWRITE_TAC[COLLINEAR; FORALL_IN_INSERT; NOT_IN_EMPTY] THEN
ASM_MESON_TAC[AXIOM_1]);;
let COLLINEAR_TRIPLE = prove
(`!a b c. COLLINEAR{a,b,c} <=> ?l. a on l /\ b on l /\ c on l`,
REWRITE_TAC[COLLINEAR; FORALL_IN_INSERT; NOT_IN_EMPTY]);;
let COLLINEAR_BRACKET = prove
(`!p1 p2 p3. COLLINEAR {p1,p2,p3} <=> bracket[p1;p2;p3] = &0`,
let lemma = prove
(`!a b c x y.
x cross y = vec 0 /\ ~(x = vec 0) /\
orthogonal a x /\ orthogonal b x /\ orthogonal c x
==> orthogonal a y /\ orthogonal b y /\ orthogonal c y`,
REWRITE_TAC[orthogonal] THEN VEC3_TAC) in
REPEAT GEN_TAC THEN EQ_TAC THENL
[REWRITE_TAC[COLLINEAR_TRIPLE; bracket; ON_HOMOL; LEFT_IMP_EXISTS_THM] THEN
MP_TAC homol THEN MATCH_MP_TAC MONO_FORALL THEN
GEN_TAC THEN DISCH_THEN(MP_TAC o CONJUNCT1) THEN
REWRITE_TAC[DET_3; orthogonal; DOT_3; VECTOR_3; CART_EQ;
DIMINDEX_3; FORALL_3; VEC_COMPONENT] THEN
CONV_TAC REAL_RING;
ASM_CASES_TAC `p1:point = p2` THENL
[ASM_REWRITE_TAC[INSERT_AC; COLLINEAR_PAIR]; ALL_TAC] THEN
POP_ASSUM MP_TAC THEN
REWRITE_TAC[parallel; COLLINEAR_TRIPLE; bracket; EQ_HOMOP; ON_HOMOL] THEN
REPEAT STRIP_TAC THEN
EXISTS_TAC `mk_line((||) (mk_dir(homop p1 cross homop p2)))` THEN
MATCH_MP_TAC lemma THEN EXISTS_TAC `homop p1 cross homop p2` THEN
ASM_REWRITE_TAC[ORTHOGONAL_CROSS] THEN
REWRITE_TAC[orthogonal] THEN ONCE_REWRITE_TAC[DOT_SYM] THEN
ONCE_REWRITE_TAC[CROSS_TRIPLE] THEN ONCE_REWRITE_TAC[DOT_SYM] THEN
ASM_REWRITE_TAC[DOT_CROSS_DET] THEN
REWRITE_TAC[GSYM projl; GSYM parallel; PARALLEL_PROJL_HOMOL]]);;
(* ------------------------------------------------------------------------- *)
(* Conics and bracket condition for 6 points to be on a conic. *)
(* ------------------------------------------------------------------------- *)
let homogeneous_conic = new_definition
`homogeneous_conic con <=>
?a b c d e f.
~(a = &0 /\ b = &0 /\ c = &0 /\ d = &0 /\ e = &0 /\ f = &0) /\
con = {x:real^3 | a * x$1 pow 2 + b * x$2 pow 2 + c * x$3 pow 2 +
d * x$1 * x$2 + e * x$1 * x$3 + f * x$2 * x$3 = &0}`;;
let projective_conic = new_definition
`projective_conic con <=>
?c. homogeneous_conic c /\ con = {p | (homop p) IN c}`;;
let HOMOGENEOUS_CONIC_BRACKET = prove
(`!con x1 x2 x3 x4 x5 x6.
homogeneous_conic con /\
x1 IN con /\ x2 IN con /\ x3 IN con /\
x4 IN con /\ x5 IN con /\ x6 IN con
==> det(vector[x6;x1;x4]) * det(vector[x6;x2;x3]) *
det(vector[x5;x1;x3]) * det(vector[x5;x2;x4]) =
det(vector[x6;x1;x3]) * det(vector[x6;x2;x4]) *
det(vector[x5;x1;x4]) * det(vector[x5;x2;x3])`,
REPEAT GEN_TAC THEN REWRITE_TAC[homogeneous_conic; EXTENSION] THEN
ONCE_REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
ASM_REWRITE_TAC[IN_ELIM_THM; DET_3; VECTOR_3] THEN
CONV_TAC REAL_RING);;
let PROJECTIVE_CONIC_BRACKET = prove
(`!con p1 p2 p3 p4 p5 p6.
projective_conic con /\
p1 IN con /\ p2 IN con /\ p3 IN con /\
p4 IN con /\ p5 IN con /\ p6 IN con
==> bracket[p6;p1;p4] * bracket[p6;p2;p3] *
bracket[p5;p1;p3] * bracket[p5;p2;p4] =
bracket[p6;p1;p3] * bracket[p6;p2;p4] *
bracket[p5;p1;p4] * bracket[p5;p2;p3]`,
REPEAT GEN_TAC THEN REWRITE_TAC[bracket; projective_conic] THEN
DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN
ASM_REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN
MATCH_MP_TAC HOMOGENEOUS_CONIC_BRACKET THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Pascal's theorem with all the nondegeneracy principles we use directly. *)
(* ------------------------------------------------------------------------- *)
let PASCAL_DIRECT = prove
(`!con x1 x2 x3 x4 x5 x6 x6 x8 x9.
~COLLINEAR {x2,x5,x7} /\
~COLLINEAR {x1,x2,x5} /\
~COLLINEAR {x1,x3,x6} /\
~COLLINEAR {x2,x4,x6} /\
~COLLINEAR {x3,x4,x5} /\
~COLLINEAR {x1,x5,x7} /\
~COLLINEAR {x2,x5,x9} /\
~COLLINEAR {x1,x2,x6} /\
~COLLINEAR {x3,x6,x8} /\
~COLLINEAR {x2,x4,x5} /\
~COLLINEAR {x2,x4,x7} /\
~COLLINEAR {x2,x6,x8} /\
~COLLINEAR {x3,x4,x6} /\
~COLLINEAR {x3,x5,x8} /\
~COLLINEAR {x1,x3,x5}
==> projective_conic con /\
x1 IN con /\ x2 IN con /\ x3 IN con /\
x4 IN con /\ x5 IN con /\ x6 IN con /\
COLLINEAR {x1,x9,x5} /\
COLLINEAR {x1,x8,x6} /\
COLLINEAR {x2,x9,x4} /\
COLLINEAR {x2,x7,x6} /\
COLLINEAR {x3,x8,x4} /\
COLLINEAR {x3,x7,x5}
==> COLLINEAR {x7,x8,x9}`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
REWRITE_TAC[TAUT `a /\ b /\ c /\ d /\ e /\ f /\ g /\ h ==> p <=>
a /\ b /\ c /\ d /\ e /\ f /\ g ==> h ==> p`] THEN
DISCH_THEN(MP_TAC o MATCH_MP PROJECTIVE_CONIC_BRACKET) THEN
REWRITE_TAC[COLLINEAR_BRACKET; IMP_IMP; GSYM CONJ_ASSOC] THEN
MATCH_MP_TAC(TAUT `!q. (p ==> q) /\ (q ==> r) ==> p ==> r`) THEN
EXISTS_TAC
`bracket[x1;x2;x5] * bracket[x1;x3;x6] *
bracket[x2;x4;x6] * bracket[x3;x4;x5] =
bracket[x1;x2;x6] * bracket[x1;x3;x5] *
bracket[x2;x4;x5] * bracket[x3;x4;x6] /\
bracket[x1;x5;x7] * bracket[x2;x5;x9] =
--bracket[x1;x2;x5] * bracket[x5;x9;x7] /\
bracket[x1;x2;x6] * bracket[x3;x6;x8] =
bracket[x1;x3;x6] * bracket[x2;x6;x8] /\
bracket[x2;x4;x5] * bracket[x2;x9;x7] =
--bracket[x2;x4;x7] * bracket[x2;x5;x9] /\
bracket[x2;x4;x7] * bracket[x2;x6;x8] =
--bracket[x2;x4;x6] * bracket[x2;x8;x7] /\
bracket[x3;x4;x6] * bracket[x3;x5;x8] =
bracket[x3;x4;x5] * bracket[x3;x6;x8] /\
bracket[x1;x3;x5] * bracket[x5;x8;x7] =
--bracket[x1;x5;x7] * bracket[x3;x5;x8]` THEN
CONJ_TAC THENL
[REPEAT(MATCH_MP_TAC MONO_AND THEN CONJ_TAC) THEN
REWRITE_TAC[bracket; DET_3; VECTOR_3] THEN CONV_TAC REAL_RING;
ALL_TAC] THEN
REWRITE_TAC[IMP_CONJ] THEN
REPEAT(ONCE_REWRITE_TAC[IMP_IMP] THEN
DISCH_THEN(MP_TAC o MATCH_MP (REAL_RING
`a = b /\ x:real = y ==> a * x = b * y`))) THEN
REWRITE_TAC[GSYM REAL_MUL_ASSOC; REAL_MUL_LNEG; REAL_MUL_RNEG] THEN
REWRITE_TAC[REAL_NEG_NEG] THEN
RULE_ASSUM_TAC(REWRITE_RULE[COLLINEAR_BRACKET]) THEN
REWRITE_TAC[REAL_MUL_AC] THEN ASM_REWRITE_TAC[REAL_EQ_MUL_LCANCEL] THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN
ASM_REWRITE_TAC[REAL_EQ_MUL_LCANCEL] THEN
FIRST_X_ASSUM(MP_TAC o CONJUNCT1) THEN
REWRITE_TAC[bracket; DET_3; VECTOR_3] THEN CONV_TAC REAL_RING);;
(* ------------------------------------------------------------------------- *)
(* With longer but more intuitive non-degeneracy conditions, basically that *)
(* the 6 points divide into two groups of 3 and no 3 are collinear unless *)
(* they are all in the same group. *)
(* ------------------------------------------------------------------------- *)
let PASCAL = prove
(`!con x1 x2 x3 x4 x5 x6 x6 x8 x9.
~COLLINEAR {x1,x2,x4} /\
~COLLINEAR {x1,x2,x5} /\
~COLLINEAR {x1,x2,x6} /\
~COLLINEAR {x1,x3,x4} /\
~COLLINEAR {x1,x3,x5} /\
~COLLINEAR {x1,x3,x6} /\
~COLLINEAR {x2,x3,x4} /\
~COLLINEAR {x2,x3,x5} /\
~COLLINEAR {x2,x3,x6} /\
~COLLINEAR {x4,x5,x1} /\
~COLLINEAR {x4,x5,x2} /\
~COLLINEAR {x4,x5,x3} /\
~COLLINEAR {x4,x6,x1} /\
~COLLINEAR {x4,x6,x2} /\
~COLLINEAR {x4,x6,x3} /\
~COLLINEAR {x5,x6,x1} /\
~COLLINEAR {x5,x6,x2} /\
~COLLINEAR {x5,x6,x3}
==> projective_conic con /\
x1 IN con /\ x2 IN con /\ x3 IN con /\
x4 IN con /\ x5 IN con /\ x6 IN con /\
COLLINEAR {x1,x9,x5} /\
COLLINEAR {x1,x8,x6} /\
COLLINEAR {x2,x9,x4} /\
COLLINEAR {x2,x7,x6} /\
COLLINEAR {x3,x8,x4} /\
COLLINEAR {x3,x7,x5}
==> COLLINEAR {x7,x8,x9}`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
DISCH_THEN(fun th ->
MATCH_MP_TAC(TAUT `(~p ==> p) ==> p`) THEN DISCH_TAC THEN
MP_TAC th THEN MATCH_MP_TAC PASCAL_DIRECT THEN
ASSUME_TAC(funpow 7 CONJUNCT2 th)) THEN
REPEAT CONJ_TAC THEN
REPEAT(POP_ASSUM MP_TAC) THEN
REWRITE_TAC[COLLINEAR_BRACKET; bracket; DET_3; VECTOR_3] THEN
CONV_TAC REAL_RING);;
(* ------------------------------------------------------------------------- *)
(* Homogenization and hence mapping from affine to projective plane. *)
(* ------------------------------------------------------------------------- *)
let homogenize = new_definition
`(homogenize:real^2->real^3) x = vector[x$1; x$2; &1]`;;
let projectivize = new_definition
`projectivize = projp o homogenize`;;
let HOMOGENIZE_NONZERO = prove
(`!x. ~(homogenize x = vec 0)`,
REWRITE_TAC[CART_EQ; DIMINDEX_3; FORALL_3; VEC_COMPONENT; VECTOR_3;
homogenize] THEN
REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Conic in affine plane. *)
(* ------------------------------------------------------------------------- *)
let affine_conic = new_definition
`affine_conic con <=>
?a b c d e f.
~(a = &0 /\ b = &0 /\ c = &0 /\ d = &0 /\ e = &0 /\ f = &0) /\
con = {x:real^2 | a * x$1 pow 2 + b * x$2 pow 2 + c * x$1 * x$2 +
d * x$1 + e * x$2 + f = &0}`;;
(* ------------------------------------------------------------------------- *)
(* Relationships between affine and projective notions. *)
(* ------------------------------------------------------------------------- *)
let COLLINEAR_PROJECTIVIZE = prove
(`!a b c. collinear{a,b,c} <=>
COLLINEAR{projectivize a,projectivize b,projectivize c}`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[COLLINEAR_3] THEN
REWRITE_TAC[GSYM DOT_CAUCHY_SCHWARZ_EQUAL] THEN
REWRITE_TAC[COLLINEAR_BRACKET; projectivize; o_THM; bracket] THEN
MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `det(vector[homogenize a; homogenize b; homogenize c]) = &0` THEN
CONJ_TAC THENL
[REWRITE_TAC[homogenize; DOT_2; VECTOR_SUB_COMPONENT; DET_3; VECTOR_3] THEN
CONV_TAC REAL_RING;
MAP_EVERY (MP_TAC o C SPEC PARALLEL_PROJP_HOMOP)
[`homogenize a`; `homogenize b`; `homogenize c`] THEN
MAP_EVERY (MP_TAC o C SPEC HOMOGENIZE_NONZERO)
[`a:real^2`; `b:real^2`; `c:real^2`] THEN
MAP_EVERY (MP_TAC o CONJUNCT1 o C SPEC homop)
[`projp(homogenize a)`; `projp(homogenize b)`; `projp(homogenize c)`] THEN
REWRITE_TAC[parallel; cross; CART_EQ; DIMINDEX_3; FORALL_3; VECTOR_3;
DET_3; VEC_COMPONENT] THEN
CONV_TAC REAL_RING]);;
let AFFINE_PROJECTIVE_CONIC = prove
(`!con. affine_conic con <=> ?con'. projective_conic con' /\
con = {x | projectivize x IN con'}`,
REWRITE_TAC[affine_conic; projective_conic; homogeneous_conic] THEN
GEN_TAC THEN REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
ONCE_REWRITE_TAC[MESON[]
`(?con' con a b c d e f. P con' con a b c d e f) <=>
(?a b d e f c con' con. P con' con a b c d e f)`] THEN
MAP_EVERY (fun s ->
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC(mk_var(s,`:real`)) THEN REWRITE_TAC[])
["a"; "b"; "c"; "d"; "e"; "f"] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM2; GSYM CONJ_ASSOC] THEN
REWRITE_TAC[IN_ELIM_THM; projectivize; o_THM] THEN
BINOP_TAC THENL [CONV_TAC TAUT; AP_TERM_TAC] THEN
REWRITE_TAC[EXTENSION] THEN X_GEN_TAC `x:real^2` THEN
MP_TAC(SPEC `x:real^2` HOMOGENIZE_NONZERO) THEN
DISCH_THEN(MP_TAC o MATCH_MP PARALLEL_PROJP_HOMOP_EXPLICIT) THEN
DISCH_THEN(X_CHOOSE_THEN `k:real` STRIP_ASSUME_TAC) THEN
ASM_REWRITE_TAC[IN_ELIM_THM; VECTOR_MUL_COMPONENT] THEN
REWRITE_TAC[homogenize; VECTOR_3] THEN
UNDISCH_TAC `~(k = &0)` THEN CONV_TAC REAL_RING);;
(* ------------------------------------------------------------------------- *)
(* Hence Pascal's theorem for the affine plane. *)
(* ------------------------------------------------------------------------- *)
let PASCAL_AFFINE = prove
(`!con x1 x2 x3 x4 x5 x6 x7 x8 x9:real^2.
~collinear {x1,x2,x4} /\
~collinear {x1,x2,x5} /\
~collinear {x1,x2,x6} /\
~collinear {x1,x3,x4} /\
~collinear {x1,x3,x5} /\
~collinear {x1,x3,x6} /\
~collinear {x2,x3,x4} /\
~collinear {x2,x3,x5} /\
~collinear {x2,x3,x6} /\
~collinear {x4,x5,x1} /\
~collinear {x4,x5,x2} /\
~collinear {x4,x5,x3} /\
~collinear {x4,x6,x1} /\
~collinear {x4,x6,x2} /\
~collinear {x4,x6,x3} /\
~collinear {x5,x6,x1} /\
~collinear {x5,x6,x2} /\
~collinear {x5,x6,x3}
==> affine_conic con /\
x1 IN con /\ x2 IN con /\ x3 IN con /\
x4 IN con /\ x5 IN con /\ x6 IN con /\
collinear {x1,x9,x5} /\
collinear {x1,x8,x6} /\
collinear {x2,x9,x4} /\
collinear {x2,x7,x6} /\
collinear {x3,x8,x4} /\
collinear {x3,x7,x5}
==> collinear {x7,x8,x9}`,
REWRITE_TAC[COLLINEAR_PROJECTIVIZE; AFFINE_PROJECTIVE_CONIC] THEN
REPEAT(GEN_TAC ORELSE DISCH_TAC) THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP PASCAL) THEN
ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
MATCH_MP_TAC MONO_EXISTS THEN ASM SET_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Special case of a circle where nondegeneracy is simpler. *)
(* ------------------------------------------------------------------------- *)
let COLLINEAR_NOT_COCIRCULAR = prove
(`!r c x y z:real^2.
dist(c,x) = r /\ dist(c,y) = r /\ dist(c,z) = r /\
~(x = y) /\ ~(x = z) /\ ~(y = z)
==> ~collinear {x,y,z}`,
ONCE_REWRITE_TAC[GSYM VECTOR_SUB_EQ] THEN
REWRITE_TAC[GSYM DOT_EQ_0] THEN
ONCE_REWRITE_TAC[COLLINEAR_3] THEN
REWRITE_TAC[GSYM DOT_CAUCHY_SCHWARZ_EQUAL; DOT_2] THEN
REWRITE_TAC[dist; NORM_EQ_SQUARE; CART_EQ; DIMINDEX_2; FORALL_2;
DOT_2; VECTOR_SUB_COMPONENT] THEN
CONV_TAC REAL_RING);;
let PASCAL_AFFINE_CIRCLE = prove
(`!c r x1 x2 x3 x4 x5 x6 x7 x8 x9:real^2.
PAIRWISE (\x y. ~(x = y)) [x1;x2;x3;x4;x5;x6] /\
dist(c,x1) = r /\ dist(c,x2) = r /\ dist(c,x3) = r /\
dist(c,x4) = r /\ dist(c,x5) = r /\ dist(c,x6) = r /\
collinear {x1,x9,x5} /\
collinear {x1,x8,x6} /\
collinear {x2,x9,x4} /\
collinear {x2,x7,x6} /\
collinear {x3,x8,x4} /\
collinear {x3,x7,x5}
==> collinear {x7,x8,x9}`,
GEN_TAC THEN GEN_TAC THEN
MP_TAC(SPEC `{x:real^2 | dist(c,x) = r}` PASCAL_AFFINE) THEN
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
REWRITE_TAC[PAIRWISE; ALL; IN_ELIM_THM] THEN
GEN_REWRITE_TAC LAND_CONV [IMP_IMP] THEN
DISCH_TAC THEN STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[REPEAT CONJ_TAC THEN MATCH_MP_TAC COLLINEAR_NOT_COCIRCULAR THEN
MAP_EVERY EXISTS_TAC [`r:real`; `c:real^2`] THEN ASM_REWRITE_TAC[];
REWRITE_TAC[affine_conic; dist; NORM_EQ_SQUARE] THEN
ASM_CASES_TAC `&0 <= r` THEN ASM_REWRITE_TAC[] THENL
[MAP_EVERY EXISTS_TAC
[`&1`; `&1`; `&0`; `-- &2 * (c:real^2)$1`; `-- &2 * (c:real^2)$2`;
`(c:real^2)$1 pow 2 + (c:real^2)$2 pow 2 - r pow 2`] THEN
REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN
REWRITE_TAC[DOT_2; VECTOR_SUB_COMPONENT] THEN REAL_ARITH_TAC;
REPLICATE_TAC 5 (EXISTS_TAC `&0`) THEN EXISTS_TAC `&1` THEN
REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN REAL_ARITH_TAC]]);;
|