Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 7,610 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
(* ========================================================================= *)
(* The three forms of curve25519 related via isomorphisms.                   *)
(* ========================================================================= *)

needs "EC/edmont.ml";;
needs "EC/montwe.ml";;
needs "EC/edwards25519.ml";;
needs "EC/curve25519.ml";;
needs "EC/wei25519.ml";;

(* ------------------------------------------------------------------------- *)
(* Extra scaling factor.                                                     *)
(* ------------------------------------------------------------------------- *)

(***
https://datatracker.ietf.org/doc/html/draft-ietf-lwig-curve-representations-23
In terms of the other parameters c_25519 = sqrt(-(A_25519+2)/B_25519)
***)

let c_25519 = define `c_25519 = 51042569399160536130206135233146329284152202253034631822681833788666877215207`;;

(* ------------------------------------------------------------------------- *)
(* Mappings between Edwards and Montgomery forms.                            *)
(* ------------------------------------------------------------------------- *)

let curve25519_of_edwards25519 = define
 `curve25519_of_edwards25519 =
        montgomery_of_edwards (integer_mod_ring p_25519) (&c_25519)`;;

let edwards25519_of_curve25519 = define
 `edwards25519_of_curve25519 =
        edwards_of_montgomery (integer_mod_ring p_25519) (&c_25519)`;;

let MCURVE_OF_ECURVE_25519 = prove
 (`mcurve_of_ecurve (integer_mod_ring p_25519,&e_25519,&d_25519) (&c_25519) =
   (integer_mod_ring p_25519,&A_25519,&1)`,
  REWRITE_TAC[mcurve_of_ecurve; PAIR_EQ] THEN
  REWRITE_TAC[p_25519; A_25519; e_25519; d_25519; c_25519] THEN
  CONV_TAC(DEPTH_CONV INTEGER_MOD_RING_RED_CONV) THEN REWRITE_TAC[]);;

let GROUP_ISOMORPHISMS_EDWARDS25519_CURVE25519 = prove
 (`group_isomorphisms
      (edwards25519_group,curve25519_group)
      (curve25519_of_edwards25519,edwards25519_of_curve25519)`,
  MP_TAC(ISPECL
   [`integer_mod_ring p_25519`; `&e_25519:int`; `&d_25519:int`; `&c_25519:int`]
   GROUP_ISOMORPHISMS_EDWARDS_MONTGOMERY_GROUP) THEN
  REWRITE_TAC[GSYM curve25519_of_edwards25519; GSYM edwards25519_of_curve25519;
              GSYM curve25519_group; GSYM edwards25519_group;
              MCURVE_OF_ECURVE_25519] THEN
  DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[EDWARD_NONSINGULAR_25519] THEN
  REWRITE_TAC[FIELD_INTEGER_MOD_RING; PRIME_P25519] THEN
  REWRITE_TAC[INTEGER_MOD_RING_CHAR; GSYM INT_OF_NUM_EQ] THEN
  REWRITE_TAC[IN_INTEGER_MOD_RING_CARRIER; INTEGER_MOD_RING] THEN
  REWRITE_TAC[p_25519; e_25519; d_25519; c_25519] THEN
  CONV_TAC INT_REDUCE_CONV);;

let ISOMORPHIC_GROUPS_EDWARDS25519_CURVE25519 = prove
 (`edwards25519_group isomorphic_group curve25519_group`,
  MP_TAC GROUP_ISOMORPHISMS_EDWARDS25519_CURVE25519 THEN
  MESON_TAC[isomorphic_group; GROUP_ISOMORPHISMS_IMP_ISOMORPHISM]);;

let ISOMORPHIC_GROUPS_CURVE25519_EDWARDS25519 = prove
 (`curve25519_group isomorphic_group edwards25519_group`,
  ONCE_REWRITE_TAC[ISOMORPHIC_GROUP_SYM] THEN
  REWRITE_TAC[ISOMORPHIC_GROUPS_EDWARDS25519_CURVE25519]);;

let CURVE25519_OF_EDWARDS25519_E25519 = prove
 (`curve25519_of_edwards25519 E_25519 = C_25519`,
  REWRITE_TAC[curve25519_of_edwards25519; montgomery_of_edwards;
    C_25519; E_25519; PAIR_EQ; p_25519; e_25519; d_25519; c_25519] THEN
  CONV_TAC(DEPTH_CONV INTEGER_MOD_RING_RED_CONV) THEN
  CONV_TAC INT_REDUCE_CONV);;

let CURVE25519_OF_EDWARDS25519_EE25519 = prove
 (`curve25519_of_edwards25519 EE_25519 = CC_25519`,
  REWRITE_TAC[curve25519_of_edwards25519; montgomery_of_edwards;
    CC_25519; EE_25519; PAIR_EQ; p_25519; e_25519; d_25519; c_25519] THEN
  CONV_TAC(DEPTH_CONV INTEGER_MOD_RING_RED_CONV) THEN
  CONV_TAC INT_REDUCE_CONV);;

let EDWARDS25519_OF_CURVE25519_C25519 = prove
 (`edwards25519_of_curve25519 C_25519 = E_25519`,
  REWRITE_TAC[edwards25519_of_curve25519; edwards_of_montgomery;
     C_25519; E_25519; PAIR_EQ; p_25519; e_25519; d_25519; c_25519] THEN
  CONV_TAC(DEPTH_CONV INTEGER_MOD_RING_RED_CONV) THEN
  CONV_TAC INT_REDUCE_CONV);;

let EDWARDS25519_OF_CURVE25519_CC25519 = prove
 (`edwards25519_of_curve25519 CC_25519 = EE_25519`,
  REWRITE_TAC[edwards25519_of_curve25519; edwards_of_montgomery;
    CC_25519; EE_25519; PAIR_EQ; p_25519; e_25519; d_25519; c_25519] THEN
  CONV_TAC(DEPTH_CONV INTEGER_MOD_RING_RED_CONV) THEN
  CONV_TAC INT_REDUCE_CONV);;

(* ------------------------------------------------------------------------- *)
(* Mappings between Montgomery and Weierstrass forms.                        *)
(* ------------------------------------------------------------------------- *)

let wei25519_of_curve25519 = define
 `wei25519_of_curve25519 =
        weierstrass_of_montgomery (integer_mod_ring p_25519,&A_25519,&1)`;;

let curve25519_of_wei25519 = define
 `curve25519_of_wei25519 =
        montgomery_of_weierstrass (integer_mod_ring p_25519,&A_25519,&1)`;;

let WCURVE_OF_MCURVE_25519 = prove
 (`wcurve_of_mcurve(integer_mod_ring p_25519,&A_25519,&1) =
   (integer_mod_ring p_25519,&a_25519,&b_25519)`,
  REWRITE_TAC[wcurve_of_mcurve; p_25519; PAIR_EQ;
              a_25519; b_25519; A_25519] THEN
  CONV_TAC(DEPTH_CONV INTEGER_MOD_RING_RED_CONV) THEN
  REWRITE_TAC[]);;

let GROUP_ISOMORPHISMS_CURVE25519_WEI25519 = prove
 (`group_isomorphisms
      (curve25519_group,wei25519_group)
      (wei25519_of_curve25519,curve25519_of_wei25519)`,
  MP_TAC(ISPECL
   [`integer_mod_ring p_25519`; `&A_25519:int`; `&1:int`]
   GROUP_ISOMORPHISMS_MONTGOMERY_WEIERSTRASS_GROUP) THEN
  REWRITE_TAC[GSYM wei25519_of_curve25519; GSYM curve25519_of_wei25519;
              GSYM wei25519_group; GSYM curve25519_group;
              WCURVE_OF_MCURVE_25519] THEN
  DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[montgomery_nonsingular] THEN
  REWRITE_TAC[FIELD_INTEGER_MOD_RING; PRIME_P25519] THEN
  REWRITE_TAC[INTEGER_MOD_RING_CHAR; GSYM INT_OF_NUM_EQ] THEN
  REWRITE_TAC[IN_INTEGER_MOD_RING_CARRIER; INTEGER_MOD_RING_CLAUSES] THEN
  REWRITE_TAC[p_25519; A_25519] THEN CONV_TAC INT_REDUCE_CONV);;

let ISOMORPHIC_GROUPS_CURVE25519_WEI25519 = prove
 (`curve25519_group isomorphic_group wei25519_group`,
  MP_TAC GROUP_ISOMORPHISMS_CURVE25519_WEI25519 THEN
  MESON_TAC[isomorphic_group; GROUP_ISOMORPHISMS_IMP_ISOMORPHISM]);;

let ISOMORPHIC_GROUPS_WEI25519_CURVE25519 = prove
 (`wei25519_group isomorphic_group curve25519_group`,
  ONCE_REWRITE_TAC[ISOMORPHIC_GROUP_SYM] THEN
  REWRITE_TAC[ISOMORPHIC_GROUPS_CURVE25519_WEI25519]);;

let WEI25519_OF_CURVE25519_C25519 = prove
 (`wei25519_of_curve25519 C_25519 = G_25519`,
  REWRITE_TAC[wei25519_of_curve25519; weierstrass_of_montgomery;
     C_25519; G_25519; PAIR_EQ; p_25519; A_25519] THEN
  CONV_TAC(DEPTH_CONV INTEGER_MOD_RING_RED_CONV) THEN
  CONV_TAC INT_REDUCE_CONV);;

let WEI25519_OF_CURVE25519_CC25519 = prove
 (`wei25519_of_curve25519 CC_25519 = GG_25519`,
  REWRITE_TAC[wei25519_of_curve25519; weierstrass_of_montgomery;
     CC_25519; GG_25519; PAIR_EQ; p_25519; A_25519] THEN
  CONV_TAC(DEPTH_CONV INTEGER_MOD_RING_RED_CONV) THEN
  CONV_TAC INT_REDUCE_CONV);;

let CURVE25519_OF_WEI25519_G25519 = prove
 (`curve25519_of_wei25519 G_25519 = C_25519`,
  REWRITE_TAC[curve25519_of_wei25519; montgomery_of_weierstrass;
     C_25519; G_25519; PAIR_EQ; p_25519; A_25519] THEN
  CONV_TAC(DEPTH_CONV INTEGER_MOD_RING_RED_CONV) THEN
  CONV_TAC INT_REDUCE_CONV);;

let CURVE25519_OF_WEI25519_GG25519 = prove
 (`curve25519_of_wei25519 GG_25519 = CC_25519`,
  REWRITE_TAC[curve25519_of_wei25519; montgomery_of_weierstrass;
     CC_25519; GG_25519; PAIR_EQ; p_25519; A_25519] THEN
  CONV_TAC(DEPTH_CONV INTEGER_MOD_RING_RED_CONV) THEN
  CONV_TAC INT_REDUCE_CONV);;