Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 9,682 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
(* ========================================================================= *)
(* The SECG-recommended elliptic curve secp256k1.                            *)
(* ========================================================================= *)

needs "EC/weierstrass.ml";;
needs "EC/excluderoots.ml";;
needs "EC/computegroup.ml";;

add_curve weierstrass_curve;;
add_curveneg weierstrass_neg;;
add_curveadd weierstrass_add;;

(* ------------------------------------------------------------------------- *)
(* The SECG curve parameters, copied from the SEC 2 document.                *)
(* See https://www.secg.org/sec2-v2.pdf                                      *)
(* ------------------------------------------------------------------------- *)

let p_256k1 = define `p_256k1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F`;;
let n_256k1 = define `n_256k1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141`;;
let G_256K1 = define `G_256K1 = SOME(&0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798:int,&0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8:int)`;;

(* ------------------------------------------------------------------------- *)
(* Also parameters beta and lambda for an endomorphism.                      *)
(* ------------------------------------------------------------------------- *)

let p256k1_beta = define `p256k1_beta = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee`;;
let p256k1_lambda = define `p256k1_lambda = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72`;;

(* ------------------------------------------------------------------------- *)
(* Primality of the field characteristic and group order.                    *)
(* ------------------------------------------------------------------------- *)

let P_256K1 = prove
 (`p_256k1 = 2 EXP 256 - 2 EXP 32 - 977`,
  REWRITE_TAC[p_256k1] THEN CONV_TAC NUM_REDUCE_CONV);;

let P_256K1_ALT = prove
 (`p_256k1 =
   2 EXP 256 - 2 EXP 32 - 2 EXP 9 - 2 EXP 8 - 2 EXP 7 - 2 EXP 6 - 2 EXP 4 - 1`,
  REWRITE_TAC[p_256k1] THEN CONV_TAC NUM_REDUCE_CONV);;

let PRIME_P256K1 = time prove
 (`prime p_256k1`,
  REWRITE_TAC[p_256k1] THEN CONV_TAC NUM_REDUCE_CONV THEN
  (CONV_TAC o PRIME_RULE)
  ["2"; "3"; "5"; "7"; "11"; "13"; "17"; "19"; "29"; "31"; "41"; "53"; "67";
   "83"; "97"; "101"; "103"; "131"; "239"; "271"; "419"; "443"; "887"; "971";
   "1373"; "1627"; "2621"; "2657"; "4423"; "5323"; "7723"; "13441"; "20113";
   "24809"; "41201"; "96557"; "1206781"; "7240687"; "13331831"; "107590001";
   "173378833005251801"; "22149492674086928081353";
   "132896956044521568488119"; "255515944373312847190720520512484175977";
   "205115282021455665897114700593932402728804164701536103180137503955397371"]);;

let PRIME_N256K1 = time prove
 (`prime n_256k1`,
  REWRITE_TAC[n_256k1] THEN CONV_TAC NUM_REDUCE_CONV THEN
  (CONV_TAC o PRIME_RULE)
  ["2"; "3"; "5"; "7"; "11"; "13"; "17"; "19"; "23"; "29"; "37"; "41"; "59";
   "67"; "73"; "97"; "109"; "113"; "149"; "199"; "293"; "461"; "631"; "797";
   "1409"; "1871"; "2011"; "2731"; "2861"; "4051"; "9349"; "16699"; "28181";
   "85831"; "120233"; "305873"; "1627771"; "4681609"; "44706919";
   "545358713"; "297159362677"; "107361793816595537";
   "174723607534414371449"; "29047611873442575647497758179";
   "341948486974166000522343609283189"]);;

(* ------------------------------------------------------------------------- *)
(* Definition of the curve group and proof of its key properties.            *)
(* ------------------------------------------------------------------------- *)

let p256k1_group = define
 `p256k1_group = weierstrass_group(integer_mod_ring p_256k1,&0,&7)`;;

let P256K1_GROUP = prove
 (`group_carrier p256k1_group =
     weierstrass_curve(integer_mod_ring p_256k1,&0,&7) /\
   group_id p256k1_group =
     NONE /\
   group_inv p256k1_group =
     weierstrass_neg(integer_mod_ring p_256k1,&0,&7) /\
   group_mul p256k1_group =
     weierstrass_add(integer_mod_ring p_256k1,&0,&7)`,
  REWRITE_TAC[p256k1_group] THEN
  MATCH_MP_TAC WEIERSTRASS_GROUP THEN
  REWRITE_TAC[FIELD_INTEGER_MOD_RING; INTEGER_MOD_RING_CHAR; PRIME_P256K1] THEN
  REWRITE_TAC[p_256k1; weierstrass_nonsingular] THEN
  SIMP_TAC[INTEGER_MOD_RING_CLAUSES; ARITH; IN_ELIM_THM] THEN
  CONV_TAC INT_REDUCE_CONV);;

add_ecgroup [p_256k1] P256K1_GROUP;;

let NO_ROOTS_256K1 = prove
 (`!x:int. ~((x pow 3 + &7 == &0) (mod &p_256k1))`,
  EXCLUDE_MODULAR_CUBIC_ROOTS_TAC PRIME_P256K1 [p_256k1]);;

let GENERATOR_IN_GROUP_CARRIER_256K1 = prove
 (`G_256K1 IN group_carrier p256k1_group`,
  REWRITE_TAC[G_256K1] THEN CONV_TAC ECGROUP_CARRIER_CONV);;

let GROUP_ELEMENT_ORDER_G256K1 = prove
 (`group_element_order p256k1_group G_256K1 = n_256k1`,
  SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE_PRIME;
           GENERATOR_IN_GROUP_CARRIER_256K1; PRIME_N256K1] THEN
  REWRITE_TAC[G_256K1; el 1 (CONJUNCTS P256K1_GROUP);
              option_DISTINCT] THEN
  REWRITE_TAC[n_256k1] THEN CONV_TAC(LAND_CONV ECGROUP_POW_CONV) THEN
  REFL_TAC);;

let FINITE_GROUP_CARRIER_256K1 = prove
 (`FINITE(group_carrier p256k1_group)`,
  REWRITE_TAC[P256K1_GROUP] THEN MATCH_MP_TAC FINITE_WEIERSTRASS_CURVE THEN
  REWRITE_TAC[FINITE_INTEGER_MOD_RING;
              FIELD_INTEGER_MOD_RING; PRIME_P256K1] THEN
  REWRITE_TAC[p_256k1] THEN CONV_TAC NUM_REDUCE_CONV);;

let SIZE_P256K1_GROUP = prove
 (`group_carrier p256k1_group HAS_SIZE n_256k1`,
  MATCH_MP_TAC GROUP_ADHOC_ORDER_UNIQUE_LEMMA THEN
  EXISTS_TAC `G_256K1:(int#int)option` THEN
  REWRITE_TAC[GENERATOR_IN_GROUP_CARRIER_256K1;
              GROUP_ELEMENT_ORDER_G256K1;
              FINITE_GROUP_CARRIER_256K1] THEN
  REWRITE_TAC[P256K1_GROUP] THEN CONJ_TAC THENL
   [W(MP_TAC o PART_MATCH (lhand o rand)
      CARD_BOUND_WEIERSTRASS_CURVE o lhand o snd) THEN
    REWRITE_TAC[FINITE_INTEGER_MOD_RING; FIELD_INTEGER_MOD_RING] THEN
    REWRITE_TAC[PRIME_P256K1] THEN ANTS_TAC THENL
     [REWRITE_TAC[p_256k1] THEN CONV_TAC NUM_REDUCE_CONV;
      MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] LET_TRANS)] THEN
    SIMP_TAC[CARD_INTEGER_MOD_RING; p_256k1; ARITH] THEN
    REWRITE_TAC[n_256k1] THEN CONV_TAC NUM_REDUCE_CONV;
    REWRITE_TAC[FORALL_OPTION_THM; IN; FORALL_PAIR_THM] THEN
    REWRITE_TAC[weierstrass_curve; weierstrass_neg; option_DISTINCT] THEN
    MAP_EVERY X_GEN_TAC [`x:int`; `y:int`] THEN REWRITE_TAC[option_INJ] THEN
    REWRITE_TAC[IN_INTEGER_MOD_RING_CARRIER; INTEGER_MOD_RING_CLAUSES] THEN
    CONV_TAC INT_REM_DOWN_CONV THEN REWRITE_TAC[p_256k1; PAIR_EQ] THEN
    CONV_TAC INT_REDUCE_CONV] THEN
  ASM_CASES_TAC `y:int = &0` THENL
   [ASM_REWRITE_TAC[] THEN CONV_TAC INT_REDUCE_CONV THEN
    DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC (MP_TAC o SYM)) THEN
    CONV_TAC INT_REM_DOWN_CONV THEN MP_TAC(SPEC `x:int` NO_ROOTS_256K1) THEN
    REWRITE_TAC[INT_MUL_LZERO; INT_ADD_LID] THEN
    REWRITE_TAC[GSYM INT_REM_EQ; p_256k1; INT_REM_ZERO];
    STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (INT_ARITH
     `--y rem p = y ==> y rem p = y ==> (--y rem p = y rem p)`)) THEN
    ANTS_TAC THENL [ASM_SIMP_TAC[INT_REM_LT]; ALL_TAC] THEN
    REWRITE_TAC[INT_REM_EQ; INTEGER_RULE
     `(--y:int == y) (mod p) <=> p divides (&2 * y)`] THEN
    DISCH_THEN(MP_TAC o MATCH_MP (INTEGER_RULE
     `p divides (a * b:int) ==> coprime(a,p) ==> p divides b`)) THEN
    REWRITE_TAC[GSYM num_coprime; ARITH; COPRIME_2] THEN
    DISCH_THEN(MP_TAC o MATCH_MP INT_DIVIDES_LE) THEN ASM_INT_ARITH_TAC]);;

let GENERATED_P256K1_GROUP = prove
 (`subgroup_generated p256k1_group {G_256K1} = p256k1_group`,
  SIMP_TAC[SUBGROUP_GENERATED_ELEMENT_ORDER;
           GENERATOR_IN_GROUP_CARRIER_256K1;
           FINITE_GROUP_CARRIER_256K1] THEN
  REWRITE_TAC[GROUP_ELEMENT_ORDER_G256K1;
              REWRITE_RULE[HAS_SIZE] SIZE_P256K1_GROUP]);;

let CYCLIC_P256K1_GROUP = prove
 (`cyclic_group p256k1_group`,
  MESON_TAC[CYCLIC_GROUP_ALT; GENERATED_P256K1_GROUP]);;

let ABELIAN_P256K1_GROUP = prove
 (`abelian_group p256k1_group`,
  MESON_TAC[CYCLIC_P256K1_GROUP; CYCLIC_IMP_ABELIAN_GROUP]);;

(* ------------------------------------------------------------------------- *)
(* Easily computable endomorphism of secp256k1 curve.                        *)
(* ------------------------------------------------------------------------- *)

let GROUP_ENDOMORPHISM_TRIPLEX_BETA = prove
 (`group_endomorphism p256k1_group
        (weierstrass_triplex (integer_mod_ring p_256k1) (&p256k1_beta))`,
  REWRITE_TAC[p256k1_group] THEN MATCH_MP_TAC GROUP_ENDOMORPHISM_TRIPLEX THEN
  SIMP_TAC[INTEGER_MOD_RING; INTEGER_MOD_RING_CHAR; INTEGER_MOD_RING_POW;
           p_256k1; IN_INSERT; FIELD_INTEGER_MOD_RING; ARITH; p256k1_beta;
           IN_ELIM_THM; weierstrass_nonsingular; INTEGER_MOD_RING_OF_NUM] THEN
  REWRITE_TAC[REWRITE_RULE[p_256k1] PRIME_P256K1] THEN
  CONV_TAC INT_REDUCE_CONV);;

let P256K1_TRIPLEX_BETA = prove
 (`!x. x IN group_carrier p256k1_group
       ==> weierstrass_triplex (integer_mod_ring p_256k1) (&p256k1_beta) x =
           group_pow p256k1_group x p256k1_lambda`,
  GEN_REWRITE_TAC (BINDER_CONV o LAND_CONV o ONCE_DEPTH_CONV)
   [GSYM GENERATED_P256K1_GROUP] THEN
  MATCH_MP_TAC  GROUP_HOMOMORPHISMS_EQ_ON_GENERATORS THEN
  EXISTS_TAC `p256k1_group` THEN
  SIMP_TAC[ABELIAN_GROUP_HOMOMORPHISM_POWERING; ABELIAN_P256K1_GROUP] THEN
  REWRITE_TAC[GSYM group_endomorphism] THEN
  REWRITE_TAC[GROUP_ENDOMORPHISM_TRIPLEX_BETA; ETA_AX] THEN
  REWRITE_TAC[IMP_CONJ_ALT; IN_SING; FORALL_UNWIND_THM2] THEN
  DISCH_TAC THEN
  SIMP_TAC[weierstrass_triplex; p256k1_beta; p256k1_lambda; G_256K1] THEN
  CONV_TAC(RAND_CONV ECGROUP_POW_CONV) THEN
  REWRITE_TAC[option_INJ; PAIR_EQ] THEN
  REWRITE_TAC[INTEGER_MOD_RING; p_256k1] THEN CONV_TAC INT_REDUCE_CONV);;