Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 11,048 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
(* ========================================================================= *)
(* The multiplicative group of integers modulo n.                            *)
(* ========================================================================= *)

needs "Library/grouptheory.ml";;
needs "Library/primitive.ml";;

(* ------------------------------------------------------------------------- *)
(* A trivial general lemma used to dispose of degnerate cases.               *)
(* ------------------------------------------------------------------------- *)

let MULT_EQ_2 = prove
 (`!m n. m * n = 2 <=> m = 1 /\ n = 2 \/ m = 2 /\ n = 1`,
  REPEAT GEN_TAC THEN
  ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES; ARITH] THEN
  ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES; ARITH] THEN
  ASM_CASES_TAC `m = 1` THEN ASM_REWRITE_TAC[MULT_CLAUSES; ARITH] THEN
  ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[MULT_CLAUSES; ARITH] THEN
  MATCH_MP_TAC(ARITH_RULE `2 * 2 <= p ==> ~(p = 2)`) THEN
  MATCH_MP_TAC LE_MULT2 THEN ASM_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Multiplicative group of integers mod n, with degenerate {1} for n <= 1.   *)
(* ------------------------------------------------------------------------- *)

let modmul_group = new_definition
 `modmul_group n =
        if n <= 1 then singleton_group 1
        else group({m | m < n /\ coprime(m,n)},
                   1,inverse_mod n,(\a b. (a * b) MOD n))`;;

let MODMUL_GROUP = prove
 (`(!n. group_carrier(modmul_group n) =
        if n <= 1 then {1} else {m | m < n /\ coprime(m,n)}) /\
   (!n. group_id(modmul_group n) = 1) /\
   (!n. group_inv(modmul_group n) = inverse_mod n) /\
   (!n. group_mul(modmul_group n) =
        if n <= 1 then (\a b. 1) else (\a b. (a * b) MOD n))`,
  REWRITE_TAC[AND_FORALL_THM] THEN X_GEN_TAC `n:num` THEN
  REWRITE_TAC[modmul_group] THEN
  ASM_CASES_TAC `n <= 1` THEN ASM_REWRITE_TAC[] THENL
   [REWRITE_TAC[SINGLETON_GROUP] THEN ASM_REWRITE_TAC[FUN_EQ_THM; inverse_mod];
    RULE_ASSUM_TAC(REWRITE_RULE[ARITH_RULE `~(n <= 1) <=> 2 <= n`])] THEN
  REWRITE_TAC[group_carrier; group_id; group_inv; group_mul] THEN
  REWRITE_TAC[GSYM PAIR_EQ; GSYM(CONJUNCT2 group_tybij)] THEN
  ASM_REWRITE_TAC[IN_ELIM_THM; ARITH_RULE `1 < n <=> 2 <= n`] THEN
  REWRITE_TAC[NUMBER_RULE `coprime(1,n)`; PAIR_EQ] THEN
  REPEAT CONJ_TAC THENL
   [X_GEN_TAC `m:num` THEN STRIP_TAC THEN
    ASM_REWRITE_TAC[INVERSE_MOD_BOUND] THEN
    MATCH_MP_TAC(NUMBER_RULE `!m. (a * m == 1) (mod n) ==> coprime(a,n)`) THEN
    EXISTS_TAC `m:num` THEN REWRITE_TAC[INVERSE_MOD_LMUL_EQ] THEN
    ASM_MESON_TAC[COPRIME_SYM];
    REWRITE_TAC[COPRIME_LMOD; COPRIME_LMUL] THEN
    ASM_SIMP_TAC[MOD_LT_EQ; ARITH_RULE `2 <= n ==> ~(n = 0)`];
    REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM MOD_MULT_MOD2] THEN
    REWRITE_TAC[MOD_MOD_REFL] THEN REWRITE_TAC[MOD_MULT_MOD2] THEN
    REWRITE_TAC[MULT_ASSOC];
    SIMP_TAC[MULT_CLAUSES; MOD_LT];
    REWRITE_TAC[MOD_UNIQUE; INVERSE_MOD_RMUL_EQ; INVERSE_MOD_LMUL_EQ] THEN
    ASM_SIMP_TAC[ARITH_RULE `2 <= n ==> 1 < n`] THEN
    MESON_TAC[COPRIME_SYM]]);;

let FINITE_MODMUL_GROUP = prove
 (`!n. FINITE(group_carrier(modmul_group n))`,
  GEN_TAC THEN REWRITE_TAC[MODMUL_GROUP] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[FINITE_SING] THEN
  MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `0..n` THEN
  REWRITE_TAC[FINITE_NUMSEG; SUBSET; IN_ELIM_THM; IN_NUMSEG] THEN
  ARITH_TAC);;

let ORDER_MODMUL_GROUP = prove
 (`!n. CARD(group_carrier(modmul_group n)) =
       if n = 0 then 1 else phi n`,
  GEN_TAC THEN COND_CASES_TAC THEN
  ASM_REWRITE_TAC[MODMUL_GROUP; LE_0; CARD_SING] THEN
  ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[LE_REFL; PHI_1; CARD_SING] THEN
  ASM_REWRITE_TAC[ARITH_RULE `n <= 1 <=> n = 0 \/ n = 1`] THEN
  ONCE_REWRITE_TAC[CONJ_SYM] THEN REWRITE_TAC[PHI_ALT]);;

let HAS_SIZE_MODMUL_GROUP = prove
 (`!n. ~(n = 0) ==> group_carrier(modmul_group n) HAS_SIZE phi n`,
  SIMP_TAC[HAS_SIZE; FINITE_MODMUL_GROUP] THEN
  SIMP_TAC[ORDER_MODMUL_GROUP]);;

let ABELIAN_MODMUL_GROUP = prove
 (`!n. abelian_group(modmul_group n)`,
  GEN_TAC THEN REWRITE_TAC[abelian_group; MODMUL_GROUP] THEN
  REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[MULT_SYM]);;

let TRIVIAL_MODMUL_GROUP = prove
 (`!n. trivial_group(modmul_group n) <=> n <= 2`,
  GEN_TAC THEN REWRITE_TAC[TRIVIAL_GROUP_HAS_SIZE_1; HAS_SIZE] THEN
  REWRITE_TAC[FINITE_MODMUL_GROUP] THEN
  REWRITE_TAC[ORDER_MODMUL_GROUP] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[ARITH] THEN
  ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[PHI_1; ARITH] THEN
  ASM_CASES_TAC `n = 2` THEN ASM_REWRITE_TAC[PHI_2; ARITH] THEN
  MATCH_MP_TAC(ARITH_RULE `~(n <= 2) /\ 2 <= p ==> (p = 1 <=> n <= 2)`) THEN
  CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC PHI_LOWERBOUND_2] THEN
  ASM_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Chinese remainder theorem in group-theoretic language.                    *)
(* ------------------------------------------------------------------------- *)

let GROUP_HOMOMORPHISM_PROD_MODMUL_GROUP = prove
 (`!m n. 2 <= m /\ 2 <= n
         ==> group_homomorphism (modmul_group(m * n),
                                 prod_group (modmul_group m)
                                            (modmul_group n))
                                (\a. (a MOD m),(a MOD n))`,
  REPEAT STRIP_TAC THEN
  REWRITE_TAC[GROUP_HOMOMORPHISM; PROD_GROUP; SUBSET] THEN
  REWRITE_TAC[FORALL_IN_IMAGE; FORALL_PAIR_THM; IN_CROSS] THEN
  REWRITE_TAC[MODMUL_GROUP] THEN
  REWRITE_TAC[ARITH_RULE `n <= 1 <=> n = 0 \/ n = 1`] THEN
  ASM_SIMP_TAC[MULT_EQ_0; MULT_EQ_1; IN_ELIM_THM; MOD_LT_EQ; COPRIME_LMOD;
               PAIR_EQ; ARITH_RULE  `2 <= n ==> ~(n = 0) /\ ~(n = 1)`] THEN
  SIMP_TAC[COPRIME_RMUL; MOD_MOD; ONCE_REWRITE_RULE[MULT_SYM] MOD_MOD] THEN
  REWRITE_TAC[MOD_MULT_MOD2]);;

let GROUP_ISOMORPHISM_PROD_MODMUL_GROUP = prove
 (`!m n. 2 <= m /\ 2 <= n /\ coprime(m,n)
         ==> group_isomorphism (modmul_group(m * n),
                                prod_group (modmul_group m)
                                           (modmul_group n))
                               (\a. (a MOD m),(a MOD n))`,
  REPEAT STRIP_TAC THEN
  W(MP_TAC o PART_MATCH (lhand o rand)
    GROUP_ISOMORPHISM_EQ_MONOMORPHISM_FINITE o snd) THEN
  ASM_SIMP_TAC[ORDER_MODMUL_GROUP; FINITE_PROD_GROUP;
               FINITE_MODMUL_GROUP; MULT_EQ_0;
               CONJUNCT1 PROD_GROUP; CARD_CROSS; PHI_MULTIPLICATIVE;
               ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN
  DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[group_monomorphism] THEN
  ASM_SIMP_TAC[GROUP_HOMOMORPHISM_PROD_MODMUL_GROUP] THEN
  ASM_SIMP_TAC[MODMUL_GROUP; MULT_EQ_0; MULT_EQ_1;
               ARITH_RULE `n <= 1 <=> n = 0 \/ n = 1`;
               ARITH_RULE `2 <= n ==> ~(n = 0) /\ ~(n = 1)`] THEN
  REWRITE_TAC[PAIR_EQ; IN_ELIM_THM; GSYM CONG] THEN
  REPEAT STRIP_TAC THEN MATCH_MP_TAC CONG_IMP_EQ THEN
  EXISTS_TAC `m * n:num` THEN ASM_REWRITE_TAC[] THEN
  ASM_MESON_TAC[NUMBER_RULE
   `coprime(m:num,n) /\ (x == y) (mod m) /\ (x == y) (mod n)
    ==> (x == y) (mod(m * n))`]);;

let ISOMORPHIC_GROUP_MODMUL_GROUP = prove
 (`!m n. coprime(m,n)
         ==> prod_group (modmul_group m)
                        (modmul_group n)
             isomorphic_group (modmul_group (m * n))`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC(MESON[ISOMORPHIC_TRIVIAL_GROUPS]
   `(trivial_group G <=> trivial_group H) /\
    (~trivial_group G /\ ~trivial_group H ==> G isomorphic_group H)
    ==> G isomorphic_group H`) THEN
  REWRITE_TAC[TRIVIAL_PROD_GROUP; TRIVIAL_MODMUL_GROUP] THEN
  POP_ASSUM MP_TAC THEN
  ASM_CASES_TAC `m = 0` THEN ASM_SIMP_TAC[COPRIME_0; ARITH] THEN
  ASM_CASES_TAC `n = 0` THEN ASM_SIMP_TAC[COPRIME_0; ARITH] THEN
  DISCH_TAC THEN
  ASM_CASES_TAC `m = 1` THEN
  ASM_SIMP_TAC[MULT_CLAUSES; ISOMORPHIC_PROD_TRIVIAL_GROUP;
              TRIVIAL_MODMUL_GROUP; ARITH] THEN
  ASM_CASES_TAC `n = 1` THEN
  ASM_SIMP_TAC[MULT_CLAUSES; ISOMORPHIC_PROD_TRIVIAL_GROUP;
               TRIVIAL_MODMUL_GROUP; ARITH] THEN
  ASM_REWRITE_TAC[ARITH_RULE `n <= 2 <=> n = 0 \/ n = 1 \/ n = 2`] THEN
  ASM_REWRITE_TAC[MULT_EQ_0; MULT_EQ_1; MULT_EQ_2] THEN
  CONJ_TAC THENL [ASM_MESON_TAC[COPRIME_REFL]; DISCH_THEN(K ALL_TAC)] THEN
  ONCE_REWRITE_TAC[ISOMORPHIC_GROUP_SYM] THEN
  REWRITE_TAC[isomorphic_group] THEN
  EXISTS_TAC `\a. (a MOD m),(a MOD n)` THEN
  MATCH_MP_TAC GROUP_ISOMORPHISM_PROD_MODMUL_GROUP THEN
  ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC);;

let GROUP_POW_MODMUL_GROUP = prove
 (`!n a k. group_pow (modmul_group n) a k =
           if n <= 1 then 1 else (a EXP k) MOD n`,
  GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
  ASM_REWRITE_TAC[group_pow; MODMUL_GROUP] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[EXP] THENL
   [CONV_TAC SYM_CONV THEN MATCH_MP_TAC MOD_LT THEN ASM_ARITH_TAC;
    MESON_TAC[MOD_MULT_MOD2; MOD_MOD_REFL; MOD_EXP_MOD]]);;

let GROUP_ELEMENT_ORDER_MODMUL_GROUP = prove
 (`!n a. a IN group_carrier(modmul_group n)
         ==> group_element_order (modmul_group n) a = order n a`,
  REPEAT STRIP_TAC THEN
  ASM_SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE] THEN
  REWRITE_TAC[GSYM ORDER_DIVIDES] THEN
  X_GEN_TAC `k:num` THEN POP_ASSUM MP_TAC THEN
  REWRITE_TAC[GROUP_POW_MODMUL_GROUP] THEN
  REWRITE_TAC[MODMUL_GROUP] THEN
  COND_CASES_TAC THEN ASM_SIMP_TAC[IN_SING; EXP_ONE; CONG] THEN
  DISCH_THEN(K ALL_TAC) THEN RULE_ASSUM_TAC(REWRITE_RULE[NOT_LE]) THEN
  ASM_SIMP_TAC[MOD_LT]);;

(* ------------------------------------------------------------------------- *)
(* Existence of primitive roots in group-theoretic language.                 *)
(* ------------------------------------------------------------------------- *)

let CYCLIC_MODMUL_GROUP = prove
 (`!n. cyclic_group(modmul_group n) <=>
       n = 0 \/ n = 1 \/ n = 2 \/ n = 4 \/
       ?p k. prime p /\ 3 <= p /\ (n = p EXP k \/ n = 2 * p EXP k)`,
  GEN_TAC THEN ASM_CASES_TAC `n <= 2` THENL
   [ASM_SIMP_TAC[TRIVIAL_MODMUL_GROUP;
                 TRIVIAL_IMP_CYCLIC_GROUP] THEN
    ASM_ARITH_TAC;
    RULE_ASSUM_TAC(REWRITE_RULE[NOT_LE])] THEN
  SIMP_TAC[CYCLIC_GROUP_ELEMENT_ORDER; FINITE_MODMUL_GROUP] THEN
  ONCE_REWRITE_TAC[TAUT `p /\ q <=> ~(p ==> ~q)`] THEN
  SIMP_TAC[GROUP_ELEMENT_ORDER_MODMUL_GROUP] THEN
  MP_TAC(SPEC `n:num` PRIMITIVE_ROOT_EXISTS) THEN
  ASM_SIMP_TAC[ORDER_MODMUL_GROUP; FINITE_MODMUL_GROUP;
               MODMUL_GROUP;
               ARITH_RULE `2 < n ==> ~(n = 0) /\ ~(n = 1) /\ ~(n <= 1)`] THEN
  REWRITE_TAC[IN_ELIM_THM; NOT_IMP] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN
  EQ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `k:num` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `k MOD n` THEN
  ASM_SIMP_TAC[MOD_LT_EQ; ARITH_RULE `2 < n ==> ~(n = 0)`] THEN
  MATCH_MP_TAC(TAUT `(~p ==> ~q) /\ q ==> p /\ q`) THEN
  ONCE_REWRITE_TAC[COPRIME_SYM] THEN SIMP_TAC[GSYM ORDER_EQ_0] THEN
  GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [EQ_SYM_EQ] THEN
  ASM_SIMP_TAC[PHI_EQ_0; ARITH_RULE `2 < n ==> ~(n = 0)`] THEN
  FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN MATCH_MP_TAC ORDER_CONG THEN
  REWRITE_TAC[CONG_LMOD; CONG_REFL]);;