Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 101,975 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 |
(* ========================================================================= *)
(* Basic theory of divisibility, gcd, coprimality and primality (over N). *)
(* ========================================================================= *)
prioritize_num();;
(* ------------------------------------------------------------------------- *)
(* Elementary theory of divisibility *)
(* ------------------------------------------------------------------------- *)
let DIVIDES_0 = prove
(`!x. x divides 0`,
NUMBER_TAC);;
let DIVIDES_ZERO = prove
(`!x. 0 divides x <=> x = 0`,
NUMBER_TAC);;
let DIVIDES_1 = prove
(`!x. 1 divides x`,
NUMBER_TAC);;
let DIVIDES_REFL = prove
(`!x. x divides x`,
NUMBER_TAC);;
let DIVIDES_TRANS = prove
(`!a b c. a divides b /\ b divides c ==> a divides c`,
NUMBER_TAC);;
let DIVIDES_ADD = prove
(`!d a b. d divides a /\ d divides b ==> d divides (a + b)`,
NUMBER_TAC);;
let DIVIDES_SUB_EQ = prove
(`!d a b. d divides (a - b) <=> a < b \/ (a == b) (mod d)`,
REPEAT GEN_TAC THEN
DISJ_CASES_THEN MP_TAC(ARITH_RULE
`a < b /\ a - b = 0 \/ ~(a < b) /\ (a - b) + b = a`) THEN
SIMP_TAC[] THEN NUMBER_TAC);;
let DIVIDES_SUB = prove
(`!d a b. d divides a /\ d divides b ==> d divides (a - b)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[DIVIDES_SUB_EQ] THEN
DISJ2_TAC THEN REPEAT(POP_ASSUM MP_TAC) THEN NUMBER_TAC);;
let DIVIDES_SUB_1 = prove
(`!d n. d divides n - 1 <=> n = 0 \/ (n == 1) (mod d)`,
REWRITE_TAC[DIVIDES_SUB_EQ; ARITH_RULE `n < 1 <=> n = 0`]);;
let DIVIDES_LMUL = prove
(`!d a x. d divides a ==> d divides (x * a)`,
NUMBER_TAC);;
let DIVIDES_RMUL = prove
(`!d a x. d divides a ==> d divides (a * x)`,
NUMBER_TAC);;
let DIVIDES_ADD_REVR = prove
(`!d a b. d divides a /\ d divides (a + b) ==> d divides b`,
NUMBER_TAC);;
let DIVIDES_ADD_REVL = prove
(`!d a b. d divides b /\ d divides (a + b) ==> d divides a`,
NUMBER_TAC);;
let DIVIDES_MUL_L = prove
(`!a b c. a divides b ==> (c * a) divides (c * b)`,
NUMBER_TAC);;
let DIVIDES_MUL_R = prove
(`!a b c. a divides b ==> (a * c) divides (b * c)`,
NUMBER_TAC);;
let DIVIDES_LMUL2 = prove
(`!d a x. (x * d) divides a ==> d divides a`,
NUMBER_TAC);;
let DIVIDES_RMUL2 = prove
(`!d a x. (d * x) divides a ==> d divides a`,
NUMBER_TAC);;
let DIVIDES_CMUL2 = prove
(`!a b c. (c * a) divides (c * b) /\ ~(c = 0) ==> a divides b`,
NUMBER_TAC);;
let DIVIDES_LMUL2_EQ = prove
(`!a b c. ~(c = 0) ==> ((c * a) divides (c * b) <=> a divides b)`,
NUMBER_TAC);;
let DIVIDES_RMUL2_EQ = prove
(`!a b c. ~(c = 0) ==> ((a * c) divides (b * c) <=> a divides b)`,
NUMBER_TAC);;
let DIVIDES_CASES = prove
(`!m n. n divides m ==> m = 0 \/ m = n \/ 2 * n <= m`,
SIMP_TAC[ARITH_RULE `m = n \/ 2 * n <= m <=> m = n * 1 \/ n * 2 <= m`] THEN
SIMP_TAC[divides; LEFT_IMP_EXISTS_THM] THEN
REWRITE_TAC[MULT_EQ_0; EQ_MULT_LCANCEL; LE_MULT_LCANCEL] THEN ARITH_TAC);;
let DIVIDES_DIV_NOT = prove
(`!n x q r. x = q * n + r /\ 0 < r /\ r < n ==> ~(n divides x)`,
SIMP_TAC[NUMBER_RULE `n divides (q * n + r) <=> n divides r`] THEN
REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE) THEN
ASM_ARITH_TAC);;
let DIVIDES_MUL2 = prove
(`!a b c d. a divides b /\ c divides d ==> (a * c) divides (b * d)`,
NUMBER_TAC);;
let DIVIDES_EXP = prove
(`!x y n. x divides y ==> (x EXP n) divides (y EXP n)`,
REPEAT GEN_TAC THEN REWRITE_TAC[divides] THEN
DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN
EXISTS_TAC `d EXP n` THEN MATCH_ACCEPT_TAC MULT_EXP);;
let DIVIDES_EXP2 = prove
(`!n x y. ~(n = 0) /\ (x EXP n) divides y ==> x divides y`,
INDUCT_TAC THEN REWRITE_TAC[NOT_SUC; EXP] THEN NUMBER_TAC);;
let DIVIDES_EXP_LE_IMP = prove
(`!p m n. m <= n ==> (p EXP m) divides (p EXP n)`,
SIMP_TAC[LE_EXISTS; LEFT_IMP_EXISTS_THM; EXP_ADD] THEN NUMBER_TAC);;
let DIVIDES_EXP_LE = prove
(`!p m n. 2 <= p ==> ((p EXP m) divides (p EXP n) <=> m <= n)`,
REPEAT STRIP_TAC THEN EQ_TAC THENL
[DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE) THEN
ASM_REWRITE_TAC[LE_EXP; EXP_EQ_0] THEN POP_ASSUM MP_TAC THEN ARITH_TAC;
SIMP_TAC[LE_EXISTS; LEFT_IMP_EXISTS_THM; EXP_ADD] THEN NUMBER_TAC]);;
let DIVIDES_TRIVIAL_UPPERBOUND = prove
(`!p n. ~(n = 0) /\ 2 <= p ==> ~((p EXP n) divides n)`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE) THEN
ASM_REWRITE_TAC[NOT_LE] THEN MATCH_MP_TAC LTE_TRANS THEN
EXISTS_TAC `2 EXP n` THEN REWRITE_TAC[LT_POW2_REFL] THEN
UNDISCH_TAC `~(n = 0)` THEN SPEC_TAC(`n:num`,`n:num`) THEN
INDUCT_TAC THEN ASM_REWRITE_TAC[EXP_MONO_LE; NOT_SUC]);;
let DIVIDES_FACT = prove
(`!n p. 1 <= p /\ p <= n ==> p divides (FACT n)`,
INDUCT_TAC THEN REWRITE_TAC[FACT; LE] THENL
[ARITH_TAC; ASM_MESON_TAC[DIVIDES_LMUL; DIVIDES_RMUL; DIVIDES_REFL]]);;
let DIVIDES_2 = prove
(`!n. 2 divides n <=> EVEN(n)`,
REWRITE_TAC[divides; EVEN_EXISTS]);;
let DIVIDES_REXP_SUC = prove
(`!x y n. x divides y ==> x divides (y EXP (SUC n))`,
REWRITE_TAC[EXP; DIVIDES_RMUL]);;
let DIVIDES_REXP = prove
(`!x y n. x divides y /\ ~(n = 0) ==> x divides (y EXP n)`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN SIMP_TAC[DIVIDES_REXP_SUC]);;
let FINITE_DIVISORS = prove
(`!n. ~(n = 0) ==> FINITE {d | d divides n}`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN
EXISTS_TAC `{d:num | d <= n}` THEN REWRITE_TAC[FINITE_NUMSEG_LE] THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[DIVIDES_LE]);;
let FINITE_SPECIAL_DIVISORS = prove
(`!n. ~(n = 0) ==> FINITE {d | P d /\ d divides n}`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN
EXISTS_TAC `{d | d divides n}` THEN ASM_SIMP_TAC[FINITE_DIVISORS] THEN
SET_TAC[]);;
let DIVISORS_EQ = prove
(`!m n. m = n <=> !d. d divides m <=> d divides n`,
REWRITE_TAC[GSYM DIVIDES_ANTISYM] THEN
MESON_TAC[DIVIDES_REFL; DIVIDES_TRANS]);;
let MULTIPLES_EQ = prove
(`!m n. m = n <=> !d. m divides d <=> n divides d`,
REWRITE_TAC[GSYM DIVIDES_ANTISYM] THEN
MESON_TAC[DIVIDES_REFL; DIVIDES_TRANS]);;
let DIVIDES_NSUM = prove
(`!n f s. FINITE s /\ (!i. i IN s ==> n divides (f i))
==> n divides nsum s f`,
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
ASM_SIMP_TAC[DIVIDES_0; NSUM_CLAUSES; FORALL_IN_INSERT; DIVIDES_ADD]);;
(* ------------------------------------------------------------------------- *)
(* Greatest common divisor. *)
(* ------------------------------------------------------------------------- *)
let DIVIDES_GCD = prove
(`!a b d. d divides gcd(a,b) <=> d divides a /\ d divides b`,
NUMBER_TAC);;
let GCD_0 = prove
(`(!a. gcd(0,a) = a) /\ (!a. gcd(a,0) = a)`,
NUMBER_TAC);;
let GCD_ZERO = prove
(`!a b. gcd(a,b) = 0 <=> a = 0 /\ b = 0`,
NUMBER_TAC);;
let GCD_REFL = prove
(`!a. gcd(a,a) = a`,
NUMBER_TAC);;
let GCD_1 = prove
(`(!a. gcd(1,a) = 1) /\ (!a. gcd(a,1) = 1)`,
NUMBER_TAC);;
let GCD_MULTIPLE = prove
(`!a b. gcd(b,a * b) = b`,
NUMBER_TAC);;
let GCD_ADD = prove
(`(!a b. gcd(a + b,b) = gcd(a,b)) /\
(!a b. gcd(b + a,b) = gcd(a,b)) /\
(!a b. gcd(a,a + b) = gcd(a,b)) /\
(!a b. gcd(a,b + a) = gcd(a,b))`,
NUMBER_TAC);;
let GCD_SUB = prove
(`(!a b. b <= a ==> gcd(a - b,b) = gcd(a,b)) /\
(!a b. a <= b ==> gcd(a,b - a) = gcd(a,b))`,
MESON_TAC[SUB_ADD; GCD_ADD]);;
let DIVIDES_GCD_LEFT = prove
(`!m n:num. m divides n <=> gcd(m,n) = m`,
NUMBER_TAC);;
let DIVIDES_GCD_RIGHT = prove
(`!m n:num. n divides m <=> gcd(m,n) = n`,
NUMBER_TAC);;
let GCD_COPRIME_LMUL = prove
(`!a b c. coprime(a,b) ==> gcd(a * b,c) = gcd(a,c) * gcd(b,c)`,
NUMBER_TAC);;
let GCD_COPRIME_RMUL = prove
(`!a b c. coprime(a,b) ==> gcd(c,a * b) = gcd(c,a) * gcd(c,b)`,
NUMBER_TAC);;
let DIVIDES_LMUL_GCD = prove
(`(!d a b. d divides gcd(d,a) * b <=> d divides a * b) /\
(!d a b. d divides gcd(a,d) * b <=> d divides a * b)`,
NUMBER_TAC);;
let DIVIDES_RMUL_GCD = prove
(`(!d a b. d divides a * gcd(d,b) <=> d divides a * b) /\
(!d a b. d divides a * gcd(b,d) <=> d divides a * b)`,
NUMBER_TAC);;
let GCD_MUL_COPRIME = prove
(`(!a b c. coprime(a,b) ==> gcd(a,b * c) = gcd(a,c)) /\
(!a b c. coprime(a,c) ==> gcd(a,b * c) = gcd(a,b)) /\
(!a b c. coprime(b,c) ==> gcd(a,b * c) = gcd(a,b) * gcd(a,c)) /\
(!a b c. coprime(a,c) ==> gcd(a * b,c) = gcd(b,c)) /\
(!a b c. coprime(b,c) ==> gcd(a * b,c) = gcd(a,c)) /\
(!a b c. coprime(a,b) ==> gcd(a * b,c) = gcd(a,c) * gcd(b,c))`,
NUMBER_TAC);;
let GCD_SYM = prove
(`!a b. gcd(a,b) = gcd(b,a)`,
NUMBER_TAC);;
let GCD_ASSOC = prove
(`!a b c. gcd(a,gcd(b,c)) = gcd(gcd(a,b),c)`,
NUMBER_TAC);;
let GCD_LMUL = prove
(`!a b c. gcd(c * a, c * b) = c * gcd(a,b)`,
NUMBER_TAC);;
let GCD_RMUL = prove
(`!a b c. gcd(a * c, b * c) = c * gcd(a,b)`,
NUMBER_TAC);;
let GCD_BEZOUT_SUM = prove
(`!a b d x y. a * x + b * y = d ==> gcd(a,b) divides d`,
NUMBER_TAC);;
let GCD_COPRIME_DIVIDES_LMUL = prove
(`!a b c:num. coprime(a,b) /\ a divides c ==> gcd(a * b,c) = a * gcd(b,c)`,
NUMBER_TAC);;
let GCD_COPRIME_DIVIDES_RMUL = prove
(`!a b c:num. coprime(b,c) /\ b divides a ==> gcd(a,b * c) = b * gcd(a,c)`,
ONCE_REWRITE_TAC[GCD_SYM] THEN REWRITE_TAC[GCD_COPRIME_DIVIDES_LMUL]);;
let GCD_UNIQUE = prove
(`!d a b. (d divides a /\ d divides b) /\
(!e. e divides a /\ e divides b ==> e divides d) <=>
d = gcd(a,b)`,
REPEAT GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[GCD] THEN
ONCE_REWRITE_TAC[GSYM DIVIDES_ANTISYM] THEN
ASM_REWRITE_TAC[DIVIDES_GCD] THEN
FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[GCD]);;
let GCD_EQ = prove
(`(!d. d divides x /\ d divides y <=> d divides u /\ d divides v)
==> gcd(x,y) = gcd(u,v)`,
REWRITE_TAC[DIVIDES_GCD; GSYM DIVIDES_ANTISYM] THEN MESON_TAC[GCD]);;
let BEZOUT_GCD_STRONG = prove
(`!a b. ~(a = 0) ==> ?x y. a * x = b * y + gcd(a,b)`,
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [SWAP_EXISTS_THM] THEN
MP_TAC(INTEGER_RULE `?x y. &a * x:int = &b * y + gcd(&a,&b)`) THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`x:int`; `y:int`] THEN STRIP_TAC THEN
MP_TAC(SPECL [`y:int`; `&a:int`] INT_CONG_NUM_EXISTS) THEN
ASM_REWRITE_TAC[INT_OF_NUM_EQ] THEN MATCH_MP_TAC MONO_EXISTS THEN
X_GEN_TAC `r:num` THEN DISCH_TAC THEN
SUBGOAL_THEN `&a divides (&b * &r + gcd(&a,&b):int)` MP_TAC THENL
[REPLICATE_TAC 2 (POP_ASSUM MP_TAC) THEN CONV_TAC INTEGER_RULE;
ASM_REWRITE_TAC[int_divides; EXISTS_INT_CASES] THEN
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THEN MATCH_MP_TAC MONO_EXISTS THEN
SIMP_TAC[GSYM NUM_GCD; INT_OF_NUM_MUL; INT_OF_NUM_ADD; INT_OF_NUM_EQ] THEN
REWRITE_TAC[INT_MUL_RNEG; INT_OF_NUM_MUL;
INT_ARITH `&x:int = -- &y <=> &x:int = &0 /\ &y:int = &0`] THEN
ASM_REWRITE_TAC[INT_OF_NUM_EQ; ADD_EQ_0; GCD_ZERO]]);;
let BEZOUT_ADD_STRONG = prove
(`!a b. ~(a = 0)
==> ?d x y. d divides a /\ d divides b /\ a * x = b * y + d`,
MESON_TAC[BEZOUT_GCD_STRONG; GCD]);;
let BEZOUT_GCD = prove
(`!a b. ?x y. a * x - b * y = gcd(a,b) \/ b * x - a * y = gcd(a,b)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `a = 0 /\ b = 0` THEN
ASM_REWRITE_TAC[MULT_CLAUSES; GCD_0; SUB_0] THEN
FIRST_X_ASSUM(DISJ_CASES_TAC o REWRITE_RULE[DE_MORGAN_THM]) THENL
[MP_TAC(SPECL [`a:num`; `b:num`] BEZOUT_GCD_STRONG);
MP_TAC(SPECL [`b:num`; `a:num`] BEZOUT_GCD_STRONG)] THEN
ASM_REWRITE_TAC[] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN
REWRITE_TAC[GCD_SYM] THEN ARITH_TAC);;
let BEZOUT_ADD = prove
(`!a b. ?d x y. (d divides a /\ d divides b) /\
(a * x = b * y + d \/ b * x = a * y + d)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `a = 0 /\ b = 0` THEN
ASM_REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES; DIVIDES_0; GSYM EXISTS_REFL] THEN
ASM_MESON_TAC[BEZOUT_ADD_STRONG; MULT_SYM; ADD_SYM]);;
let BEZOUT = prove
(`!a b. ?d x y. (d divides a /\ d divides b) /\
(a * x - b * y = d \/ b * x - a * y = d)`,
MESON_TAC[BEZOUT_GCD; GCD]);;
let GCD_BEZOUT = prove
(`!a b d. (?x y. a * x - b * y = d \/ b * x - a * y = d) <=>
gcd(a,b) divides d`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[STRIP_TAC THEN POP_ASSUM(SUBST1_TAC o SYM) THEN
MATCH_MP_TAC DIVIDES_SUB THEN CONJ_TAC THEN
MATCH_MP_TAC DIVIDES_RMUL THEN REWRITE_TAC[GCD];
DISCH_THEN(X_CHOOSE_THEN `k:num` SUBST1_TAC o REWRITE_RULE[divides]) THEN
STRIP_ASSUME_TAC(SPECL [`a:num`; `b:num`] BEZOUT_GCD) THEN
MAP_EVERY EXISTS_TAC [`x * k`; `y * k`] THEN
ASM_REWRITE_TAC[GSYM RIGHT_SUB_DISTRIB; MULT_ASSOC] THEN
FIRST_ASSUM(DISJ_CASES_THEN SUBST1_TAC) THEN REWRITE_TAC[]]);;
let GCD_LE = prove
(`(!m n. gcd(m,n) <= m <=> (m = 0 ==> n = 0)) /\
(!m n. gcd(m,n) <= n <=> (n = 0 ==> m = 0))`,
REPEAT STRIP_TAC THEN
MAP_EVERY ASM_CASES_TAC [`m = 0`; `n = 0`] THEN
ASM_REWRITE_TAC[GCD_0; LE_REFL; LE] THEN
MATCH_MP_TAC DIVIDES_LE_IMP THEN
ASM_REWRITE_TAC[GCD]);;
let GCD_LE_MIN_EQ = prove
(`!m n. gcd(m,n) <= MIN m n <=> (m = 0 <=> n = 0)`,
REPEAT GEN_TAC THEN
ASM_CASES_TAC `n = 0` THEN
ASM_REWRITE_TAC[GCD_0; CONJUNCT1 LE; ARITH_RULE `MIN m 0 = 0`] THEN
ASM_CASES_TAC `m = 0` THEN
ASM_REWRITE_TAC[GCD_0; CONJUNCT1 LE; ARITH_RULE `MIN 0 n = 0`] THEN
REWRITE_TAC[ARITH_RULE `p <= MIN m n <=> p <= m /\ p <= n`] THEN
CONJ_TAC THEN MATCH_MP_TAC DIVIDES_LE_IMP THEN ASM_REWRITE_TAC[GCD]);;
let GCD_LE_MIN = prove
(`!m n. (m = 0 <=> n = 0) ==> gcd(m,n) <= MIN m n`,
REWRITE_TAC[GCD_LE_MIN_EQ]);;
let GCD_LE_MAX = prove
(`!m n. gcd(m,n) <= MAX m n`,
REPEAT GEN_TAC THEN
ASM_CASES_TAC `n = 0` THEN
ASM_REWRITE_TAC[GCD_0; ARITH_RULE `MAX m 0 = m`; LE_REFL] THEN
ASM_CASES_TAC `m = 0` THEN
ASM_REWRITE_TAC[GCD_0; ARITH_RULE `MAX 0 n = n`; LE_REFL] THEN
MATCH_MP_TAC(ARITH_RULE `p <= MIN m n ==> p <= MAX m n`) THEN
ASM_REWRITE_TAC[GCD_LE_MIN_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Coprimality *)
(* ------------------------------------------------------------------------- *)
let COPRIME = prove
(`!a b. coprime(a,b) <=> !d. d divides a /\ d divides b <=> d = 1`,
REPEAT GEN_TAC THEN REWRITE_TAC[coprime] THEN
REPEAT(EQ_TAC ORELSE STRIP_TAC) THEN ASM_REWRITE_TAC[DIVIDES_1] THENL
[FIRST_ASSUM MATCH_MP_TAC;
FIRST_ASSUM(CONV_TAC o REWR_CONV o GSYM) THEN CONJ_TAC] THEN
ASM_REWRITE_TAC[]);;
let COPRIME_GCD = prove
(`!a b. coprime(a,b) <=> gcd(a,b) = 1`,
REWRITE_TAC[GSYM DIVIDES_ONE] THEN NUMBER_TAC);;
let GCD_ONE = prove
(`!a b. coprime(a,b) ==> gcd(a,b) = 1`,
NUMBER_TAC);;
let COPRIME_SYM = prove
(`!a b. coprime(a,b) <=> coprime(b,a)`,
NUMBER_TAC);;
let COPRIME_BEZOUT = prove
(`!a b. coprime(a,b) <=> ?x y. a * x - b * y = 1 \/ b * x - a * y = 1`,
REWRITE_TAC[GCD_BEZOUT; DIVIDES_ONE; COPRIME_GCD]);;
let COPRIME_DIVPROD = prove
(`!d a b. d divides (a * b) /\ coprime(d,a) ==> d divides b`,
NUMBER_TAC);;
let COPRIME_1 = prove
(`(!a. coprime(a,1)) /\ (!a. coprime(1,a))`,
NUMBER_TAC);;
let GCD_COPRIME = prove
(`!a b a' b'. ~(gcd(a,b) = 0) /\ a = a' * gcd(a,b) /\ b = b' * gcd(a,b)
==> coprime(a',b')`,
NUMBER_TAC);;
let GCD_COPRIME_EXISTS = prove
(`!a b. ?a' b'. a = a' * gcd(a,b) /\ b = b' * gcd(a,b) /\ coprime(a',b')`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `gcd(a,b) = 0` THENL
[FIRST_ASSUM(ASSUME_TAC o REWRITE_RULE[GCD_ZERO]) THEN
MAP_EVERY EXISTS_TAC [`0`; `1`] THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN
CONV_TAC NUMBER_RULE;
MP_TAC(CONJUNCT1(SPECL [`a:num`; `b:num`] GCD)) THEN
REWRITE_TAC[divides; LEFT_AND_EXISTS_THM] THEN
REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN
REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN
ASM_MESON_TAC[GCD_COPRIME; MULT_SYM]]);;
let COPRIME_DIVPROD_IFF = prove
(`!d a. ~(d = 0)
==> ((!b. d divides a * b ==> d divides b) <=> coprime(d,a))`,
REPEAT STRIP_TAC THEN EQ_TAC THENL [ALL_TAC; CONV_TAC NUMBER_RULE] THEN
MP_TAC(GSYM(ISPECL [`d:num`; `a:num`] GCD_COPRIME_EXISTS)) THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`a':num`; `b':num`] THEN STRIP_TAC THEN
DISCH_THEN(MP_TAC o SPEC `a':num`) THEN ANTS_TAC THEN
REPEAT(POP_ASSUM MP_TAC) THEN NUMBER_TAC);;
let CONG_MULT_LCANCEL_IFF = prove
(`!a n. ~(n = 0)
==> ((!x y. (a * x == a * y) (mod n) ==> (x == y) (mod n)) <=>
coprime(a,n))`,
REPEAT STRIP_TAC THEN EQ_TAC THENL [ALL_TAC; CONV_TAC NUMBER_RULE] THEN
DISCH_THEN(MP_TAC o SPEC `0`) THEN
ASM_SIMP_TAC[MULT_CLAUSES; NUMBER_RULE `(0 == x) (mod n) <=> n divides x`;
COPRIME_DIVPROD_IFF] THEN
CONV_TAC NUMBER_RULE);;
let CONG_MULT_RCANCEL_IFF = prove
(`!a n. ~(n = 0)
==> ((!x y. (x * a == y * a) (mod n) ==> (x == y) (mod n)) <=>
coprime(a,n))`,
ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[CONG_MULT_LCANCEL_IFF]);;
let COPRIME_0 = prove
(`(!d. coprime(d,0) <=> d = 1) /\
(!d. coprime(0,d) <=> d = 1)`,
NUMBER_TAC);;
let COPRIME_MUL = prove
(`!d a b. coprime(d,a) /\ coprime(d,b) ==> coprime(d,a * b)`,
NUMBER_TAC);;
let COPRIME_LMUL2 = prove
(`!d a b. coprime(d,a * b) ==> coprime(d,b)`,
NUMBER_TAC);;
let COPRIME_RMUL2 = prove
(`!d a b. coprime(d,a * b) ==> coprime(d,a)`,
NUMBER_TAC);;
let COPRIME_LMUL = prove
(`!d a b. coprime(a * b,d) <=> coprime(a,d) /\ coprime(b,d)`,
NUMBER_TAC);;
let COPRIME_RMUL = prove
(`!d a b. coprime(d,a * b) <=> coprime(d,a) /\ coprime(d,b)`,
NUMBER_TAC);;
let COPRIME_EXP = prove
(`!n a d. coprime(d,a) ==> coprime(d,a EXP n)`,
INDUCT_TAC THEN REWRITE_TAC[EXP; COPRIME_1] THEN
REPEAT GEN_TAC THEN DISCH_TAC THEN
MATCH_MP_TAC COPRIME_MUL THEN ASM_REWRITE_TAC[] THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]);;
let COPRIME_EXP_IMP = prove
(`!n a b. coprime(a,b) ==> coprime(a EXP n,b EXP n)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
MATCH_MP_TAC COPRIME_EXP THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN
MATCH_MP_TAC COPRIME_EXP THEN
ONCE_REWRITE_TAC[COPRIME_SYM] THEN ASM_REWRITE_TAC[]);;
let COPRIME_REXP = prove
(`!m n k. coprime(m,n EXP k) <=> coprime(m,n) \/ k = 0`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
REWRITE_TAC[CONJUNCT1 EXP; COPRIME_1] THEN
REPEAT STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[COPRIME_EXP; NOT_SUC] THEN
REWRITE_TAC[EXP] THEN CONV_TAC NUMBER_RULE);;
let COPRIME_LEXP = prove
(`!m n k. coprime(m EXP k,n) <=> coprime(m,n) \/ k = 0`,
ONCE_REWRITE_TAC[COPRIME_SYM] THEN REWRITE_TAC[COPRIME_REXP]);;
let COPRIME_EXP2 = prove
(`!m n k. coprime(m EXP k,n EXP k) <=> coprime(m,n) \/ k = 0`,
REWRITE_TAC[COPRIME_REXP; COPRIME_LEXP; DISJ_ACI]);;
let COPRIME_EXP2_SUC = prove
(`!n a b. coprime(a EXP (SUC n),b EXP (SUC n)) <=> coprime(a,b)`,
REWRITE_TAC[COPRIME_EXP2; NOT_SUC]);;
let COPRIME_NPRODUCT_EQ = prove
(`(!(f:A->num) a s.
FINITE s
==> (coprime(a,nproduct s f) <=> !i. i IN s ==> coprime(a,f i))) /\
(!(f:A->num) b s.
FINITE s
==> (coprime(nproduct s f,b) <=> !i. i IN s ==> coprime(f i,b)))`,
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [COPRIME_SYM] THEN
REWRITE_TAC[] THEN GEN_TAC THEN GEN_TAC THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[NPRODUCT_CLAUSES; NOT_IN_EMPTY; COPRIME_1] THEN
SIMP_TAC[COPRIME_RMUL; FORALL_IN_INSERT]);;
let COPRIME_NPRODUCT = prove
(`!s n. FINITE s /\ (!x. x IN s ==> coprime(n,a x))
==> coprime(n,nproduct s a)`,
SIMP_TAC[COPRIME_NPRODUCT_EQ]);;
let COPRIME_DIVISORS = prove
(`!a b d e. d divides a /\ e divides b /\ coprime(a,b) ==> coprime(d,e)`,
NUMBER_TAC);;
let COPRIME_REFL = prove
(`!n. coprime(n,n) <=> n = 1`,
NUMBER_TAC);;
let COPRIME_PLUS1 = prove
(`!n. coprime(n + 1,n)`,
NUMBER_TAC);;
let COPRIME_MINUS1 = prove
(`!n. ~(n = 0) ==> coprime(n - 1,n)`,
REPEAT STRIP_TAC THEN SIMP_TAC[coprime] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN
GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_SUB) THEN
ASM_SIMP_TAC[ARITH_RULE `~(n = 0) ==> n - (n - 1) = 1`; DIVIDES_ONE]);;
let GCD_EXP = prove
(`!n a b. gcd(a EXP n,b EXP n) = gcd(a,b) EXP n`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`a:num`; `b:num`] GCD_COPRIME_EXISTS) THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`a':num`; `b':num`] THEN
STRIP_TAC THEN ONCE_ASM_REWRITE_TAC[] THEN
REWRITE_TAC[MULT_EXP; GCD_RMUL] THEN
MATCH_MP_TAC(NUM_RING `x = 1 /\ y = 1 ==> a * x = a * y`) THEN
ASM_REWRITE_TAC[GSYM COPRIME_GCD; EXP_EQ_1] THEN
ASM_REWRITE_TAC[COPRIME_LEXP; COPRIME_REXP]);;
let DIVIDES_EXP2_REV = prove
(`!n a b. (a EXP n) divides (b EXP n) /\ ~(n = 0) ==> a divides b`,
REWRITE_TAC[DIVIDES_GCD_LEFT; GCD_EXP; EXP_MONO_EQ] THEN MESON_TAC[]);;
let DIVIDES_EXP2_EQ = prove
(`!n a b. ~(n = 0) ==> ((a EXP n) divides (b EXP n) <=> a divides b)`,
MESON_TAC[DIVIDES_EXP2_REV; DIVIDES_EXP]);;
let DIVIDES_MUL = prove
(`!m n r. m divides r /\ n divides r /\ coprime(m,n) ==> (m * n) divides r`,
NUMBER_TAC);;
let DIVISION_DECOMP = prove
(`!a b c.
a divides (b * c)
==> ?b' c'. a = b' * c' /\ b' divides b /\ c' divides c`,
REPEAT GEN_TAC THEN DISCH_TAC THEN EXISTS_TAC `gcd(a,b)` THEN
REWRITE_TAC[GCD] THEN ASM_CASES_TAC `gcd(a,b) = 0` THENL
[ASM_REWRITE_TAC[] THEN EXISTS_TAC `1` THEN
RULE_ASSUM_TAC(REWRITE_RULE[GCD_ZERO]) THEN
ASM_REWRITE_TAC[MULT_CLAUSES; DIVIDES_1];
MP_TAC(SPECL [`a:num`; `b:num`] GCD_COPRIME_EXISTS) THEN
MATCH_MP_TAC MONO_EXISTS THEN
REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC NUMBER_RULE]);;
(* ------------------------------------------------------------------------- *)
(* Primes. *)
(* ------------------------------------------------------------------------- *)
let PRIME_0 = prove
(`~prime(0)`,
REWRITE_TAC[prime] THEN
DISCH_THEN(MP_TAC o SPEC `2` o CONJUNCT2) THEN
REWRITE_TAC[DIVIDES_0; ARITH]);;
let PRIME_1 = prove
(`~prime(1)`,
REWRITE_TAC[prime]);;
let PRIME_ALT = prove
(`!p. prime p <=>
~(p = 0) /\ ~(p = 1) /\ !n. 1 < n /\ n < p ==> ~(n divides p)`,
GEN_TAC THEN ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[PRIME_0] THEN
REWRITE_TAC[prime; LT_LE] THEN
ASM_MESON_TAC[DIVIDES_LE_STRONG; DIVIDES_0; LE_1]);;
let PRIME_2 = prove
(`prime(2)`,
REWRITE_TAC[PRIME_ALT] THEN ARITH_TAC);;
let PRIME_COPRIME_STRONG = prove
(`!n p. prime(p) ==> p divides n \/ coprime(p,n)`,
REWRITE_TAC[prime; coprime] THEN MESON_TAC[]);;
let PRIME_COPRIME = prove
(`!n p. prime(p) ==> n = 1 \/ p divides n \/ coprime(p,n)`,
MESON_TAC[PRIME_COPRIME_STRONG]);;
let PRIME_COPRIME_EQ = prove
(`!p n. prime p ==> (coprime(p,n) <=> ~(p divides n))`,
SIMP_TAC[PRIME_COPRIME_EQ_NONDIVISIBLE]);;
let COPRIME_PRIME = prove
(`!p a b. coprime(a,b) ==> ~(prime(p) /\ p divides a /\ p divides b)`,
MESON_TAC[coprime; PRIME_1]);;
let PRIME_DIVPROD = prove
(`!p a b. prime(p) /\ p divides (a * b) ==> p divides a \/ p divides b`,
MESON_TAC[PRIME_COPRIME_STRONG; COPRIME_DIVPROD]);;
let PRIME_DIVPROD_EQ = prove
(`!p a b. prime(p) ==> (p divides (a * b) <=> p divides a \/ p divides b)`,
MESON_TAC[PRIME_DIVPROD; DIVIDES_LMUL; DIVIDES_RMUL]);;
let PRIME_GE_2 = prove
(`!p. prime(p) ==> 2 <= p`,
REWRITE_TAC[ARITH_RULE `2 <= p <=> ~(p = 0) /\ ~(p = 1)`] THEN
MESON_TAC[PRIME_0; PRIME_1]);;
let PRIME_FACTOR = prove
(`!n. ~(n = 1) ==> ?p. prime(p) /\ p divides n`,
MATCH_MP_TAC num_WF THEN
X_GEN_TAC `n:num` THEN REPEAT STRIP_TAC THEN
ASM_CASES_TAC `prime(n)` THENL [ASM_MESON_TAC[DIVIDES_REFL]; ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [PRIME_ALT]) THEN
ASM_REWRITE_TAC[DE_MORGAN_THM; NOT_FORALL_THM; NOT_IMP] THEN
STRIP_TAC THENL [ASM_MESON_TAC[PRIME_2; DIVIDES_0]; ALL_TAC] THEN
ASM_MESON_TAC[DIVIDES_TRANS; LT_REFL]);;
let PRIME = prove
(`!p. prime p <=>
~(p = 0) /\ ~(p = 1) /\ !m. 0 < m /\ m < p ==> coprime(p,m)`,
GEN_TAC THEN ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[PRIME_0] THEN
ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[PRIME_1] THEN
MP_TAC(SPEC `p:num` ONE_OR_PRIME_DIVIDES_OR_COPRIME) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN
EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `n:num` THENL
[STRIP_TAC THEN FIRST_X_ASSUM(DISJ_CASES_TAC o SPEC `n:num`) THEN
ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE_STRONG) THEN ASM_ARITH_TAC;
FIRST_X_ASSUM(MP_TAC o SPEC `n MOD p`) THEN
ASM_REWRITE_TAC[MOD_LT_EQ; COPRIME_RMOD; DIVIDES_MOD] THEN
MESON_TAC[LE_1]]);;
let PRIME_PRIME_FACTOR = prove
(`!n. prime n <=> ~(n = 1) /\ !p. prime p /\ p divides n ==> p = n`,
GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [prime] THEN
ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[] THEN EQ_TAC THENL
[MESON_TAC[PRIME_1]; ALL_TAC] THEN
STRIP_TAC THEN X_GEN_TAC `d:num` THEN
ASM_CASES_TAC `d = 1` THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
FIRST_ASSUM(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC o
MATCH_MP PRIME_FACTOR) THEN
ASM_MESON_TAC[DIVIDES_TRANS; DIVIDES_ANTISYM]);;
let PRIME_FACTOR_LT = prove
(`!n m p. prime(p) /\ ~(n = 0) /\ n = p * m ==> m < n`,
REPEAT STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
RULE_ASSUM_TAC(REWRITE_RULE[MULT_EQ_0; DE_MORGAN_THM]) THEN
ASM_SIMP_TAC[LT_MULT_RCANCEL; ARITH_RULE `m < p * m <=> 1 * m < p * m`] THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2) THEN ARITH_TAC);;
let COPRIME_PRIME_EQ = prove
(`!a b. coprime(a,b) <=> !p. ~(prime(p) /\ p divides a /\ p divides b)`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP COPRIME_PRIME th]);
CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[coprime] THEN
ONCE_REWRITE_TAC[NOT_FORALL_THM] THEN REWRITE_TAC[NOT_IMP] THEN
DISCH_THEN(X_CHOOSE_THEN `d:num` STRIP_ASSUME_TAC) THEN
FIRST_ASSUM(X_CHOOSE_TAC `p:num` o MATCH_MP PRIME_FACTOR) THEN
EXISTS_TAC `p:num` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN
MATCH_MP_TAC DIVIDES_TRANS THEN EXISTS_TAC `d:num` THEN
ASM_REWRITE_TAC[]]);;
let GCD_PRIME_CASES = prove
(`(!p n. prime p ==> gcd(p,n) = if p divides n then p else 1) /\
(!p n. prime p ==> gcd(n,p) = if p divides n then p else 1)`,
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GCD_SYM] THEN
REWRITE_TAC[] THEN REPEAT GEN_TAC THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[GSYM DIVIDES_GCD_LEFT] THEN
REWRITE_TAC[GSYM COPRIME_GCD] THEN
ASM_MESON_TAC[PRIME_COPRIME_EQ]);;
let GCD_2_CASES = prove
(`(!n. gcd(2,n) = if EVEN n then 2 else 1) /\
(!n. gcd(n,2) = if EVEN n then 2 else 1)`,
SIMP_TAC[GCD_PRIME_CASES; PRIME_2; DIVIDES_2]);;
let COPRIME_PRIMEPOW = prove
(`!p k m. prime p /\ ~(k = 0) ==> (coprime(m,p EXP k) <=> ~(p divides m))`,
SIMP_TAC[COPRIME_REXP] THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN
SIMP_TAC[PRIME_COPRIME_EQ]);;
let COPRIME_BEZOUT_STRONG = prove
(`!a b. coprime(a,b) /\ ~(b = 1) ==> ?x y. a * x = b * y + 1`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [COPRIME_GCD]) THEN
DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC BEZOUT_GCD_STRONG THEN
ASM_MESON_TAC[COPRIME_0; COPRIME_SYM]);;
let COPRIME_BEZOUT_ALT = prove
(`!a b. coprime(a,b) /\ ~(a = 0) ==> ?x y. a * x = b * y + 1`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [COPRIME_GCD]) THEN
DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC BEZOUT_GCD_STRONG THEN
ASM_MESON_TAC[COPRIME_0; COPRIME_SYM]);;
let BEZOUT_PRIME = prove
(`!a p. prime p /\ ~(p divides a) ==> ?x y. a * x = p * y + 1`,
MESON_TAC[PRIME_COPRIME_STRONG; COPRIME_SYM;
COPRIME_BEZOUT_STRONG; PRIME_1]);;
let PRIME_DIVEXP = prove
(`!n p x. prime(p) /\ p divides (x EXP n) ==> p divides x`,
INDUCT_TAC THEN REPEAT GEN_TAC THEN REWRITE_TAC[EXP; DIVIDES_ONE] THENL
[DISCH_THEN(SUBST1_TAC o CONJUNCT2) THEN REWRITE_TAC[DIVIDES_1];
DISCH_THEN(fun th -> ASSUME_TAC(CONJUNCT1 th) THEN MP_TAC th) THEN
DISCH_THEN(DISJ_CASES_TAC o MATCH_MP PRIME_DIVPROD) THEN
ASM_REWRITE_TAC[] THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[]]);;
let PRIME_DIVEXP_N = prove
(`!n p x. prime(p) /\ p divides (x EXP n) ==> (p EXP n) divides (x EXP n)`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP PRIME_DIVEXP) THEN
MATCH_ACCEPT_TAC DIVIDES_EXP);;
let PRIME_DIVEXP_EQ = prove
(`!n p x. prime p ==> (p divides x EXP n <=> p divides x /\ ~(n = 0))`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `n = 0` THEN
ASM_REWRITE_TAC[EXP; DIVIDES_ONE] THEN
ASM_MESON_TAC[PRIME_DIVEXP; DIVIDES_REXP; PRIME_1]);;
let COPRIME_SOS = prove
(`!x y. coprime(x,y) ==> coprime(x * y,(x EXP 2) + (y EXP 2))`,
NUMBER_TAC);;
let PRIME_IMP_NZ = prove
(`!p. prime(p) ==> ~(p = 0)`,
MESON_TAC[PRIME_0]);;
let DISTINCT_PRIME_COPRIME = prove
(`!p q. prime p /\ prime q /\ ~(p = q) ==> coprime(p,q)`,
MESON_TAC[prime; coprime; PRIME_1]);;
let PRIME_COPRIME_LT = prove
(`!x p. prime p /\ 0 < x /\ x < p ==> coprime(x,p)`,
REWRITE_TAC[coprime; prime] THEN
MESON_TAC[LT_REFL; DIVIDES_LE; NOT_LT; PRIME_0]);;
let DIVIDES_PRIME_PRIME = prove
(`!p q. prime p /\ prime q ==> (p divides q <=> p = q)`,
MESON_TAC[DIVIDES_REFL; DISTINCT_PRIME_COPRIME; PRIME_COPRIME_EQ]);;
let COPRIME_PRIME_PRIME = prove
(`!p q. prime p /\ prime q ==> (coprime(p,q) <=> ~(p = q))`,
MESON_TAC[PRIME_COPRIME_EQ; DIVIDES_PRIME_PRIME; COPRIME_SYM]);;
let DIVIDES_PRIME_EXP_LE = prove
(`!p q m n. prime p /\ prime q
==> ((p EXP m) divides (q EXP n) <=> m = 0 \/ p = q /\ m <= n)`,
GEN_TAC THEN GEN_TAC THEN REPEAT INDUCT_TAC THEN
ASM_SIMP_TAC[EXP; DIVIDES_1; DIVIDES_ONE; MULT_EQ_1; NOT_SUC] THENL
[MESON_TAC[PRIME_1; ARITH_RULE `~(SUC m <= 0)`]; ALL_TAC] THEN
ASM_CASES_TAC `p:num = q` THEN
ASM_SIMP_TAC[DIVIDES_EXP_LE; PRIME_GE_2; GSYM(CONJUNCT2 EXP)] THEN
ASM_MESON_TAC[PRIME_DIVEXP; DIVIDES_PRIME_PRIME; EXP; DIVIDES_RMUL2]);;
let EQ_PRIME_EXP = prove
(`!p q m n. prime p /\ prime q
==> (p EXP m = q EXP n <=> m = 0 /\ n = 0 \/ p = q /\ m = n)`,
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM DIVIDES_ANTISYM] THEN
ASM_SIMP_TAC[DIVIDES_PRIME_EXP_LE] THEN ARITH_TAC);;
let PRIME_ODD = prove
(`!p. prime p ==> p = 2 \/ ODD p`,
GEN_TAC THEN REWRITE_TAC[prime; GSYM NOT_EVEN; EVEN_EXISTS] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `2`)) THEN
REWRITE_TAC[divides; ARITH] THEN MESON_TAC[]);;
let ODD_PRIME = prove
(`!p. prime p ==> (ODD p <=> 3 <= p)`,
GEN_TAC THEN
ASM_CASES_TAC `p = 0` THENL [ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN
ASM_CASES_TAC `p = 1` THENL [ASM_MESON_TAC[PRIME_1]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o MATCH_MP PRIME_ODD) THEN
ASM_CASES_TAC `p = 2` THEN ASM_SIMP_TAC[ARITH] THEN ASM_ARITH_TAC);;
let DIVIDES_FACT_PRIME = prove
(`!p. prime p ==> !n. p divides (FACT n) <=> p <= n`,
GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN REWRITE_TAC[FACT; LE] THENL
[ASM_MESON_TAC[DIVIDES_ONE; PRIME_0; PRIME_1];
ASM_MESON_TAC[PRIME_DIVPROD_EQ; DIVIDES_LE; NOT_SUC; DIVIDES_REFL;
ARITH_RULE `~(p <= n) /\ p <= SUC n ==> p = SUC n`]]);;
let EQ_PRIMEPOW = prove
(`!p m n. prime p ==> (p EXP m = p EXP n <=> m = n)`,
ONCE_REWRITE_TAC[GSYM LE_ANTISYM] THEN
SIMP_TAC[LE_EXP; PRIME_IMP_NZ] THEN MESON_TAC[PRIME_1]);;
let COPRIME_2 = prove
(`(!n. coprime(2,n) <=> ODD n) /\ (!n. coprime(n,2) <=> ODD n)`,
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [COPRIME_SYM] THEN
SIMP_TAC[PRIME_COPRIME_EQ; PRIME_2; DIVIDES_2; NOT_EVEN]);;
let DIVIDES_EXP_PLUS1 = prove
(`!n k. ODD k ==> (n + 1) divides (n EXP k + 1)`,
GEN_TAC THEN REWRITE_TAC[ODD_EXISTS; LEFT_IMP_EXISTS_THM] THEN
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN REWRITE_TAC[FORALL_UNWIND_THM2] THEN
INDUCT_TAC THEN CONV_TAC NUM_REDUCE_CONV THEN
REWRITE_TAC[EXP_1; DIVIDES_REFL] THEN
REWRITE_TAC[ARITH_RULE `SUC(2 * SUC n) = SUC(2 * n) + 2`] THEN
REWRITE_TAC[EXP_ADD; EXP_2] THEN POP_ASSUM MP_TAC THEN NUMBER_TAC);;
let DIVIDES_EXP_MINUS1 = prove
(`!k n. (n - 1) divides (n EXP k - 1)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL
[STRUCT_CASES_TAC(SPEC `k:num` num_CASES) THEN
ASM_REWRITE_TAC[EXP; MULT_CLAUSES] THEN CONV_TAC NUM_REDUCE_CONV THEN
REWRITE_TAC[DIVIDES_REFL];
REWRITE_TAC[num_divides] THEN
ASM_SIMP_TAC[GSYM INT_OF_NUM_SUB; LE_1; EXP_EQ_0; ARITH] THEN
POP_ASSUM(K ALL_TAC) THEN REWRITE_TAC[GSYM INT_OF_NUM_POW] THEN
SPEC_TAC(`k:num`,`k:num`) THEN INDUCT_TAC THEN REWRITE_TAC[INT_POW] THEN
REPEAT(POP_ASSUM MP_TAC) THEN INTEGER_TAC]);;
let PRIME_IRREDUCIBLE = prove
(`!p. prime p <=>
p > 1 /\ !a b. p divides (a * b) ==> p divides a \/ p divides b`,
GEN_TAC THEN REWRITE_TAC[GSYM ZERO_ONE_OR_PRIME] THEN
REWRITE_TAC[ARITH_RULE `p > 1 <=> ~(p = 0) /\ ~(p = 1)`] THEN
MESON_TAC[PRIME_0; PRIME_1]);;
let COPRIME_EXP_DIVPROD = prove
(`!d n a b.
(d EXP n) divides (a * b) /\ coprime(d,a) ==> (d EXP n) divides b`,
MESON_TAC[COPRIME_DIVPROD; COPRIME_EXP; COPRIME_SYM]);;
let PRIME_COPRIME_CASES = prove
(`!p a b. prime p /\ coprime(a,b) ==> coprime(p,a) \/ coprime(p,b)`,
MESON_TAC[COPRIME_PRIME; PRIME_COPRIME_EQ]);;
let PRIME_DIVPROD_POW_GEN = prove
(`!n p a b.
prime p /\ ~(p divides gcd(a,b)) /\ p EXP n divides a * b
==> p EXP n divides a \/ p EXP n divides b`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[DISJ_SYM] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [DIVIDES_GCD]) THEN
ASM_SIMP_TAC[DE_MORGAN_THM; GSYM PRIME_COPRIME_EQ] THEN
ASM_MESON_TAC[COPRIME_LEXP; COPRIME_DIVPROD; MULT_SYM]);;
let PRIME_DIVPROD_POW_GEN_EQ = prove
(`!n p a b.
prime p /\ ~(p divides gcd(a,b))
==> (p EXP n divides a * b <=>
p EXP n divides a \/ p EXP n divides b)`,
MESON_TAC[PRIME_DIVPROD_POW_GEN; DIVIDES_RMUL; DIVIDES_LMUL]);;
let PRIME_DIVPROD_POW = prove
(`!n p a b. prime(p) /\ coprime(a,b) /\ (p EXP n) divides (a * b)
==> (p EXP n) divides a \/ (p EXP n) divides b`,
MESON_TAC[COPRIME_EXP_DIVPROD; PRIME_COPRIME_CASES; MULT_SYM]);;
let PRIME_DIVPROD_POW_EQ = prove
(`!n p a b.
prime p /\ coprime(a,b)
==> (p EXP n divides a * b <=>
p EXP n divides a \/ p EXP n divides b)`,
MESON_TAC[PRIME_DIVPROD_POW; DIVIDES_RMUL; DIVIDES_LMUL]);;
let PRIME_FACTOR_INDUCT = prove
(`!P. P 0 /\ P 1 /\
(!p n. prime p /\ ~(n = 0) /\ P n ==> P(p * n))
==> !n. P n`,
GEN_TAC THEN STRIP_TAC THEN
MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN
DISCH_TAC THEN MAP_EVERY ASM_CASES_TAC [`n = 0`; `n = 1`] THEN
ASM_REWRITE_TAC[] THEN FIRST_ASSUM(X_CHOOSE_THEN `p:num`
STRIP_ASSUME_TAC o MATCH_MP PRIME_FACTOR) THEN
FIRST_X_ASSUM(X_CHOOSE_THEN `d:num` SUBST_ALL_TAC o
GEN_REWRITE_RULE I [divides]) THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`p:num`; `d:num`]) THEN
RULE_ASSUM_TAC(REWRITE_RULE[MULT_EQ_0; DE_MORGAN_THM]) THEN
DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[PRIME_FACTOR_LT; MULT_EQ_0]);;
let COMPLETE_FACTOR_INDUCT = prove
(`!P. P 0 /\ P 1 /\
(!p. prime p ==> P p) /\
(!m n. P m /\ P n ==> P(m * n))
==> !n. P n`,
GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC PRIME_FACTOR_INDUCT THEN
ASM_SIMP_TAC[]);;
let PRIME_FACTOR_PARTITION = prove
(`!Q n. ~(n = 0)
==> ?n1 n2. n1 * n2 = n /\
(!p. prime p /\ p divides n1 ==> Q p) /\
(!p. prime p /\ p divides n2 ==> ~Q p)`,
GEN_TAC THEN MATCH_MP_TAC PRIME_FACTOR_INDUCT THEN
REWRITE_TAC[MULT_EQ_1; GSYM CONJ_ASSOC; UNWIND_THM2; RIGHT_EXISTS_AND_THM;
DIVIDES_ONE] THEN
CONJ_TAC THENL [MESON_TAC[PRIME_1]; ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`p:num`; `n:num`] THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
ASM_REWRITE_TAC[MULT_EQ_0; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`n1:num`; `n2:num`] THEN REPEAT STRIP_TAC THEN
ASM_CASES_TAC `(Q:num->bool) p` THENL
[MAP_EVERY EXISTS_TAC [`p * n1:num`; `n2:num`];
MAP_EVERY EXISTS_TAC [`n1:num`; `p * n2:num`]] THEN
ASM_SIMP_TAC[IMP_CONJ; PRIME_DIVPROD_EQ] THEN
EXPAND_TAC "n" THEN REWRITE_TAC[MULT_AC] THEN
ASM_SIMP_TAC[DIVIDES_PRIME_PRIME] THEN ASM_MESON_TAC[]);;
let COPRIME_PAIR_DECOMP = prove
(`!n1 n2 m.
coprime(n1,n2) /\ ~(m = 0)
==> ?m1 m2. coprime(m1,n1) /\ coprime(m2,n2) /\
coprime(m1,m2) /\ m1 * m2 = m`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`\p:num. p divides n2`; `m:num`] PRIME_FACTOR_PARTITION) THEN
ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `m1:num` THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `m2:num` THEN
REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[COPRIME_PRIME_EQ] THEN
MESON_TAC[]);;
let EXP_MULT_EXISTS = prove
(`!m n p k. ~(m = 0) /\ m EXP k * n = p EXP k ==> ?q. n = q EXP k`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `k = 0` THEN
ASM_REWRITE_TAC[EXP; MULT_CLAUSES] THEN STRIP_TAC THEN
MP_TAC(SPECL [`k:num`; `m:num`; `p:num`] DIVIDES_EXP2_REV) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
[ASM_MESON_TAC[divides; MULT_SYM]; ALL_TAC] THEN
REWRITE_TAC[divides] THEN DISCH_THEN(CHOOSE_THEN SUBST_ALL_TAC) THEN
FIRST_X_ASSUM(MP_TAC o SYM) THEN
ASM_REWRITE_TAC[MULT_EXP; GSYM MULT_ASSOC; EQ_MULT_LCANCEL; EXP_EQ_0] THEN
MESON_TAC[]);;
let COPRIME_POW = prove
(`!n a b c. coprime(a,b) /\ a * b = c EXP n
==> ?r s. a = r EXP n /\ b = s EXP n`,
GEN_TAC THEN GEN_REWRITE_TAC BINDER_CONV [SWAP_FORALL_THM] THEN
GEN_REWRITE_TAC I [SWAP_FORALL_THM] THEN ASM_CASES_TAC `n = 0` THEN
ASM_SIMP_TAC[EXP; MULT_EQ_1] THEN MATCH_MP_TAC PRIME_FACTOR_INDUCT THEN
REPEAT CONJ_TAC THENL
[ASM_REWRITE_TAC[EXP_ZERO; MULT_EQ_0] THEN
ASM_MESON_TAC[COPRIME_0; EXP_ZERO; COPRIME_0; EXP_ONE];
SIMP_TAC[EXP_ONE; MULT_EQ_1] THEN MESON_TAC[EXP_ONE];
REWRITE_TAC[MULT_EXP] THEN REPEAT STRIP_TAC THEN
SUBGOAL_THEN `p EXP n divides a \/ p EXP n divides b` MP_TAC THENL
[ASM_MESON_TAC[PRIME_DIVPROD_POW; divides]; ALL_TAC] THEN
REWRITE_TAC[divides] THEN
DISCH_THEN(DISJ_CASES_THEN(X_CHOOSE_THEN `d:num` SUBST_ALL_TAC)) THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [COPRIME_SYM]) THEN
ASM_SIMP_TAC[COPRIME_RMUL; COPRIME_LMUL; COPRIME_LEXP; COPRIME_REXP] THEN
STRIP_TAC THENL
[FIRST_X_ASSUM(MP_TAC o SPECL [`b:num`; `d:num`]);
FIRST_X_ASSUM(MP_TAC o SPECL [`d:num`; `a:num`])] THEN
ASM_REWRITE_TAC[] THEN
(ANTS_TAC THENL
[MATCH_MP_TAC(NUM_RING `!p. ~(p = 0) /\ a * p = b * p ==> a = b`) THEN
EXISTS_TAC `p EXP n` THEN ASM_SIMP_TAC[EXP_EQ_0; PRIME_IMP_NZ] THEN
FIRST_X_ASSUM(MP_TAC o SYM) THEN CONV_TAC NUM_RING;
STRIP_TAC THEN ASM_REWRITE_TAC[GSYM MULT_EXP] THEN MESON_TAC[]])]);;
let PRIME_EXP = prove
(`!p n. prime(p EXP n) <=> prime(p) /\ (n = 1)`,
GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[EXP; PRIME_1; ARITH_EQ] THEN
POP_ASSUM_LIST(K ALL_TAC) THEN SPEC_TAC(`n:num`,`n:num`) THEN
ASM_CASES_TAC `p = 0` THENL
[ASM_REWRITE_TAC[PRIME_0; EXP; MULT_CLAUSES]; ALL_TAC] THEN
INDUCT_TAC THEN REWRITE_TAC[ARITH; EXP_1; EXP; MULT_CLAUSES] THEN
REWRITE_TAC[ARITH_RULE `~(SUC(SUC n) = 1)`] THEN
REWRITE_TAC[prime; DE_MORGAN_THM] THEN
ASM_REWRITE_TAC[MULT_EQ_1; EXP_EQ_1] THEN ASM_CASES_TAC `p = 1` THEN
ASM_REWRITE_TAC[NOT_IMP; DE_MORGAN_THM] THEN
DISCH_THEN(MP_TAC o SPEC `p:num`) THEN ASM_REWRITE_TAC[NOT_IMP] THEN
CONJ_TAC THENL [MESON_TAC[EXP; divides]; ALL_TAC] THEN
MATCH_MP_TAC(ARITH_RULE `p < pn:num ==> ~(p = pn)`) THEN
GEN_REWRITE_TAC LAND_CONV [GSYM EXP_1] THEN
REWRITE_TAC[GSYM(CONJUNCT2 EXP)] THEN
ASM_REWRITE_TAC[LT_EXP; ARITH_EQ] THEN
MAP_EVERY UNDISCH_TAC [`~(p = 0)`; `~(p = 1)`] THEN ARITH_TAC);;
let PRIME_POWER_MULT = prove
(`!k x y p. prime p /\ (x * y = p EXP k)
==> ?i j. (x = p EXP i) /\ (y = p EXP j)`,
INDUCT_TAC THEN REWRITE_TAC[EXP; MULT_EQ_1] THENL
[MESON_TAC[EXP]; ALL_TAC] THEN
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `p divides x \/ p divides y` MP_TAC THENL
[ASM_MESON_TAC[PRIME_DIVPROD; divides; MULT_AC]; ALL_TAC] THEN
REWRITE_TAC[divides] THEN
SUBGOAL_THEN `~(p = 0)` ASSUME_TAC THENL
[ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN
DISCH_THEN(DISJ_CASES_THEN (X_CHOOSE_THEN `d:num` SUBST_ALL_TAC)) THENL
[UNDISCH_TAC `(p * d) * y = p * p EXP k`;
UNDISCH_TAC `x * p * d = p * p EXP k` THEN
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [MULT_SYM]] THEN
REWRITE_TAC[GSYM MULT_ASSOC] THEN
ASM_REWRITE_TAC[EQ_MULT_LCANCEL] THEN DISCH_TAC THENL
[FIRST_X_ASSUM(MP_TAC o SPECL [`d:num`; `y:num`; `p:num`]);
FIRST_X_ASSUM(MP_TAC o SPECL [`d:num`; `x:num`; `p:num`])] THEN
ASM_REWRITE_TAC[] THEN MESON_TAC[EXP]);;
let PRIME_POWER_EXP = prove
(`!n x p k. prime p /\ ~(n = 0) /\ (x EXP n = p EXP k) ==> ?i. x = p EXP i`,
INDUCT_TAC THEN REWRITE_TAC[EXP] THEN
REPEAT GEN_TAC THEN REWRITE_TAC[NOT_SUC] THEN
ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[EXP] THEN
ASM_MESON_TAC[PRIME_POWER_MULT]);;
let DIVIDES_PRIMEPOW = prove
(`!p. prime p ==> !d. d divides (p EXP k) <=> ?i. i <= k /\ d = p EXP i`,
GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN EQ_TAC THENL
[REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `e:num` THEN
DISCH_TAC THEN
MP_TAC(SPECL [`k:num`; `d:num`; `e:num`; `p:num`] PRIME_POWER_MULT) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(REPEAT_TCL CHOOSE_THEN (CONJUNCTS_THEN SUBST_ALL_TAC)) THEN
FIRST_X_ASSUM(MP_TAC o SYM) THEN REWRITE_TAC[GSYM EXP_ADD] THEN
REWRITE_TAC[GSYM LE_ANTISYM; LE_EXP] THEN REWRITE_TAC[LE_ANTISYM] THEN
POP_ASSUM MP_TAC THEN ASM_CASES_TAC `p = 0` THEN ASM_SIMP_TAC[PRIME_0] THEN
ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[PRIME_1; LE_ANTISYM] THEN
MESON_TAC[LE_ADD];
REWRITE_TAC[LE_EXISTS] THEN STRIP_TAC THEN
ASM_REWRITE_TAC[EXP_ADD] THEN MESON_TAC[DIVIDES_RMUL; DIVIDES_REFL]]);;
let PRIMEPOW_DIVIDES_PROD = prove
(`!p k m n.
prime p /\ (p EXP k) divides (m * n)
==> ?i j. (p EXP i) divides m /\ (p EXP j) divides n /\ k = i + j`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP DIVISION_DECOMP) THEN
REWRITE_TAC[NUMBER_RULE
`a = b * c <=> b divides a /\ c divides a /\ b * c = a`] THEN
ASM_MESON_TAC[EXP_ADD; EQ_PRIMEPOW; DIVIDES_PRIMEPOW]);;
let EUCLID_BOUND = prove
(`!n. ?p. prime(p) /\ n < p /\ p <= SUC(FACT n)`,
GEN_TAC THEN MP_TAC(SPEC `FACT n + 1` PRIME_FACTOR) THEN
SIMP_TAC[ARITH_RULE `0 < n ==> ~(n + 1 = 1)`; ADD1; FACT_LT] THEN
MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
[ASM_MESON_TAC[DIVIDES_ADD_REVR; DIVIDES_ONE; PRIME_1; NOT_LT; PRIME_0;
ARITH_RULE `(p = 0) \/ 1 <= p`; DIVIDES_FACT];
ASM_MESON_TAC[DIVIDES_LE; ARITH_RULE `~(x + 1 = 0)`]]);;
let EUCLID = prove
(`!n. ?p. prime(p) /\ p > n`,
REWRITE_TAC[GT] THEN MESON_TAC[EUCLID_BOUND]);;
let PRIMES_INFINITE = prove
(`INFINITE {p | prime p}`,
REWRITE_TAC[INFINITE; num_FINITE; IN_ELIM_THM] THEN
MESON_TAC[EUCLID; NOT_LE; GT]);;
let FACTORIZATION_INDEX = prove
(`!n p. ~(n = 0) /\ 2 <= p
==> ?k. (p EXP k) divides n /\
!l. k < l ==> ~((p EXP l) divides n)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM NOT_LE; CONTRAPOS_THM] THEN
REWRITE_TAC[GSYM num_MAX] THEN CONJ_TAC THENL
[EXISTS_TAC `0` THEN REWRITE_TAC[EXP; DIVIDES_1];
EXISTS_TAC `n:num` THEN
GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE) THEN
ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] LE_TRANS) THEN
MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `2 EXP l` THEN
SIMP_TAC[LT_POW2_REFL; LT_IMP_LE] THEN
SPEC_TAC(`l:num`,`l:num`) THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[ARITH; CONJUNCT1 EXP; EXP_MONO_LE; NOT_SUC]]);;
let PRIMEPOW_FACTOR = prove
(`!n. 2 <= n
==> ?p k m. prime p /\ 1 <= k /\ coprime(p,m) /\ n = p EXP k * m`,
REPEAT STRIP_TAC THEN MP_TAC(ISPEC `n:num` PRIME_FACTOR) THEN
ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `p:num` THEN STRIP_TAC THEN
MP_TAC(ISPECL [`n:num`; `p:num`] FACTORIZATION_INDEX) THEN
ASM_SIMP_TAC[PRIME_GE_2; ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:num` THEN
REWRITE_TAC[divides; LEFT_AND_EXISTS_THM] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `m:num` THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `k + 1`)) THEN
ASM_REWRITE_TAC[ARITH_RULE `k < k + 1`; EXP_ADD; GSYM MULT_ASSOC] THEN
ASM_SIMP_TAC[EQ_MULT_LCANCEL; EXP_EQ_0; PRIME_IMP_NZ] THEN
REWRITE_TAC[EXP_1; GSYM divides] THEN UNDISCH_TAC `(p:num) divides n` THEN
ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `k = 0` THEN ASM_SIMP_TAC[EXP; MULT_CLAUSES; LE_1] THEN
ASM_MESON_TAC[PRIME_COPRIME_STRONG]);;
let PRIMEPOW_DIVISORS_DIVIDES = prove
(`!m n. m divides n <=>
!p k. prime p /\ p EXP k divides m ==> p EXP k divides n`,
REWRITE_TAC[TAUT `(p <=> q) <=> (p ==> q) /\ (q ==> p)`] THEN
REWRITE_TAC[FORALL_AND_THM] THEN CONJ_TAC THENL
[MESON_TAC[DIVIDES_TRANS]; ALL_TAC] THEN
MATCH_MP_TAC num_WF THEN X_GEN_TAC `m:num` THEN
DISCH_THEN(LABEL_TAC "*") THEN X_GEN_TAC `n:num` THEN
ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[DIVIDES_0] THENL
[MP_TAC(SPEC `n:num` EUCLID) THEN REWRITE_TAC[GT] THEN
DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN
DISCH_THEN(MP_TAC o SPECL [`p:num`; `1`]) THEN ASM_REWRITE_TAC[EXP_1] THEN
DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE) THEN
ASM_SIMP_TAC[GSYM NOT_LT; DIVIDES_REFL];
ALL_TAC] THEN
ASM_CASES_TAC `m = 1` THEN ASM_REWRITE_TAC[DIVIDES_1] THEN
MP_TAC(SPEC `m:num` PRIMEPOW_FACTOR) THEN
ANTS_TAC THENL [ASM_ARITH_TAC; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN
MAP_EVERY X_GEN_TAC [`p:num`; `k:num`; `r:num`] THEN STRIP_TAC THEN
DISCH_THEN(fun th ->
MP_TAC(SPECL[`p:num`; `k:num`] th) THEN
ASM_REWRITE_TAC[NUMBER_RULE `a divides (a * b)`] THEN
ASSUME_TAC th) THEN
REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `s:num` THEN DISCH_TAC THEN ASM_REWRITE_TAC[GSYM divides] THEN
MATCH_MP_TAC DIVIDES_MUL_L THEN REMOVE_THEN "*" (MP_TAC o SPEC `r:num`) THEN
ASM_CASES_TAC `r = 0` THENL [ASM_MESON_TAC[MULT_CLAUSES]; ALL_TAC] THEN
ASM_REWRITE_TAC[ARITH_RULE `q < p * q <=> 1 * q < p * q`] THEN
ASM_SIMP_TAC[LT_MULT_RCANCEL; ARITH_RULE `1 < p <=> ~(p = 0 \/ p = 1)`] THEN
REWRITE_TAC[EXP_EQ_0; EXP_EQ_1] THEN
ANTS_TAC THENL [ASM_MESON_TAC[PRIME_0; PRIME_1; LE_1]; ALL_TAC] THEN
DISCH_THEN MATCH_MP_TAC THEN MAP_EVERY X_GEN_TAC [`q:num`; `l:num`] THEN
ASM_CASES_TAC `l = 0` THEN ASM_REWRITE_TAC[EXP; DIVIDES_1] THEN
STRIP_TAC THEN ASM_CASES_TAC `q:num = p` THENL
[UNDISCH_TAC `coprime(p,r)` THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
REWRITE_TAC[coprime] THEN DISCH_THEN(MP_TAC o SPEC `p:num`) THEN
ASM_SIMP_TAC[DIVIDES_REFL; PRIME_GE_2; ARITH_RULE
`2 <= p ==> ~(p = 1)`] THEN
MATCH_MP_TAC(TAUT `p ==> ~p ==> q`) THEN
TRANS_TAC DIVIDES_TRANS `p EXP l` THEN
ASM_MESON_TAC[DIVIDES_REXP; DIVIDES_REFL];
FIRST_X_ASSUM(MP_TAC o SPECL [`q:num`; `l:num`]) THEN
ASM_SIMP_TAC[DIVIDES_LMUL] THEN DISCH_THEN(MATCH_MP_TAC o MATCH_MP
(REWRITE_RULE[IMP_CONJ] COPRIME_EXP_DIVPROD)) THEN
MATCH_MP_TAC COPRIME_EXP THEN ASM_MESON_TAC[DISTINCT_PRIME_COPRIME]]);;
let PRIMEPOW_DIVISORS_EQ = prove
(`!m n. m = n <=>
!p k. prime p ==> (p EXP k divides m <=> p EXP k divides n)`,
MESON_TAC[DIVIDES_ANTISYM; PRIMEPOW_DIVISORS_DIVIDES]);;
(* ------------------------------------------------------------------------- *)
(* A binary form of the Chinese Remainder Theorem. *)
(* ------------------------------------------------------------------------- *)
let CHINESE_REMAINDER = prove
(`!a b u v. coprime(a,b) /\ ~(a = 0) /\ ~(b = 0)
==> ?x q1 q2. x = u + q1 * a /\ x = v + q2 * b`,
let lemma = prove
(`(?d x y. (d = 1) /\ P x y d) <=> (?x y. P x y 1)`,
MESON_TAC[]) in
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`b:num`; `a:num`] BEZOUT_ADD_STRONG) THEN
MP_TAC(SPECL [`a:num`; `b:num`] BEZOUT_ADD_STRONG) THEN
ASM_REWRITE_TAC[CONJ_ASSOC] THEN
SUBGOAL_THEN `!d. d divides a /\ d divides b <=> (d = 1)`
(fun th -> REWRITE_TAC[th; ONCE_REWRITE_RULE[CONJ_SYM] th])
THENL
[UNDISCH_TAC `coprime(a,b)` THEN
SIMP_TAC[GSYM DIVIDES_GCD; COPRIME_GCD; DIVIDES_ONE]; ALL_TAC] THEN
REWRITE_TAC[lemma] THEN
DISCH_THEN(X_CHOOSE_THEN `x1:num` (X_CHOOSE_TAC `y1:num`)) THEN
DISCH_THEN(X_CHOOSE_THEN `x2:num` (X_CHOOSE_TAC `y2:num`)) THEN
EXISTS_TAC `v * a * x1 + u * b * x2:num` THEN
EXISTS_TAC `v * x1 + u * y2:num` THEN
EXISTS_TAC `v * y1 + u * x2:num` THEN CONJ_TAC THENL
[SUBST1_TAC(ASSUME `b * x2 = a * y2 + 1`);
SUBST1_TAC(ASSUME `a * x1 = b * y1 + 1`)] THEN
REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB; MULT_CLAUSES] THEN
REWRITE_TAC[MULT_AC] THEN REWRITE_TAC[ADD_AC]);;
(* ------------------------------------------------------------------------- *)
(* Index of a (usually prime) divisor of a number. *)
(* ------------------------------------------------------------------------- *)
let FINITE_EXP_LE = prove
(`!P p n. 2 <= p ==> FINITE {j | P j /\ p EXP j <= n}`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `0..n` THEN
SIMP_TAC[FINITE_NUMSEG; SUBSET; IN_ELIM_THM; LE_0; IN_NUMSEG] THEN
X_GEN_TAC `i:num` THEN STRIP_TAC THEN TRANS_TAC LE_TRANS `p EXP i` THEN
ASM_REWRITE_TAC[] THEN TRANS_TAC LE_TRANS `2 EXP i` THEN
ASM_SIMP_TAC[EXP_MONO_LE_IMP; LT_POW2_REFL; LT_IMP_LE]);;
let FINITE_INDICES = prove
(`!P p n. 2 <= p /\ ~(n = 0) ==> FINITE {j | P j /\ p EXP j divides n}`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN
EXISTS_TAC `{j | P j /\ p EXP j <= n}` THEN
ASM_SIMP_TAC[FINITE_EXP_LE] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN
ASM_MESON_TAC[DIVIDES_LE]);;
let index_def = new_definition
`index p n = if p <= 1 \/ n = 0 then 0
else CARD {j | 1 <= j /\ p EXP j divides n}`;;
let INDEX_0 = prove
(`!p. index p 0 = 0`,
REWRITE_TAC[index_def]);;
let PRIMEPOW_DIVIDES_INDEX = prove
(`!n p k. p EXP k divides n <=> n = 0 \/ p = 1 \/ k <= index p n`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
ASM_REWRITE_TAC[INDEX_0; DIVIDES_0; EXP_EQ_0] THEN
ASM_CASES_TAC `p = 0` THEN
ASM_REWRITE_TAC[EXP_ZERO; COND_RAND; COND_RATOR] THEN
ASM_SIMP_TAC[LE_0; DIVIDES_1; ARITH; index_def; DIVIDES_ZERO] THEN
SIMP_TAC[CONJUNCT1 LE; COND_ID] THEN
ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[EXP_ONE; DIVIDES_1] THEN
COND_CASES_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
SUBGOAL_THEN `2 <= p` ASSUME_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
MP_TAC(ISPECL [`n:num`; `p:num`] FACTORIZATION_INDEX) THEN
ASM_SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `a:num` THEN STRIP_TAC THEN
SUBGOAL_THEN `!k. p EXP k divides n <=> k <= a` ASSUME_TAC THENL
[GEN_TAC THEN EQ_TAC THENL [ASM_MESON_TAC[NOT_LE]; ALL_TAC] THEN
DISCH_TAC THEN TRANS_TAC DIVIDES_TRANS `p EXP a` THEN
ASM_SIMP_TAC[DIVIDES_EXP_LE];
ASM_REWRITE_TAC[GSYM numseg; CARD_NUMSEG_1]]);;
let LE_INDEX = prove
(`!n p k. k <= index p n <=> (n = 0 \/ p = 1 ==> k = 0) /\ p EXP k divides n`,
REPEAT GEN_TAC THEN REWRITE_TAC[PRIMEPOW_DIVIDES_INDEX] THEN
ASM_CASES_TAC `n = 0` THEN
ASM_REWRITE_TAC[INDEX_0; CONJUNCT1 LE] THEN
ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[index_def; ARITH; CONJUNCT1 LE]);;
let EXP_INDEX_DIVIDES = prove
(`!p n. p EXP (index p n) divides n`,
MESON_TAC[LE_INDEX; LE_REFL]);;
let INDEX_LT = prove
(`!n p k. (~(n = 0) \/ ~(k = 0)) /\ n < p EXP k ==> index p n < k`,
REPEAT GEN_TAC THEN
REWRITE_TAC[GSYM DE_MORGAN_THM; GSYM NOT_LE; LE_INDEX] THEN
REWRITE_TAC[CONTRAPOS_THM] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC (MP_TAC o MATCH_MP DIVIDES_LE_STRONG)) THEN
ASM_CASES_TAC `n = 0` THEN ASM_SIMP_TAC[]);;
let INDEX_1 = prove
(`!p. index p 1 = 0`,
GEN_TAC THEN REWRITE_TAC[index_def; ARITH] THEN COND_CASES_TAC THEN
REWRITE_TAC[DIVIDES_ONE; EXP_EQ_1] THEN
ASM_SIMP_TAC[ARITH_RULE `~(p <= 1) ==> ~(p = 1)`;
ARITH_RULE `~(1 <= j /\ j = 0)`;
EMPTY_GSPEC; CARD_CLAUSES]);;
let INDEX_MUL = prove
(`!m n. prime p /\ ~(m = 0) /\ ~(n = 0)
==> index p (m * n) = index p m + index p n`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM LE_ANTISYM] THEN
SUBGOAL_THEN `~(p = 1)` ASSUME_TAC THENL
[ASM_MESON_TAC[PRIME_1]; ALL_TAC] THEN
CONJ_TAC THENL
[MATCH_MP_TAC(MESON[LE_REFL]
`(!k:num. k <= m ==> k <= n) ==> m <= n`) THEN
MP_TAC(SPEC `p:num` PRIMEPOW_DIVIDES_PROD) THEN
ASM_REWRITE_TAC[LE_INDEX; MULT_EQ_0] THEN ASM_MESON_TAC[LE_ADD2; LE_INDEX];
ASM_REWRITE_TAC[LE_INDEX; MULT_EQ_0; EXP_ADD] THEN
MATCH_MP_TAC DIVIDES_MUL2 THEN ASM_MESON_TAC[LE_INDEX; LE_REFL]]);;
let INDEX_EXP = prove
(`!p n k. prime p ==> index p (n EXP k) = k * index p n`,
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN
GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
ASM_REWRITE_TAC[EXP_ZERO; INDEX_0; COND_RAND; COND_RATOR; INDEX_1;
MULT_CLAUSES; COND_ID] THEN
INDUCT_TAC THEN
ASM_SIMP_TAC[INDEX_MUL; EXP_EQ_0; EXP; INDEX_1; MULT_CLAUSES] THEN
ARITH_TAC);;
let INDEX_FACT = prove
(`!p n. prime p ==> index p (FACT n) = nsum(1..n) (\m. index p m)`,
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN
INDUCT_TAC THEN REWRITE_TAC[FACT; NSUM_CLAUSES_NUMSEG; INDEX_1; ARITH] THEN
ASM_SIMP_TAC[INDEX_MUL; NOT_SUC; FACT_NZ] THEN ARITH_TAC);;
let INDEX_FACT_ALT = prove
(`!p n. prime p
==> index p (FACT n) =
nsum {j | 1 <= j /\ p EXP j <= n} (\j. n DIV (p EXP j))`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[INDEX_FACT] THEN
SUBGOAL_THEN `~(p = 0) /\ ~(p = 1) /\ 2 <= p /\ ~(p <= 1)`
STRIP_ASSUME_TAC THENL
[FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2) THEN ARITH_TAC; ALL_TAC] THEN
ASM_SIMP_TAC[index_def; LE_1] THEN
TRANS_TAC EQ_TRANS
`nsum(1..n) (\m. nsum {j | 1 <= j /\ p EXP j <= n}
(\j. if p EXP j divides m then 1 else 0))` THEN
CONJ_TAC THENL
[MATCH_MP_TAC NSUM_EQ_NUMSEG THEN X_GEN_TAC `m:num` THEN STRIP_TAC THEN
ASM_REWRITE_TAC[GSYM NSUM_RESTRICT_SET; IN_ELIM_THM] THEN
ASM_SIMP_TAC[NSUM_CONST; FINITE_INDICES; LE_1; MULT_CLAUSES] THEN
AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN
ASM_MESON_TAC[DIVIDES_LE; LE_1; LE_TRANS];
W(MP_TAC o PART_MATCH (lhs o rand) NSUM_SWAP o lhand o snd) THEN
ASM_SIMP_TAC[FINITE_NUMSEG; FINITE_EXP_LE] THEN DISCH_THEN(K ALL_TAC) THEN
MATCH_MP_TAC NSUM_EQ THEN X_GEN_TAC `j:num` THEN
REWRITE_TAC[IN_ELIM_THM; GSYM NSUM_RESTRICT_SET] THEN STRIP_TAC THEN
ASM_SIMP_TAC[NSUM_CONST; FINITE_NUMSEG; FINITE_RESTRICT; MULT_CLAUSES] THEN
SUBGOAL_THEN `{m | m IN 1..n /\ p EXP j divides m} =
IMAGE (\q. p EXP j * q) (1..(n DIV p EXP j))`
(fun th -> ASM_SIMP_TAC[CARD_IMAGE_INJ; FINITE_NUMSEG; EQ_MULT_LCANCEL;
th; EXP_EQ_0; PRIME_IMP_NZ; CARD_NUMSEG_1]) THEN
REWRITE_TAC[EXTENSION; IN_IMAGE; IN_NUMSEG; IN_ELIM_THM; divides] THEN
X_GEN_TAC `d:num` THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN
AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `q:num` THEN
ASM_CASES_TAC `d = p EXP j * q` THEN ASM_REWRITE_TAC[] THEN
ASM_SIMP_TAC[LE_RDIV_EQ; EXP_EQ_0; PRIME_IMP_NZ; MULT_EQ_0;
ARITH_RULE `1 <= x <=> ~(x = 0)`]]);;
let INDEX_FACT_UNBOUNDED = prove
(`!p n. prime p
==> index p (FACT n) = nsum {j | 1 <= j} (\j. n DIV (p EXP j))`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[INDEX_FACT_ALT] THEN
CONV_TAC SYM_CONV THEN MATCH_MP_TAC NSUM_SUPERSET THEN
ASM_SIMP_TAC[SUBSET; IN_ELIM_THM; IMP_CONJ; DIV_EQ_0; EXP_EQ_0;
PRIME_IMP_NZ; NOT_LE]);;
let PRIMEPOW_DIVIDES_FACT = prove
(`!p n k. prime p
==> (p EXP k divides FACT n <=>
k <= nsum {j | 1 <= j /\ p EXP j <= n} (\j. n DIV (p EXP j)))`,
SIMP_TAC[PRIMEPOW_DIVIDES_INDEX; INDEX_FACT_ALT; FACT_NZ] THEN
MESON_TAC[PRIME_1]);;
let INDEX_REFL = prove
(`!n. index n n = if n <= 1 then 0 else 1`,
GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[index_def] THEN
ASM_CASES_TAC `n = 0` THENL [ASM_ARITH_TAC; ASM_REWRITE_TAC[]] THEN
ONCE_REWRITE_TAC[MESON[EXP_1] `a divides b <=> a divides b EXP 1`] THEN
ASM_CASES_TAC `2 <= n` THENL [ALL_TAC; ASM_ARITH_TAC] THEN
ASM_SIMP_TAC[DIVIDES_EXP_LE; GSYM numseg; CARD_NUMSEG_1]);;
let INDEX_EQ_0 = prove
(`!p n. index p n = 0 <=> n = 0 \/ p = 1 \/ ~(p divides n)`,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `n = 0 <=> ~(1 <= n)`] THEN
REWRITE_TAC[LE_INDEX; EXP_1; ARITH] THEN MESON_TAC[]);;
let INDEX_ZERO = prove
(`!p n. ~(p divides n) ==> index p n = 0`,
SIMP_TAC[INDEX_EQ_0]);;
let INDEX_POW = prove
(`!p n k. index (p EXP k) n = index p n DIV k`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `k = 0` THENL
[ASM_REWRITE_TAC[DIV_ZERO; INDEX_EQ_0; EXP]; ALL_TAC] THEN
GEN_REWRITE_TAC I [MESON[LE_TRANS; LE_ANTISYM]
`(m:num = n) <=> !d. d <= m <=> d <= n`] THEN
X_GEN_TAC `d:num` THEN ASM_SIMP_TAC[LE_INDEX; LE_RDIV_EQ; EXP_EXP] THEN
ASM_REWRITE_TAC[MULT_EQ_0; EXP_EQ_1]);;
let INDEX_PRIME = prove
(`!p a. prime p ==> index a p = if p = a then 1 else 0`,
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[INDEX_REFL; INDEX_EQ_0] THEN
ASM_MESON_TAC[prime; PRIME_0; PRIME_1;
ARITH_RULE `p <= 1 <=> p = 0 \/ p = 1`]);;
let INDEX_TRIVIAL_BOUND = prove
(`!n p. index p n <= n`,
REPEAT GEN_TAC THEN
MP_TAC(ISPECL [`n:num`; `p:num`; `n:num`] PRIMEPOW_DIVIDES_INDEX) THEN
REWRITE_TAC[index_def] THEN COND_CASES_TAC THEN REWRITE_TAC[LE_0] THEN
RULE_ASSUM_TAC(REWRITE_RULE[DE_MORGAN_THM; NOT_LE]) THEN
ASM_SIMP_TAC[ARITH_RULE `1 < p ==> ~(p = 1)`] THEN
DISCH_THEN(ASSUME_TAC o SYM) THEN
MATCH_MP_TAC(ARITH_RULE `~(m:num <= n) ==> n <= m`) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE) THEN
ASM_REWRITE_TAC[NOT_LE] THEN
MATCH_MP_TAC LTE_TRANS THEN EXISTS_TAC `2 EXP n` THEN
REWRITE_TAC[LT_POW2_REFL] THEN
MATCH_MP_TAC EXP_MONO_LE_IMP THEN ASM_ARITH_TAC);;
let INDEX_DECOMPOSITION = prove
(`!n p. ?m. p EXP (index p n) * m = n /\ (n = 0 \/ p = 1 \/ ~(p divides m))`,
REPEAT GEN_TAC THEN
MP_TAC(SPECL [`n:num`; `p:num`; `index p n`] LE_INDEX) THEN
REWRITE_TAC[LE_REFL] THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [divides]) THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `m:num` THEN
DISCH_THEN(ASSUME_TAC o SYM) THEN ASM_REWRITE_TAC[] THEN
MP_TAC(SPECL [`n:num`; `p:num`; `index p n + 1`] LE_INDEX) THEN
REWRITE_TAC[ADD_EQ_0; ARITH_EQ; ARITH_RULE `~(n + 1 <= n)`] THEN
ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[EXP_ADD; EXP_1; CONTRAPOS_THM] THEN
FIRST_X_ASSUM(MP_TAC o SYM) THEN POP_ASSUM_LIST(K ALL_TAC) THEN
NUMBER_TAC);;
let INDEX_DECOMPOSITION_PRIME = prove
(`!n p. prime p ==> ?m. p EXP (index p n) * m = n /\ (n = 0 \/ coprime(p,m))`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`n:num`; `p:num`] INDEX_DECOMPOSITION) THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `m:num` THEN
ASM_CASES_TAC `p = 1` THENL [ASM_MESON_TAC[PRIME_1]; ASM_REWRITE_TAC[]] THEN
ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[PRIME_COPRIME_STRONG]);;
let INDEX_DECOMPOSITION_LE = prove
(`!p e1 m1 e2 m2.
p EXP e1 * m1 = p EXP e2 * m2 /\ ~(p = 0) /\ ~(p divides m2) ==> e1 <= e2`,
REPEAT GEN_TAC THEN REWRITE_TAC[TAUT
`p /\ ~q /\ ~r ==> s <=> ~q ==> ~s ==> p ==> r`] THEN
DISCH_TAC THEN REWRITE_TAC[NOT_LE; LT_EXISTS; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `d:num` THEN DISCH_THEN SUBST1_TAC THEN
ASM_REWRITE_TAC[EXP_ADD; GSYM MULT_ASSOC; EQ_MULT_LCANCEL; EXP_EQ_0] THEN
DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[EXP] THEN
CONV_TAC NUMBER_RULE);;
let INDEX_DECOMPOSITION_UNIQUE = prove
(`!p e1 m1 e2 m2.
p EXP e1 * m1 = p EXP e2 * m2 /\
~(p = 0) /\ ~(p divides m1) /\ ~(p divides m2)
==> e1 = e2`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM LE_ANTISYM] THEN
ASM_MESON_TAC[INDEX_DECOMPOSITION_LE]);;
let INDEX_UNIQUE = prove
(`!p m n e.
p EXP e * m = n /\ (p = 0 ==> e = 0) /\ ~(p divides m)
==> index p n = e`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[ARITH_RULE `i = e <=> e <= i /\ ~(e + 1 <= i)`] THEN
REWRITE_TAC[LE_INDEX; ARITH_RULE `~(e + 1 = 0)`] THEN
FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN POP_ASSUM MP_TAC THEN
UNDISCH_TAC `p = 0 ==> e = 0` THEN
ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[DIVIDES_1] THEN
ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[DIVIDES_0; MULT_EQ_0] THEN
ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[EXP_EQ_0; DIVIDES_ZERO] THEN
DISCH_TAC THEN
ASM_REWRITE_TAC[EXP_ZERO; MULT_CLAUSES; ARITH; DIVIDES_1; DIVIDES_ZERO] THEN
REWRITE_TAC[EXP_ADD; NUMBER_RULE `p divides (p * q:num)`] THEN
ASM_SIMP_TAC[DIVIDES_LMUL2_EQ; EXP_EQ_0; EXP_1]);;
let INDEX_UNIQUE_EQ = prove
(`!n p k. index p n = k <=>
if p = 1 \/ n = 0 then k = 0
else !j. p EXP j divides n <=> j <= k`,
REPEAT GEN_TAC THEN COND_CASES_TAC THENL
[REWRITE_TAC[index_def] THEN ASM_MESON_TAC[LE_REFL];
RULE_ASSUM_TAC(REWRITE_RULE[DE_MORGAN_THM])] THEN
ASM_REWRITE_TAC[PRIMEPOW_DIVIDES_INDEX] THEN
MESON_TAC[LE_ANTISYM]);;
let INDEX_UNIQUE_ALT = prove
(`!n p k. index p n = k <=>
if p = 1 \/ n = 0 then k = 0
else p EXP k divides n /\ ~(p EXP (k + 1) divides n)`,
REPEAT GEN_TAC THEN REWRITE_TAC[INDEX_UNIQUE_EQ] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN EQ_TAC THEN STRIP_TAC THEN
ASM_REWRITE_TAC[] THENL [ARITH_TAC; ALL_TAC] THEN
X_GEN_TAC `j:num` THEN EQ_TAC THEN DISCH_TAC THENL
[ALL_TAC; ASM_MESON_TAC[DIVIDES_EXP_LE_IMP; DIVIDES_TRANS]] THEN
UNDISCH_TAC `~(p EXP (k + 1) divides n)` THEN
REWRITE_TAC[GSYM NOT_LT; CONTRAPOS_THM] THEN
REWRITE_TAC[ARITH_RULE `k < j <=> k + 1 <= j`] THEN
ASM_MESON_TAC[DIVIDES_EXP_LE_IMP; DIVIDES_TRANS]);;
let INDEX_ADD_MIN = prove
(`!p m n. MIN (index p m) (index p n) <= index p (m + n)`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `p = 1` THENL
[ASM_SIMP_TAC[index_def] THEN ARITH_TAC; REWRITE_TAC[LE_INDEX]] THEN
ASM_SIMP_TAC[ADD_EQ_0; INDEX_EQ_0; ARITH_RULE
`MIN a b = 0 <=> a = 0 \/ b = 0`] THEN
MATCH_MP_TAC DIVIDES_ADD THEN CONJ_TAC THEN MATCH_MP_TAC DIVIDES_TRANS THENL
[EXISTS_TAC `p EXP (index p m)`; EXISTS_TAC `p EXP (index p n)`] THEN
REWRITE_TAC[EXP_INDEX_DIVIDES] THEN
MATCH_MP_TAC DIVIDES_EXP_LE_IMP THEN ARITH_TAC);;
let INDEX_SUB_MIN = prove
(`!p m n. n < m ==> MIN (index p m) (index p n) <= index p (m - n)`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `p = 1` THENL
[ASM_SIMP_TAC[index_def] THEN ARITH_TAC; REWRITE_TAC[LE_INDEX]] THEN
ASM_SIMP_TAC[SUB_EQ_0; GSYM NOT_LT] THEN
MATCH_MP_TAC DIVIDES_ADD_REVL THEN EXISTS_TAC `n:num` THEN
ASM_SIMP_TAC[SUB_ADD; LT_IMP_LE] THEN
CONJ_TAC THEN MATCH_MP_TAC DIVIDES_TRANS THENL
[EXISTS_TAC `p EXP (index p n)`; EXISTS_TAC `p EXP (index p m)`] THEN
REWRITE_TAC[EXP_INDEX_DIVIDES] THEN
MATCH_MP_TAC DIVIDES_EXP_LE_IMP THEN ARITH_TAC);;
let INDEX_ADD = prove
(`!p n m.
~(n = 0) /\ (~(m = 0) ==> index p n < index p m)
==> index p (m + n) = index p n`,
REPEAT GEN_TAC THEN
ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[ADD_CLAUSES] THEN
ASM_CASES_TAC `p = 1` THENL
[ASM_MESON_TAC[INDEX_EQ_0; LT_REFL]; REPEAT STRIP_TAC] THEN
ASM_REWRITE_TAC[INDEX_UNIQUE_ALT; ADD_EQ_0] THEN CONJ_TAC THENL
[MATCH_MP_TAC DIVIDES_ADD;
MATCH_MP_TAC(MESON[DIVIDES_ADD_REVR]
`(p:num) divides m /\ ~(p divides n) ==> ~(p divides m + n)`)] THEN
ASM_REWRITE_TAC[PRIMEPOW_DIVIDES_INDEX] THEN ASM_ARITH_TAC);;
let INDEX_MULT_BASE = prove
(`(!p n. index p (p * n) = if p <= 1 \/ n = 0 then 0 else index p n + 1) /\
(!p n. index p (n * p) = if p <= 1 \/ n = 0 then 0 else index p n + 1)`,
MATCH_MP_TAC(TAUT `(p ==> q) /\ p ==> p /\ q`) THEN CONJ_TAC THENL
[MESON_TAC[MULT_SYM]; REPEAT GEN_TAC] THEN
COND_CASES_TAC THENL
[ASM_REWRITE_TAC[index_def] THEN ASM_MESON_TAC[MULT_EQ_0];
RULE_ASSUM_TAC(REWRITE_RULE[DE_MORGAN_THM]) THEN POP_ASSUM MP_TAC] THEN
ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[LE_0] THEN STRIP_TAC THEN
MATCH_MP_TAC INDEX_UNIQUE THEN ASM_REWRITE_TAC[] THEN
ASM_SIMP_TAC[ONCE_REWRITE_RULE[ADD_SYM] EXP_ADD] THEN
ASM_REWRITE_TAC[EXP_1; GSYM MULT_ASSOC] THEN
ASM_MESON_TAC[INDEX_DECOMPOSITION; LE_REFL]);;
let INDEX_MULT_EXP = prove
(`(!p n k. index p (p EXP k * n) =
if p <= 1 \/ n = 0 then 0 else k + index p n) /\
(!p n k. index p (n * p EXP k) =
if n = 0 \/ p <= 1 then 0 else index p n + k)`,
MATCH_MP_TAC(TAUT `(p ==> q) /\ p ==> p /\ q`) THEN CONJ_TAC THENL
[REWRITE_TAC[MULT_SYM; ADD_SYM; DISJ_SYM]; GEN_TAC THEN GEN_TAC] THEN
ASM_CASES_TAC `p = 0` THENL [ASM_REWRITE_TAC[index_def; ARITH]; ALL_TAC] THEN
ASM_CASES_TAC `p <= 1` THENL [ASM_REWRITE_TAC[index_def]; ALL_TAC] THEN
ASM_CASES_TAC `n = 0` THENL
[ASM_REWRITE_TAC[index_def; MULT_CLAUSES]; ASM_REWRITE_TAC[]] THEN
INDUCT_TAC THEN REWRITE_TAC[EXP; MULT_CLAUSES; GSYM MULT_ASSOC] THEN
ASM_REWRITE_TAC[INDEX_MULT_BASE; ADD1; ADD_CLAUSES] THEN
ASM_REWRITE_TAC[MULT_EQ_0; EXP_EQ_0] THEN ARITH_TAC);;
let INDEX_MULT_ADD = prove
(`(!p m n k.
~(n = 0) /\ index p n < k ==> index p (p EXP k * m + n) = index p n) /\
(!p m n k.
~(n = 0) /\ index p n < k ==> index p (m * p EXP k + n) = index p n) /\
(!p m n k.
~(n = 0) /\ index p n < k ==> index p (n + m * p EXP k) = index p n) /\
(!p m n k.
~(n = 0) /\ index p n < k ==> index p (n + p EXP k * m) = index p n)`,
MATCH_MP_TAC(TAUT `(p ==> q) /\ p ==> p /\ q`) THEN CONJ_TAC THENL
[REWRITE_TAC[MULT_SYM; ADD_SYM; DISJ_SYM]; REPEAT GEN_TAC] THEN
ASM_CASES_TAC `p <= 1` THENL [ASM_REWRITE_TAC[index_def]; ALL_TAC] THEN
STRIP_TAC THEN MATCH_MP_TAC INDEX_ADD THEN
ASM_SIMP_TAC[MULT_EQ_0; EXP_EQ_0; DE_MORGAN_THM] THEN
REWRITE_TAC[INDEX_MULT_EXP] THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC);;
let INDEX_NSUM_LE = prove
(`!(f:A->num) p n k.
FINITE k /\ ~(k = {}) /\ (!a. a IN k ==> n <= index p (f a))
==> n <= index p (nsum k f)`,
REPEAT STRIP_TAC THEN MP_TAC(ISPEC `\m. n <= index p m`
NSUM_CLOSED_NONEMPTY) THEN
REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
REPEAT STRIP_TAC THEN
W(MP_TAC o PART_MATCH rand INDEX_ADD_MIN o rand o snd) THEN ASM_ARITH_TAC);;
let DIVIDES_INDEX = prove
(`!m n. m divides n <=>
n = 0 \/ ~(m = 0) /\ !p. prime p ==> index p m <= index p n`,
REPEAT GEN_TAC THEN
ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[DIVIDES_0] THEN
ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[DIVIDES_ZERO] THEN
ONCE_REWRITE_TAC[MESON[LE_REFL; LE_ANTISYM; LE_TRANS]
`m <= n <=> !k:num. k <= m ==> k <= n`] THEN
REWRITE_TAC[LE_INDEX] THEN
ASM_SIMP_TAC[MESON[PRIME_1] `prime p ==> ~(p = 1)`] THEN
GEN_REWRITE_TAC LAND_CONV [PRIMEPOW_DIVISORS_DIVIDES] THEN MESON_TAC[]);;
let EQ_INDEX = prove
(`!m n. m = n <=> (m = 0 <=> n = 0) /\ !p. prime p ==> index p m = index p n`,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM DIVIDES_ANTISYM] THEN
REWRITE_TAC[DIVIDES_INDEX] THEN
MAP_EVERY ASM_CASES_TAC [`m = 0`; `n = 0`] THEN
ASM_REWRITE_TAC[] THEN MESON_TAC[LE_ANTISYM]);;
let COPRIME_INDEX = prove
(`!m n. coprime(m,n) <=>
(m = 0 ==> n = 1) /\ (n = 0 ==> m = 1) /\
!p. prime p ==> index p m = 0 \/ index p n = 0`,
REPEAT GEN_TAC THEN MAP_EVERY ASM_CASES_TAC [`m = 0`; `n = 0`] THEN
ASM_SIMP_TAC[INDEX_EQ_0; COPRIME_0;
MESON[PRIME_1] `prime p ==> ~(p = 1)`] THEN
MESON_TAC[COPRIME_PRIME_EQ]);;
let INDEX_GCD = prove
(`!m n p.
prime p
==> index p (gcd(m,n)) =
if m = 0 then index p n
else if n = 0 then index p m
else MIN (index p m) (index p n)`,
REPEAT STRIP_TAC THEN
MAP_EVERY ASM_CASES_TAC [`m = 0`; `n = 0`] THEN
ASM_SIMP_TAC[GCD_0; INDEX_0] THEN
REWRITE_TAC[ARITH_RULE `MIN 0 n = 0 /\ MIN m 0 = 0`] THEN
MP_TAC(GEN `k:num` (SPECL [`m:num`; `n:num`; `p EXP k`] DIVIDES_GCD)) THEN
ASM_REWRITE_TAC[PRIMEPOW_DIVIDES_INDEX] THEN
ASM_SIMP_TAC[MESON[PRIME_1] `prime p ==> ~(p = 1)`] THEN
ASM_REWRITE_TAC[GCD_ZERO] THEN
REWRITE_TAC[ARITH_RULE `k <= m /\ k <= n <=> k <= MIN m n`] THEN
MESON_TAC[LE_REFL; LE_ANTISYM; LE_TRANS]);;
let INDEX_FACT_PRIME_MULT = prove
(`!p n. prime p ==> index p (FACT(p * n)) = n + index p (FACT n)`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `n = 0` THEN
ASM_REWRITE_TAC[MULT_CLAUSES; FACT; INDEX_1; ADD_CLAUSES] THEN
ASM_SIMP_TAC[INDEX_FACT; MULT_EQ_0; PRIME_IMP_NZ; INDEX_MUL] THEN
TRANS_TAC EQ_TRANS `nsum (IMAGE (\i. p * i) (1..n)) (\m. index p m)` THEN
CONJ_TAC THENL
[MATCH_MP_TAC NSUM_SUPERSET THEN MATCH_MP_TAC(SET_RULE
`(!x. f x IN t <=> x IN s) /\
(!y. ~P y ==> y IN IMAGE f UNIV)
==> IMAGE f s SUBSET t /\ !y. y IN t /\ ~(y IN IMAGE f s) ==> P y`) THEN
REWRITE_TAC[IN_NUMSEG; LE_MULT_LCANCEL; ARITH_RULE `1 <= n <=> ~(n = 0)`;
MULT_EQ_0; IN_IMAGE; IN_UNIV; INDEX_EQ_0; divides] THEN
ASM_MESON_TAC[PRIME_0];
ASM_SIMP_TAC[NSUM_IMAGE; EQ_MULT_LCANCEL; PRIME_IMP_NZ; o_DEF] THEN
ASM_SIMP_TAC[INDEX_MUL; LE_1; PRIME_IMP_NZ; NSUM_ADD_NUMSEG] THEN
REWRITE_TAC[ETA_AX; EQ_ADD_RCANCEL] THEN
SIMP_TAC[NSUM_CONST; FINITE_NUMSEG; CARD_NUMSEG_1] THEN
REWRITE_TAC[INDEX_REFL] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2) THEN ASM_ARITH_TAC]);;
let PRIME_FACTORIZATION_INDEX = prove
(`!k. FINITE {p | prime p /\ ~(k p = 0)}
==> ?n. ~(n = 0) /\ !p. prime p ==> index p n = k p`,
SUBGOAL_THEN
`!s. FINITE s
==> !k. {p | prime p /\ ~(k p = 0)} SUBSET s
==> ?n. ~(n = 0) /\ !p. prime p ==> index p n = k p`
MP_TAC THENL [ALL_TAC; MESON_TAC[SUBSET_REFL]] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN CONJ_TAC THENL
[REWRITE_TAC[SET_RULE
`{p | prime p /\ ~Z p} SUBSET {} <=> !p. prime p ==> Z p`] THEN
MESON_TAC[INDEX_1; ARITH_RULE `~(1 = 0)`];
MAP_EVERY X_GEN_TAC [`p:num`; `s:num->bool`] THEN STRIP_TAC THEN
X_GEN_TAC `k:num->num` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC
`\i. if i = p then 0 else (k:num->num) i`) THEN
REWRITE_TAC[] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
ASM_CASES_TAC `prime p` THENL [ALL_TAC; ASM_MESON_TAC[]] THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP PRIME_IMP_NZ) THEN
DISCH_THEN(X_CHOOSE_THEN `n:num` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `p EXP k p * n` THEN
ASM_SIMP_TAC[INDEX_MUL; MULT_EQ_0; EXP_EQ_0; INDEX_EXP] THEN
X_GEN_TAC `q:num` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `q:num`) THEN
COND_CASES_TAC THEN ASM_SIMP_TAC[INDEX_REFL] THENL
[COND_CASES_TAC THEN REWRITE_TAC[ADD_CLAUSES; MULT_CLAUSES] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2) THEN ASM_ARITH_TAC;
DISCH_TAC THEN REWRITE_TAC[EQ_ADD_RCANCEL_0; MULT_EQ_0] THEN
ASM_SIMP_TAC[INDEX_EQ_0; DIVIDES_PRIME_PRIME]]]);;
let PRIME_POWER_EXISTS = prove
(`!n q. prime q
==> ((?i. n = q EXP i) <=>
(!p. prime p /\ p divides n ==> p = q))`,
REPEAT STRIP_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [PRIMEPOW_DIVISORS_EQ] THEN
ASM_SIMP_TAC[DIVIDES_PRIME_EXP_LE] THEN EQ_TAC THEN DISCH_TAC THENL
[X_GEN_TAC `p:num` THEN DISCH_TAC THEN
FIRST_X_ASSUM(X_CHOOSE_THEN `i:num` (MP_TAC o SPECL [`p:num`; `1`])) THEN
ASM_SIMP_TAC[EXP_1; ARITH_EQ];
EXISTS_TAC `index q n` THEN MAP_EVERY X_GEN_TAC [`p:num`; `k:num`] THEN
STRIP_TAC THEN ASM_CASES_TAC `k = 0` THEN
ASM_REWRITE_TAC[EXP; DIVIDES_1; LE_INDEX] THEN
ASM_CASES_TAC `p EXP k divides n` THENL [ALL_TAC; ASM_MESON_TAC[]] THEN
FIRST_ASSUM(MP_TAC o SPEC `p:num`) THEN
ANTS_TAC THENL [ASM_MESON_TAC[DIVIDES_EXP2]; DISCH_THEN SUBST_ALL_TAC] THEN
ASM_REWRITE_TAC[DE_MORGAN_THM] THEN
CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[PRIME_1]] THEN
DISCH_TAC THEN FIRST_X_ASSUM(fun th ->
MP_TAC(SPEC `3` th) THEN MP_TAC(SPEC `2` th)) THEN
ASM_REWRITE_TAC[DIVIDES_0; NOT_IMP] THEN
REWRITE_TAC[PRIME_ALT; IMP_CONJ_ALT; DIVIDES_MOD] THEN
CONV_TAC(ONCE_DEPTH_CONV EXPAND_CASES_CONV) THEN
REWRITE_TAC[LT] THEN ARITH_TAC]);;
let PRIME_FACTORIZATION_ALT = prove
(`!n. ~(n = 0) ==> nproduct {p | prime p} (\p. p EXP index p n) = n`,
MATCH_MP_TAC COMPLETE_FACTOR_INDUCT THEN
REWRITE_TAC[INDEX_0; INDEX_1; MULT_EQ_0; ARITH_EQ; DE_MORGAN_THM; EXP] THEN
SIMP_TAC[REWRITE_RULE[GSYM nproduct; NEUTRAL_MUL]
(MATCH_MP ITERATE_EQ_NEUTRAL MONOIDAL_MUL)] THEN
CONJ_TAC THENL
[X_GEN_TAC `p:num` THEN REPEAT DISCH_TAC THEN ASM_SIMP_TAC[INDEX_PRIME] THEN
REWRITE_TAC[COND_RAND; EXP; EXP_1] THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [EQ_SYM_EQ] THEN
ASM_SIMP_TAC[IN_ELIM_THM; REWRITE_RULE[GSYM nproduct; NEUTRAL_MUL]
(MATCH_MP ITERATE_DELTA MONOIDAL_MUL)];
MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN
DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(MESON[]
`x * y = z ==> x = m /\ y = n ==> z = m * n`) THEN
W(MP_TAC o PART_MATCH (rand o rand)
(REWRITE_RULE[GSYM nproduct] (MATCH_MP ITERATE_OP_GEN MONOIDAL_MUL)) o
lhand o snd) THEN
REWRITE_TAC[support; NEUTRAL_MUL] THEN ANTS_TAC THENL
[ASM_REWRITE_TAC[IN_ELIM_THM; EXP_EQ_1; INDEX_EQ_0] THEN
ASM_SIMP_TAC[DE_MORGAN_THM; CONJ_ASSOC; FINITE_SPECIAL_DIVISORS];
DISCH_THEN(SUBST1_TAC o SYM)] THEN
MATCH_MP_TAC(REWRITE_RULE[GSYM nproduct]
(MATCH_MP ITERATE_EQ MONOIDAL_MUL)) THEN
ASM_SIMP_TAC[IN_ELIM_THM; INDEX_MUL; EXP_ADD]]);;
let PRIME_FACTORIZATION = prove
(`!n. ~(n = 0)
==> nproduct {p | prime p /\ p divides n} (\p. p EXP index p n) = n`,
REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV
[SYM(MATCH_MP PRIME_FACTORIZATION_ALT th)]) THEN
CONV_TAC SYM_CONV THEN REWRITE_TAC[nproduct] THEN
MATCH_MP_TAC(MATCH_MP ITERATE_SUPERSET MONOIDAL_MUL) THEN
SIMP_TAC[IN_ELIM_THM; IMP_CONJ; NEUTRAL_MUL; EXP_EQ_1; INDEX_EQ_0] THEN
SET_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Least common multiples. *)
(* ------------------------------------------------------------------------- *)
let lcm = prove
(`lcm(m,n) = if m * n = 0 then 0 else (m * n) DIV gcd(m,n)`,
REWRITE_TAC[GSYM INT_OF_NUM_EQ; GSYM INT_OF_NUM_MUL; NUM_LCM; int_lcm] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[INT_OF_NUM_MUL; INT_OF_NUM_DIV; INT_ABS_NUM; GSYM NUM_GCD]);;
let LCM_DIVIDES = prove
(`!m n d. lcm(m,n) divides d <=> m divides d /\ n divides d`,
NUMBER_TAC);;
let LCM = prove
(`!m n. m divides lcm(m,n) /\
n divides lcm(m,n) /\
(!d. m divides d /\ n divides d ==> lcm(m,n) divides d)`,
NUMBER_TAC);;
let LCM_DIVIDES_MUL = prove
(`!m n. lcm(m,n) divides m * n`,
REWRITE_TAC[LCM_DIVIDES] THEN CONV_TAC NUMBER_RULE);;
let DIVIDES_LCM = prove
(`!m n r. r divides m \/ r divides n
==> r divides lcm(m,n)`,
REPEAT STRIP_TAC THEN FIRST_X_ASSUM
(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] DIVIDES_TRANS)) THEN
ASM_MESON_TAC[LCM]);;
let LCM_0 = prove
(`(!n. lcm(0,n) = 0) /\ (!n. lcm(n,0) = 0)`,
REWRITE_TAC[lcm; MULT_CLAUSES] THEN ARITH_TAC);;
let LCM_1 = prove
(`(!n. lcm(1,n) = n) /\ (!n. lcm(n,1) = n)`,
SIMP_TAC[lcm; MULT_CLAUSES; GCD_1; DIV_1] THEN MESON_TAC[]);;
let LCM_SYM = prove
(`!m n. lcm(m,n) = lcm(n,m)`,
REWRITE_TAC[lcm; MULT_SYM; GCD_SYM; ARITH_RULE `MAX m n = MAX n m`]);;
let DIVIDES_LCM_GCD = prove
(`!m n d. d divides lcm(m,n) <=> d * gcd(m,n) divides m * n`,
NUMBER_TAC);;
let PRIMEPOW_DIVIDES_LCM = prove
(`!m n p k.
prime p
==> (p EXP k divides lcm(m,n) <=>
p EXP k divides m \/ p EXP k divides n)`,
REPEAT STRIP_TAC THEN EQ_TAC THENL [STRIP_TAC; MESON_TAC[DIVIDES_LCM]] THEN
ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[LCM_0; DIVIDES_0] THEN
ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[LCM_0; DIVIDES_0] THEN
MP_TAC(SPECL [`n:num`; `p:num`] FACTORIZATION_INDEX) THEN
MP_TAC(SPECL [`m:num`; `p:num`] FACTORIZATION_INDEX) THEN
ASM_SIMP_TAC[PRIME_GE_2; LEFT_IMP_EXISTS_THM; divides;
LEFT_AND_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`a:num`; `q:num`] THEN STRIP_TAC THEN
MAP_EVERY X_GEN_TAC [`b:num`; `r:num`] THEN STRIP_TAC THEN
REWRITE_TAC[GSYM divides] THEN
UNDISCH_TAC `p EXP k divides lcm (m,n)` THEN
ASM_REWRITE_TAC[DIVIDES_LCM_GCD] THEN
SUBGOAL_THEN
`gcd(p EXP a * q,p EXP b * r) =
p EXP (MIN a b) * gcd(p EXP (a - MIN a b) * q,p EXP (b - MIN a b) * r)`
SUBST1_TAC THENL
[REWRITE_TAC[GSYM GCD_LMUL; MULT_ASSOC; GSYM EXP_ADD] THEN
AP_TERM_TAC THEN BINOP_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
AP_TERM_TAC THEN ARITH_TAC;
REWRITE_TAC[MULT_ASSOC; GSYM EXP_ADD]] THEN
DISCH_THEN(MP_TAC o
MATCH_MP (NUMBER_RULE `a * b divides c ==> a divides c`)) THEN
REWRITE_TAC[ARITH_RULE `((a * b) * c) * d:num = (a * c) * b * d`] THEN
REWRITE_TAC[GSYM EXP_ADD] THEN
DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
(ONCE_REWRITE_RULE[MULT_SYM] COPRIME_EXP_DIVPROD))) THEN
ANTS_TAC THENL
[MATCH_MP_TAC COPRIME_MUL THEN CONJ_TAC THEN
MATCH_MP_TAC(MESON[PRIME_COPRIME_STRONG]
`prime p /\ ~(p divides n) ==> coprime(p,n)`) THEN
ASM_REWRITE_TAC[divides] THEN STRIP_TAC THENL
[UNDISCH_TAC `!l. a < l ==> ~(?x. m = p EXP l * x)` THEN
DISCH_THEN(MP_TAC o SPEC `a + 1`);
UNDISCH_TAC `!l. b < l ==> ~(?x. n = p EXP l * x)` THEN
DISCH_THEN(MP_TAC o SPEC `b + 1`)] THEN
ASM_REWRITE_TAC[ARITH_RULE `a < a + 1`; EXP_ADD; EXP_1] THEN
MESON_TAC[MULT_AC];
ASM_SIMP_TAC[DIVIDES_EXP_LE; PRIME_GE_2] THEN
DISCH_THEN(MP_TAC o MATCH_MP (ARITH_RULE
`k + MIN a b <= a + b ==> k <= a \/ k <= b`)) THEN
MATCH_MP_TAC MONO_OR THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC DIVIDES_RMUL THEN ASM_SIMP_TAC[DIVIDES_EXP_LE; PRIME_GE_2]]);;
let PRIME_DIVIDES_LCM = prove
(`!m n p.
prime p
==> (p divides lcm(m,n) <=> p divides m \/ p divides n)`,
REPEAT GEN_TAC THEN
MP_TAC(SPECL [`m:num`; `n:num`; `p:num`; `1`] PRIMEPOW_DIVIDES_LCM) THEN
REWRITE_TAC[EXP_1]);;
let LCM_ZERO = prove
(`!m n. lcm(m,n) = 0 <=> m = 0 \/ n = 0`,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [MULTIPLES_EQ] THEN
REWRITE_TAC[LCM_DIVIDES; DIVIDES_ZERO] THEN
MAP_EVERY ASM_CASES_TAC [`m = 0`; `n = 0`] THEN
ASM_REWRITE_TAC[DIVIDES_ZERO] THEN
ASM_MESON_TAC[DIVIDES_REFL; MULT_EQ_0; DIVIDES_LMUL; DIVIDES_RMUL]);;
let INDEX_LCM = prove
(`!m n p.
prime p
==> index p (lcm(m,n)) =
if m = 0 \/ n = 0 then 0
else MAX (index p m) (index p n)`,
REPEAT STRIP_TAC THEN
MAP_EVERY ASM_CASES_TAC [`m = 0`; `n = 0`] THEN
ASM_SIMP_TAC[LCM_0; INDEX_0] THEN
FIRST_ASSUM(MP_TAC o SPECL [`m:num`; `n:num`] o MATCH_MP
PRIMEPOW_DIVIDES_LCM) THEN
ASM_REWRITE_TAC[PRIMEPOW_DIVIDES_INDEX; LCM_ZERO] THEN
ASM_SIMP_TAC[MESON[PRIME_1] `prime p ==> ~(p = 1)`] THEN
REWRITE_TAC[ARITH_RULE `k <= m \/ k <= n <=> k <= MAX m n`] THEN
MESON_TAC[LE_REFL; LE_ANTISYM; LE_TRANS]);;
let LCM_ASSOC = prove
(`!m n p. lcm(m,lcm(n,p)) = lcm(lcm(m,n),p)`,
REPEAT GEN_TAC THEN REWRITE_TAC[MULTIPLES_EQ] THEN
REWRITE_TAC[LCM_DIVIDES] THEN X_GEN_TAC `q:num` THEN
REWRITE_TAC[LCM_ZERO] THEN CONV_TAC TAUT);;
let LCM_REFL = prove
(`!n. lcm(n,n) = n`,
REWRITE_TAC[lcm; GCD_REFL; MULT_EQ_0; ARITH_RULE `MAX n n = n`] THEN
SIMP_TAC[DIV_MULT] THEN MESON_TAC[]);;
let LCM_MULTIPLE = prove
(`!a b. lcm(b,a * b) = a * b`,
REWRITE_TAC[MULTIPLES_EQ; LCM_DIVIDES] THEN NUMBER_TAC);;
let LCM_GCD_DISTRIB = prove
(`!a b c. lcm(a,gcd(b,c)) = gcd(lcm(a,b),lcm(a,c))`,
REWRITE_TAC[PRIMEPOW_DIVISORS_EQ] THEN
SIMP_TAC[PRIMEPOW_DIVIDES_LCM; DIVIDES_GCD] THEN CONV_TAC TAUT);;
let GCD_LCM_DISTRIB = prove
(`!a b c. gcd(a,lcm(b,c)) = lcm(gcd(a,b),gcd(a,c))`,
REWRITE_TAC[PRIMEPOW_DIVISORS_EQ] THEN
SIMP_TAC[PRIMEPOW_DIVIDES_LCM; DIVIDES_GCD] THEN CONV_TAC TAUT);;
let LCM_UNIQUE = prove
(`!d m n.
m divides d /\ n divides d /\
(!e. m divides e /\ n divides e ==> d divides e) <=>
d = lcm(m,n)`,
REWRITE_TAC[MULTIPLES_EQ; LCM_DIVIDES] THEN
MESON_TAC[DIVIDES_REFL; DIVIDES_TRANS]);;
let LCM_EQ = prove
(`!x y u v. (!d. x divides d /\ y divides d <=> u divides d /\ v divides d)
==> lcm(x,y) = lcm(u,v)`,
SIMP_TAC[MULTIPLES_EQ; LCM_DIVIDES]);;
let LCM_EQ_1 = prove
(`!m n. lcm(m,n) = 1 <=> m = 1 /\ n = 1`,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [EQ_SYM_EQ] THEN
REWRITE_TAC[GSYM LCM_UNIQUE; DIVIDES_1; DIVIDES_ONE]);;
let DIVIDES_LCM_LEFT = prove
(`!m n. n divides m <=> lcm(m,n) = m`,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC RAND_CONV [EQ_SYM_EQ] THEN
SIMP_TAC[GSYM LCM_UNIQUE; DIVIDES_REFL]);;
let DIVIDES_LCM_RIGHT = prove
(`!m n. m divides n <=> lcm(m,n) = n`,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC RAND_CONV [EQ_SYM_EQ] THEN
SIMP_TAC[GSYM LCM_UNIQUE; DIVIDES_REFL]);;
let MULT_LCM_GCD = prove
(`!m n. lcm(m,n) * gcd(m,n) = m * n`,
REPEAT GEN_TAC THEN
MAP_EVERY ASM_CASES_TAC [`m = 0`; `n = 0`] THEN
ASM_REWRITE_TAC[GCD_0; LCM_0; MULT_CLAUSES] THEN
ASM_REWRITE_TAC[lcm; MULT_EQ_0; GSYM DIVIDES_DIV_MULT] THEN
CONV_TAC NUMBER_RULE);;
let MULT_GCD_LCM = prove
(`!m n. gcd(m,n) * lcm(m,n) = m * n`,
MESON_TAC[MULT_SYM; MULT_LCM_GCD]);;
let LCM_LMUL = prove
(`!a b c. lcm(c * a,c * b) = c * lcm(a,b)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `c = 0` THEN
ASM_REWRITE_TAC[MULT_CLAUSES; LCM_0] THEN
ASM_REWRITE_TAC[lcm; GCD_LMUL; MULT_EQ_0; DISJ_ACI] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN
RULE_ASSUM_TAC(REWRITE_RULE[DE_MORGAN_THM]) THEN
ASM_SIMP_TAC[GSYM MULT_ASSOC; DIV_MULT2; MULT_EQ_0; GCD_ZERO] THEN
MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `0` THEN
ASM_SIMP_TAC[ADD_CLAUSES; LE_1; GCD_ZERO] THEN
ONCE_REWRITE_TAC[ARITH_RULE
`a * c * b:num = (c * d) * g <=> c * d * g = c * a * b`] THEN
AP_TERM_TAC THEN REWRITE_TAC[GSYM DIVIDES_DIV_MULT] THEN
CONV_TAC NUMBER_RULE);;
let LCM_RMUL = prove
(`!a b c. lcm(a * c,b * c) = c * lcm(a,b)`,
MESON_TAC[LCM_LMUL; MULT_SYM]);;
let LCM_EXP = prove
(`!n a b. lcm(a EXP n,b EXP n) = lcm(a,b) EXP n`,
REPEAT GEN_TAC THEN REWRITE_TAC[lcm] THEN
REWRITE_TAC[MULT_EQ_0; EXP_EQ_0] THEN
ASM_CASES_TAC `n = 0` THEN
ASM_REWRITE_TAC[EXP; GCD_REFL; DIV_1; MULT_CLAUSES] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL
[ASM_MESON_TAC[num_CASES; EXP_ZERO]; ALL_TAC] THEN
RULE_ASSUM_TAC(REWRITE_RULE[DE_MORGAN_THM]) THEN
REWRITE_TAC[GCD_EXP; GSYM MULT_EXP] THEN
MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `0` THEN
ASM_SIMP_TAC[ADD_CLAUSES; LE_1; GCD_ZERO; EXP_EQ_0] THEN
REWRITE_TAC[GSYM MULT_EXP] THEN AP_THM_TAC THEN AP_TERM_TAC THEN
CONV_TAC SYM_CONV THEN REWRITE_TAC[GSYM DIVIDES_DIV_MULT] THEN
CONV_TAC NUMBER_RULE);;
let LCM_COPRIME_DECOMP = prove
(`!m n:num.
?m' n'.
m' divides m /\ n' divides n /\ coprime(m',n') /\ m' * n' = lcm(m,n)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `m = 0` THENL
[ASM_REWRITE_TAC[DIVIDES_0; COPRIME_0; GCD_0; LCM_0] THEN
MAP_EVERY EXISTS_TAC [`0`; `1`] THEN CONV_TAC NUMBER_RULE;
ALL_TAC] THEN
MP_TAC(ISPECL [`m:num`; `n:num`] GCD_COPRIME_EXISTS) THEN
ASM_REWRITE_TAC[GCD_ZERO; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`m':num`; `n':num`] THEN
DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN
MP_TAC(ISPECL [`m':num`; `n':num`; `gcd(m,n)`] COPRIME_PAIR_DECOMP) THEN
ASM_REWRITE_TAC[GCD_ZERO; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`n'':num`; `m'':num`] THEN STRIP_TAC THEN
MAP_EVERY EXISTS_TAC [`m' * m'':num`; `n' * n'':num`] THEN
REWRITE_TAC[COPRIME_LMUL; COPRIME_RMUL; GSYM CONJ_ASSOC] THEN
ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN
ASM_REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL
[ASM_MESON_TAC[DIVIDES_MUL_L; DIVIDES_REFL; DIVIDES_RMUL; DIVIDES_LMUL];
ALL_TAC] THEN
MATCH_MP_TAC(NUM_RING `!d. ~(d = 0) /\ a * d = b * d ==> a = b`) THEN
EXISTS_TAC `gcd(m,n):num` THEN
ASM_REWRITE_TAC[MULT_LCM_GCD; GCD_ZERO] THEN
REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC NUM_RING);;
let LE_LCM = prove
(`(!m n. m <= lcm(m,n) <=> n = 0 ==> m = 0) /\
(!m n. n <= lcm(m,n) <=> m = 0 ==> n = 0)`,
REPEAT STRIP_TAC THEN
MAP_EVERY ASM_CASES_TAC [`m = 0`; `n = 0`] THEN
ASM_REWRITE_TAC[LCM_0; LE_REFL; LE] THEN
MATCH_MP_TAC DIVIDES_LE_IMP THEN
ASM_REWRITE_TAC[LCM; LCM_ZERO]);;
let LCM_LE_MULT = prove
(`!m n. lcm(m,n) <= m * n`,
REPEAT GEN_TAC THEN REWRITE_TAC[lcm] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[LE_REFL; DIV_LE]);;
let LCM_EQ_MULT = prove
(`!m n. lcm(m,n) = m * n <=> m = 0 \/ n = 0 \/ coprime(m,n)`,
REPEAT GEN_TAC THEN
MAP_EVERY ASM_CASES_TAC [`m = 0`; `n = 0`] THEN
ASM_REWRITE_TAC[LCM_0; MULT_CLAUSES] THEN
ASM_REWRITE_TAC[lcm; DIV_EQ_SELF; MULT_EQ_0; COPRIME_GCD]);;
let MAX_LE_LCM_EQ = prove
(`!m n. MAX m n <= lcm(m,n) <=> (m = 0 <=> n = 0)`,
REPEAT GEN_TAC THEN REWRITE_TAC[MAX] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[LE_LCM] THEN
ASM_ARITH_TAC);;
let MAX_LE_LCM = prove
(`!m n. (m = 0 <=> n = 0) ==> MAX m n <= lcm(m,n)`,
REWRITE_TAC[MAX_LE_LCM_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Iterated GCD and LCM over a finite set (or one with finite support). *)
(* ------------------------------------------------------------------------- *)
let NEUTRAL_GCD = prove
(`neutral (\m n. gcd(m,n)) = 0`,
REWRITE_TAC[neutral] THEN MATCH_MP_TAC SELECT_UNIQUE THEN MESON_TAC[GCD_0]);;
let MONOIDAL_GCD = prove
(`monoidal (\m n:num. gcd(m,n))`,
REWRITE_TAC[monoidal; NEUTRAL_GCD; GCD_0] THEN
MESON_TAC[GCD_ASSOC; GCD_SYM]);;
let NEUTRAL_LCM = prove
(`neutral (\m n. lcm(m,n)) = 1`,
REWRITE_TAC[neutral] THEN MATCH_MP_TAC SELECT_UNIQUE THEN MESON_TAC[LCM_1]);;
let MONOIDAL_LCM = prove
(`monoidal (\m n:num. lcm(m,n))`,
REWRITE_TAC[monoidal; NEUTRAL_LCM; LCM_1] THEN
MESON_TAC[LCM_ASSOC; LCM_SYM]);;
let ITERATE_GCD_DIVIDES = prove
(`!f k i:K.
FINITE k /\ i IN k
==> iterate (\m n:num. gcd(m,n)) k f divides f i`,
GEN_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[FORALL_IN_INSERT; MATCH_MP ITERATE_CLAUSES MONOIDAL_GCD] THEN
MESON_TAC[NOT_IN_EMPTY; GCD; DIVIDES_REFL; DIVIDES_TRANS]);;
let ITERATE_GCD_DIVIDES_EQ = prove
(`!f k i:K.
i IN k
==> (iterate (\m n:num. gcd(m,n)) k f divides f i <=>
FINITE {j | j IN k /\ ~(f j = 0)} \/ f i = 0)`,
REPEAT STRIP_TAC THEN
ASM_CASES_TAC `f(i:K) = 0` THEN ASM_REWRITE_TAC[DIVIDES_0] THEN
ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN
REWRITE_TAC[support; NEUTRAL_GCD] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[DIVIDES_ZERO] THEN
MATCH_MP_TAC ITERATE_GCD_DIVIDES THEN
ASM_REWRITE_TAC[IN_ELIM_THM]);;
let DIVIDES_ITERATE_GCD = prove
(`!f (k:K->bool) d.
FINITE k
==> (d divides iterate (\m n:num. gcd(m,n)) k f <=>
!i. i IN k ==> d divides f i)`,
GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[FORALL_IN_INSERT; MATCH_MP ITERATE_CLAUSES MONOIDAL_GCD] THEN
SIMP_TAC[NEUTRAL_GCD; DIVIDES_0; NOT_IN_EMPTY; DIVIDES_GCD]);;
let DIVIDES_ITERATE_GCD_GEN = prove
(`!f (k:K->bool) d.
d divides iterate (\m n:num. gcd(m,n)) k f <=>
FINITE {j | j IN k /\ ~(f j = 0)} ==> !i. i IN k ==> d divides f i`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN
REWRITE_TAC[support; NEUTRAL_GCD] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[DIVIDES_0] THEN
ASM_SIMP_TAC[DIVIDES_ITERATE_GCD; IN_ELIM_THM] THEN
MESON_TAC[DIVIDES_0]);;
let DIVIDES_ITERATE_LCM = prove
(`!f k i:K.
FINITE k /\ i IN k
==> f i divides iterate (\m n:num. lcm(m,n)) k f`,
GEN_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[FORALL_IN_INSERT; MATCH_MP ITERATE_CLAUSES MONOIDAL_LCM] THEN
ASM_SIMP_TAC[NOT_IN_EMPTY; DIVIDES_LCM; DIVIDES_REFL]);;
let DIVIDES_ITERATE_LCM_GEN = prove
(`!f k i:K.
i IN k
==> (f i divides iterate (\m n:num. lcm(m,n)) k f <=>
FINITE {j | j IN k /\ ~(f j = 1)} \/ f i = 1)`,
REPEAT STRIP_TAC THEN
ASM_CASES_TAC `f(i:K) = 1` THEN ASM_REWRITE_TAC[DIVIDES_1] THEN
ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN
REWRITE_TAC[support; NEUTRAL_LCM] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[DIVIDES_ONE] THEN
MATCH_MP_TAC DIVIDES_ITERATE_LCM THEN
ASM_REWRITE_TAC[IN_ELIM_THM]);;
let ITERATE_LCM_DIVIDES = prove
(`!f (k:K->bool) n.
FINITE k
==> (iterate (\m n:num. lcm(m,n)) k f divides n <=>
!i. i IN k ==> f i divides n)`,
GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[FORALL_IN_INSERT; MATCH_MP ITERATE_CLAUSES MONOIDAL_LCM] THEN
SIMP_TAC[NEUTRAL_LCM; DIVIDES_1; NOT_IN_EMPTY; LCM_DIVIDES]);;
let ITERATE_LCM_DIVIDES_GEN = prove
(`!f (k:K->bool) n.
iterate (\m n:num. lcm(m,n)) k f divides n <=>
FINITE {j | j IN k /\ ~(f j = 1)} ==> !i. i IN k ==> f i divides n`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN
REWRITE_TAC[support; NEUTRAL_LCM] THEN COND_CASES_TAC THEN
ASM_SIMP_TAC[ITERATE_LCM_DIVIDES; DIVIDES_1; IN_ELIM_THM] THEN
MESON_TAC[DIVIDES_1]);;
let PRIMEPOW_DIVIDES_ITERATE_LCM = prove
(`!f (k:K->bool) p m.
FINITE k /\ prime p
==> (p EXP m divides iterate (\m n:num. lcm(m,n)) k f <=>
m = 0 \/ ?i. i IN k /\ p EXP m divides (f i))`,
GEN_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[EXISTS_IN_INSERT; MATCH_MP ITERATE_CLAUSES MONOIDAL_LCM;
PRIMEPOW_DIVIDES_LCM; NOT_IN_EMPTY; NEUTRAL_LCM] THEN
MESON_TAC[DIVIDES_ONE; EXP_EQ_1; PRIME_1]);;
let PRIMEPOW_DIVIDES_ITERATE_LCM_GEN = prove
(`!f (k:K->bool) p m.
prime p
==> (p EXP m divides iterate (\m n:num. lcm(m,n)) k f <=>
m = 0 \/
FINITE {j | j IN k /\ ~(f j = 1)} /\
?i. i IN k /\ p EXP m divides (f i))`,
REPEAT STRIP_TAC THEN
ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[EXP; DIVIDES_1] THEN
ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN
REWRITE_TAC[support; NEUTRAL_LCM] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[DIVIDES_ONE; EXP_EQ_1] THEN
ASM_SIMP_TAC[PRIMEPOW_DIVIDES_ITERATE_LCM; IN_ELIM_THM] THEN
ASM_MESON_TAC[DIVIDES_1; DIVIDES_ONE; PRIME_1; EXP_EQ_1]);;
let PRIME_DIVIDES_ITERATE_LCM_GEN = prove
(`!f (k:K->bool) p.
prime p
==> (p divides iterate (\m n:num. lcm(m,n)) k f <=>
FINITE {j | j IN k /\ ~(f j = 1)} /\
?i. i IN k /\ p divides (f i))`,
REPEAT GEN_TAC THEN
MP_TAC(ISPECL [`f:K->num`; `k:K->bool`; `p:num`; `1`]
PRIMEPOW_DIVIDES_ITERATE_LCM_GEN) THEN
REWRITE_TAC[EXP_1; ARITH_EQ]);;
let PRIME_DIVIDES_ITERATE_LCM = prove
(`!f (k:K->bool) p.
FINITE k /\ prime p
==> (p divides iterate (\m n:num. lcm(m,n)) k f <=>
?i. i IN k /\ p divides (f i))`,
SIMP_TAC[PRIME_DIVIDES_ITERATE_LCM_GEN; FINITE_RESTRICT]);;
let ITERATE_LCM_EQ_0_GEN = prove
(`!(k:K->bool) f.
iterate (\m n. lcm(m,n)) k f = 0 <=>
FINITE {j | j IN k /\ ~(f j = 1)} /\
?j. j IN k /\ f j = 0`,
REPEAT GEN_TAC THEN
ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN
REWRITE_TAC[support; NEUTRAL_LCM] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[ARITH_EQ] THEN
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV)
[ARITH_RULE `n = 0 <=> ~(n = 1) /\ n = 0`] THEN
ONCE_REWRITE_TAC[SET_RULE
`j IN k /\ ~(f j = 1) /\ f j = 0 <=>
j IN {j | j IN k /\ ~(f j = 1)} /\ f j = 0`] THEN
POP_ASSUM MP_TAC THEN
SPEC_TAC(`{j:K | j IN k /\ ~(f j = 1)}`,`k:K->bool`) THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[MATCH_MP ITERATE_CLAUSES MONOIDAL_LCM] THEN
SIMP_TAC[NEUTRAL_LCM; LCM_ZERO; EXISTS_IN_INSERT; NOT_IN_EMPTY] THEN
CONV_TAC NUM_REDUCE_CONV);;
let ITERATE_LCM_EQ_0 = prove
(`!(k:K->bool) f.
FINITE k
==> (iterate (\m n. lcm(m,n)) k f = 0 <=>
?j. j IN k /\ f j = 0)`,
SIMP_TAC[ITERATE_LCM_EQ_0_GEN; FINITE_RESTRICT]);;
let ITERATE_LCM_EQ_1_GEN = prove
(`!(k:K->bool) f.
iterate (\m n. lcm(m,n)) k f = 1 <=>
FINITE {j | j IN k /\ ~(f j = 1)} ==> !j. j IN k ==> f j = 1`,
REPEAT GEN_TAC THEN
ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN
REWRITE_TAC[support; NEUTRAL_LCM] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
ONCE_REWRITE_TAC[SET_RULE
`(!j. j IN k ==> f j = 1) <=>
!j. j IN {j | j IN k /\ ~(f j = 1)} ==> f j = 1`] THEN
POP_ASSUM MP_TAC THEN
SPEC_TAC(`{j:K | j IN k /\ ~(f j = 1)}`,`k:K->bool`) THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[MATCH_MP ITERATE_CLAUSES MONOIDAL_LCM] THEN
SIMP_TAC[NEUTRAL_LCM; LCM_EQ_1; NOT_IN_EMPTY] THEN SET_TAC[]);;
let ITERATE_LCM_EQ_1 = prove
(`!(k:K->bool) f.
FINITE k
==> (iterate (\m n. lcm(m,n)) k f = 1 <=>
!j. j IN k ==> f j = 1)`,
SIMP_TAC[ITERATE_LCM_EQ_1_GEN; FINITE_RESTRICT]);;
let ITERATE_GCD_EQ_0_GEN = prove
(`!(k:K->bool) f.
iterate (\m n. gcd(m,n)) k f = 0 <=>
FINITE {j | j IN k /\ ~(f j = 0)} ==> !j. j IN k ==> f j = 0`,
REPEAT GEN_TAC THEN
ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN
REWRITE_TAC[support; NEUTRAL_GCD] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
ONCE_REWRITE_TAC[SET_RULE
`(!j. j IN k ==> f j = 0) <=>
!j. j IN {j | j IN k /\ ~(f j = 0)} ==> f j = 0`] THEN
POP_ASSUM MP_TAC THEN
SPEC_TAC(`{j:K | j IN k /\ ~(f j = 0)}`,`k:K->bool`) THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[MATCH_MP ITERATE_CLAUSES MONOIDAL_GCD] THEN
SIMP_TAC[NEUTRAL_GCD; GCD_ZERO; NOT_IN_EMPTY] THEN SET_TAC[]);;
let ITERATE_GCD_EQ_0 = prove
(`!(k:K->bool) f.
FINITE k
==> (iterate (\m n. gcd(m,n)) k f = 0 <=>
!j. j IN k ==> f j = 0)`,
SIMP_TAC[ITERATE_GCD_EQ_0_GEN; FINITE_RESTRICT]);;
(* ------------------------------------------------------------------------- *)
(* Induction principle for multiplicative functions etc. *)
(* ------------------------------------------------------------------------- *)
let INDUCT_COPRIME = prove
(`!P. (!a b. 1 < a /\ 1 < b /\ coprime(a,b) /\ P a /\ P b ==> P(a * b)) /\
(!p k. prime p ==> P(p EXP k))
==> !n. 1 < n ==> P n`,
GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC num_WF THEN
X_GEN_TAC `n:num` THEN REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE `1 < n ==> ~(n = 1)`)) THEN
DISCH_THEN(X_CHOOSE_TAC `p:num` o MATCH_MP PRIME_FACTOR) THEN
MP_TAC(SPECL [`n:num`; `p:num`] FACTORIZATION_INDEX) THEN
ASM_SIMP_TAC[PRIME_GE_2; ARITH_RULE `1 < n ==> ~(n = 0)`] THEN
REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`k:num`; `m:num`] THEN STRIP_TAC THEN
FIRST_X_ASSUM SUBST_ALL_TAC THEN
ASM_CASES_TAC `m = 1` THEN ASM_SIMP_TAC[MULT_CLAUSES] THEN
FIRST_X_ASSUM(CONJUNCTS_THEN2 MATCH_MP_TAC MP_TAC) THEN
ASM_SIMP_TAC[] THEN DISCH_THEN(K ALL_TAC) THEN
MATCH_MP_TAC(TAUT
`!p. (a /\ b /\ ~p) /\ c /\ (a /\ ~p ==> b ==> d)
==> a /\ b /\ c /\ d`) THEN
EXISTS_TAC `m = 0` THEN
SUBGOAL_THEN `~(k = 0)` ASSUME_TAC THENL
[DISCH_THEN SUBST_ALL_TAC THEN
FIRST_X_ASSUM(MP_TAC o C MATCH_MP (ARITH_RULE `0 < 1`)) THEN
FIRST_X_ASSUM(MP_TAC o CONJUNCT2) THEN
REWRITE_TAC[EXP; EXP_1; MULT_CLAUSES; divides];
ALL_TAC] THEN
CONJ_TAC THENL
[UNDISCH_TAC `1 < p EXP k * m` THEN
ASM_REWRITE_TAC[ARITH_RULE `1 < x <=> ~(x = 0) /\ ~(x = 1)`] THEN
ASM_REWRITE_TAC[EXP_EQ_0; EXP_EQ_1; MULT_EQ_0; MULT_EQ_1] THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2 o CONJUNCT1) THEN
ASM_ARITH_TAC;
ALL_TAC] THEN
CONJ_TAC THENL
[FIRST_X_ASSUM(MP_TAC o C MATCH_MP (ARITH_RULE `k < k + 1`)) THEN
REWRITE_TAC[EXP_ADD; EXP_1; GSYM MULT_ASSOC; EQ_MULT_LCANCEL] THEN
ASM_SIMP_TAC[EXP_EQ_0; PRIME_IMP_NZ; GSYM divides] THEN DISCH_TAC THEN
ONCE_REWRITE_TAC[COPRIME_SYM] THEN MATCH_MP_TAC COPRIME_EXP THEN
ASM_MESON_TAC[PRIME_COPRIME; COPRIME_SYM];
DISCH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `m = 1 * m`] THEN
ASM_REWRITE_TAC[LT_MULT_RCANCEL]]);;
let INDUCT_COPRIME_STRONG = prove
(`!P. (!a b. 1 < a /\ 1 < b /\ coprime(a,b) /\ P a /\ P b ==> P(a * b)) /\
(!p k. prime p /\ ~(k = 0) ==> P(p EXP k))
==> !n. 1 < n ==> P n`,
GEN_TAC THEN STRIP_TAC THEN
ONCE_REWRITE_TAC[TAUT `a ==> b <=> a ==> a ==> b`] THEN
MATCH_MP_TAC INDUCT_COPRIME THEN CONJ_TAC THENL
[ASM_MESON_TAC[];
MAP_EVERY X_GEN_TAC [`p:num`; `k:num`] THEN ASM_CASES_TAC `k = 0` THEN
ASM_REWRITE_TAC[LT_REFL; EXP] THEN ASM_MESON_TAC[]]);;
let INDUCT_COPRIME_ALT = prove
(`!P. P 0 /\
(!a b. 1 < a /\ 1 < b /\ coprime(a,b) /\ P a /\ P b ==> P(a * b)) /\
(!p k. prime p ==> P(p EXP k))
==> !n. P n`,
GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC(MESON[]
`(!n. 1 < n ==> P n) /\ (!n. ~(1 < n) ==> P n) ==> !n. P n`) THEN
CONJ_TAC THENL
[MATCH_MP_TAC INDUCT_COPRIME THEN ASM_REWRITE_TAC[];
REWRITE_TAC[ARITH_RULE `~(1 < n) <=> n = 0 \/ n = 1`] THEN
REPEAT STRIP_TAC THEN ASM_MESON_TAC[PRIME_2; EXP]]);;
(* ------------------------------------------------------------------------- *)
(* A conversion for divisibility. *)
(* ------------------------------------------------------------------------- *)
let DIVIDES_CONV =
let pth_0 = SPEC `b:num` DIVIDES_ZERO
and pth_1 = prove
(`~(a = 0) ==> (a divides b <=> (b MOD a = 0))`,
REWRITE_TAC[DIVIDES_MOD])
and a_tm = `a:num` and b_tm = `b:num` and zero_tm = `0`
and dest_divides = dest_binop `(divides)` in
fun tm ->
let a,b = dest_divides tm in
if a = zero_tm then
CONV_RULE (RAND_CONV NUM_EQ_CONV) (INST [b,b_tm] pth_0)
else
let th1 = INST [a,a_tm; b,b_tm] pth_1 in
let th2 = MP th1 (EQF_ELIM(NUM_EQ_CONV(rand(lhand(concl th1))))) in
CONV_RULE (RAND_CONV (LAND_CONV NUM_MOD_CONV THENC NUM_EQ_CONV)) th2;;
(* ------------------------------------------------------------------------- *)
(* A conversion for coprimality. *)
(* ------------------------------------------------------------------------- *)
let COPRIME_CONV =
let pth_yes_l = prove
(`(m * x = n * y + 1) ==> (coprime(m,n) <=> T)`,
MESON_TAC[coprime; DIVIDES_RMUL; DIVIDES_ADD_REVR; DIVIDES_ONE])
and pth_yes_r = prove
(`(m * x = n * y + 1) ==> (coprime(n,m) <=> T)`,
MESON_TAC[coprime; DIVIDES_RMUL; DIVIDES_ADD_REVR; DIVIDES_ONE])
and pth_no = prove
(`(m = x * d) /\ (n = y * d) /\ ~(d = 1) ==> (coprime(m,n) <=> F)`,
REWRITE_TAC[coprime; divides] THEN MESON_TAC[MULT_AC])
and pth_oo = prove
(`coprime(0,0) <=> F`,
MESON_TAC[coprime; DIVIDES_REFL; NUM_REDUCE_CONV `1 = 0`])
and m_tm = `m:num` and n_tm = `n:num`
and x_tm = `x:num` and y_tm = `y:num`
and d_tm = `d:num` and coprime_tm = `coprime` in
let rec bezout (m,n) =
if m =/ Int 0 then (Int 0,Int 1) else if n =/ Int 0 then (Int 1,Int 0)
else if m <=/ n then
let q = quo_num n m and r = mod_num n m in
let (x,y) = bezout(m,r) in
(x -/ q */ y,y)
else let (x,y) = bezout(n,m) in (y,x) in
fun tm ->
let pop,ptm = dest_comb tm in
if pop <> coprime_tm then failwith "COPRIME_CONV" else
let l,r = dest_pair ptm in
let m = dest_numeral l and n = dest_numeral r in
if m =/ Int 0 && n =/ Int 0 then pth_oo else
let (x,y) = bezout(m,n) in
let d = x */ m +/ y */ n in
let th =
if d =/ Int 1 then
if x >/ Int 0 then
INST [l,m_tm; r,n_tm; mk_numeral x,x_tm;
mk_numeral(minus_num y),y_tm] pth_yes_l
else
INST [r,m_tm; l,n_tm; mk_numeral(minus_num x),y_tm;
mk_numeral y,x_tm] pth_yes_r
else
INST [l,m_tm; r,n_tm; mk_numeral d,d_tm;
mk_numeral(m // d),x_tm; mk_numeral(n // d),y_tm] pth_no in
MP th (EQT_ELIM(NUM_REDUCE_CONV(lhand(concl th))));;
(* ------------------------------------------------------------------------- *)
(* More general (slightly less efficiently coded) GCD_CONV, and LCM_CONV. *)
(* ------------------------------------------------------------------------- *)
let GCD_CONV =
let pth0 = prove(`gcd(0,0) = 0`,REWRITE_TAC[GCD_0]) in
let pth1 = prove
(`!m n x y d m' n'.
(m * x = n * y + d) /\ (m = m' * d) /\ (n = n' * d) ==> (gcd(m,n) = d)`,
REPEAT GEN_TAC THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN
CONV_TAC(RAND_CONV SYM_CONV) THEN ASM_REWRITE_TAC[GSYM GCD_UNIQUE] THEN
ASM_MESON_TAC[DIVIDES_LMUL; DIVIDES_RMUL;
DIVIDES_ADD_REVR; DIVIDES_REFL]) in
let pth2 = prove
(`!m n x y d m' n'.
(n * y = m * x + d) /\ (m = m' * d) /\ (n = n' * d) ==> (gcd(m,n) = d)`,
MESON_TAC[pth1; GCD_SYM]) in
let gcd_tm = `gcd` in
let rec bezout (m,n) =
if m =/ Int 0 then (Int 0,Int 1) else if n =/ Int 0 then (Int 1,Int 0)
else if m <=/ n then
let q = quo_num n m and r = mod_num n m in
let (x,y) = bezout(m,r) in
(x -/ q */ y,y)
else let (x,y) = bezout(n,m) in (y,x) in
fun tm -> let gt,lr = dest_comb tm in
if gt <> gcd_tm then failwith "GCD_CONV" else
let mtm,ntm = dest_pair lr in
let m = dest_numeral mtm and n = dest_numeral ntm in
if m =/ Int 0 && n =/ Int 0 then pth0 else
let x0,y0 = bezout(m,n) in
let x = abs_num x0 and y = abs_num y0 in
let xtm = mk_numeral x and ytm = mk_numeral y in
let d = abs_num(x */ m -/ y */ n) in
let dtm = mk_numeral d in
let m' = m // d and n' = n // d in
let mtm' = mk_numeral m' and ntm' = mk_numeral n' in
let th = SPECL [mtm;ntm;xtm;ytm;dtm;mtm';ntm']
(if m */ x =/ n */ y +/ d then pth1 else pth2) in
MP th (EQT_ELIM(NUM_REDUCE_CONV(lhand(concl th))));;
let LCM_CONV =
GEN_REWRITE_CONV I [lcm] THENC
RATOR_CONV(LAND_CONV(LAND_CONV NUM_MULT_CONV THENC NUM_EQ_CONV)) THENC
(GEN_REWRITE_CONV I [CONJUNCT1(SPEC_ALL COND_CLAUSES)] ORELSEC
(GEN_REWRITE_CONV I [CONJUNCT2(SPEC_ALL COND_CLAUSES)] THENC
COMB2_CONV (RAND_CONV NUM_MULT_CONV) GCD_CONV THENC NUM_DIV_CONV));;
|