Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 10,954 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
(* ========================================================================= *)
(* More definitions and theorems and tactics about lists. *)
(* *)
(* Author: Marco Maggesi *)
(* University of Florence, Italy *)
(* http://www.math.unifi.it/~maggesi/ *)
(* *)
(* (c) Copyright, Marco Maggesi, 2005-2007 *)
(* ========================================================================= *)
parse_as_infix ("::",(23,"right"));;
override_interface("::",`CONS`);;
(* ------------------------------------------------------------------------- *)
(* Some handy tactics. *)
(* ------------------------------------------------------------------------- *)
let ASSERT_TAC tm = SUBGOAL_THEN tm ASSUME_TAC;;
let SUFFICE_TAC thl tm =
SUBGOAL_THEN tm (fun th -> MESON_TAC (th :: thl));;
let LIST_CASES_TAC =
let th = prove (`!P. P [] /\ (!h t. P (h :: t)) ==> !l. P l`,
GEN_TAC THEN STRIP_TAC THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC [])
in
MATCH_MP_TAC th THEN CONJ_TAC THENL
[ALL_TAC; GEN_TAC THEN GEN_TAC];;
(* ------------------------------------------------------------------------- *)
(* Occasionally useful stuff. *)
(* ------------------------------------------------------------------------- *)
let NULL_EQ_NIL = prove
(`!l. NULL l <=> l = []`,
LIST_CASES_TAC THEN REWRITE_TAC [NULL; NOT_CONS_NIL]);;
let NULL_LENGTH = prove
(`!l. NULL l <=> LENGTH l = 0`,
LIST_CASES_TAC THEN REWRITE_TAC [NULL; LENGTH; NOT_SUC]);;
let LENGTH_FILTER_LE = prove
(`!f l:A list. LENGTH (FILTER f l) <= LENGTH l`,
GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC [FILTER; LENGTH; LE_0] THEN
COND_CASES_TAC THEN
ASM_SIMP_TAC [LENGTH; LE_SUC; ARITH_RULE `n<=m ==> n<= SUC m`]);;
(* ------------------------------------------------------------------------- *)
(* Well-founded induction on lists. *)
(* ------------------------------------------------------------------------- *)
let list_WF = prove
(`!P. (!l. (!l'. LENGTH l' < LENGTH l ==> P l') ==> P l)
==> (!l:A list. P l)`,
MP_TAC (ISPEC `LENGTH:A list->num` WF_MEASURE) THEN
REWRITE_TAC [WF_IND; MEASURE]);;
(* ------------------------------------------------------------------------- *)
(* Delete one element from a list. *)
(* ------------------------------------------------------------------------- *)
let DELETE1 = define
`(!x. DELETE1 x [] = []) /\
(!x h t. DELETE1 x (h :: t) = if x = h then t
else h :: DELETE1 x t)`;;
let DELETE1_ID = prove
(`!x l. ~MEM x l ==> DELETE1 x l = l`,
GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC [MEM; DELETE1] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC [NOT_CONS_NIL; CONS_11]);;
let DELETE1_APPEND = prove
(`!x l1 l2. DELETE1 x (APPEND l1 l2) =
if MEM x l1 then APPEND (DELETE1 x l1) l2
else APPEND l1 (DELETE1 x l2)`,
GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC [APPEND; DELETE1; MEM] THEN
GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[MEM; APPEND] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[]);;
let FILTER_DELETE1 = prove
(`!P x l. FILTER P (DELETE1 x l) =
if P x then DELETE1 x (FILTER P l) else FILTER P l`,
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN
REPEAT (REWRITE_TAC [DELETE1; FILTER] THEN COND_CASES_TAC) THEN
ASM_MESON_TAC []);;
let LENGTH_DELETE1 = prove
(`!l x:A. LENGTH (DELETE1 x l) =
if MEM x l then PRE (LENGTH l) else LENGTH l`,
LIST_INDUCT_TAC THEN REWRITE_TAC [MEM; LENGTH; DELETE1] THEN GEN_TAC THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[PRE; LENGTH] THEN COND_CASES_TAC THEN
REWRITE_TAC [ARITH_RULE `SUC (PRE n)=n <=> ~(n=0)`; LENGTH_EQ_NIL] THEN
ASM_MESON_TAC [MEM]);;
let MEM_DELETE1_MEM_IMP = prove
(`!h t x. MEM x (DELETE1 h t) ==> MEM x t`,
GEN_TAC THEN LIST_INDUCT_TAC THEN GEN_TAC THEN
REWRITE_TAC [MEM; DELETE1] THEN COND_CASES_TAC THEN
REWRITE_TAC [MEM] THEN STRIP_TAC THEN ASM_SIMP_TAC []);;
let NOT_MEM_DELETE1 = prove
(`!t h x. ~MEM x t ==> ~MEM x (DELETE1 h t)`,
LIST_INDUCT_TAC THEN GEN_TAC THEN GEN_TAC THEN
REWRITE_TAC [MEM; DELETE1] THEN
COND_CASES_TAC THEN REWRITE_TAC [MEM; DE_MORGAN_THM] THEN
STRIP_TAC THEN ASM_SIMP_TAC []);;
let MEM_DELETE1 = prove
(`!l x y:A. MEM x l /\ ~(x = y) ==> MEM x (DELETE1 y l)`,
LIST_INDUCT_TAC THEN REWRITE_TAC [MEM; DELETE1] THEN
GEN_TAC THEN GEN_TAC THEN COND_CASES_TAC THENL
[EXPAND_TAC "h" THEN MESON_TAC [];
REWRITE_TAC [MEM] THEN ASM_MESON_TAC []]);;
let ALL_DELETE1_ALL_IMP = prove
(`!P x l. P x /\ ALL P (DELETE1 x l) ==> ALL P l`,
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN
REWRITE_TAC [ALL; DELETE1] THEN
COND_CASES_TAC THEN ASM_SIMP_TAC [ALL]);;
(* ------------------------------------------------------------------------- *)
(* Counting occurrences of a given element in a list. *)
(* ------------------------------------------------------------------------- *)
let COUNT = define
`(!x. COUNT x [] = 0) /\
(!x h t. COUNT x (CONS h t) = if x=h then SUC (COUNT x t) else COUNT x t)`;;
let COUNT_LENGTH_FILTER = prove
(`!x l. COUNT x l = LENGTH (FILTER ((=) x) l)`,
GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC [COUNT; FILTER; LENGTH] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC [LENGTH]);;
let COUNT_FILTER = prove
(`!P x l. COUNT x (FILTER P l) =
if P x then COUNT x l else 0`,
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN
REPEAT (ASM_REWRITE_TAC [COUNT; FILTER] THEN COND_CASES_TAC) THEN
ASM_MESON_TAC []);;
let COUNT_APPEND = prove
(`!x l1 l2. COUNT x (APPEND l1 l2) = COUNT x l1 + COUNT x l2`,
REWRITE_TAC [COUNT_LENGTH_FILTER; LENGTH_APPEND; FILTER_APPEND]);;
let COUNT_LE_LENGTH = prove
(`!x l. COUNT x l <= LENGTH l`,
GEN_TAC THEN LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC [COUNT; LENGTH; LE_REFL] THEN COND_CASES_TAC THEN
ASM_SIMP_TAC [LE_SUC; ARITH_RULE `n<=m ==> n <= SUC m`]);;
let COUNT_ZERO = prove
(`!x l. COUNT x l = 0 <=> ~MEM x l`,
GEN_TAC THEN REWRITE_TAC [COUNT_LENGTH_FILTER; LENGTH_EQ_NIL] THEN
LIST_INDUCT_TAC THEN REWRITE_TAC [FILTER; MEM] THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC [NOT_CONS_NIL]);;
let MEM_COUNT = prove
(`!x l. MEM x l <=> ~(COUNT x l = 0)`,
MESON_TAC [COUNT_ZERO]);;
let COUNT_DELETE1 = prove
(`!y x l. COUNT y (DELETE1 (x:A) l) =
if y=x /\ MEM x l then PRE (COUNT y l) else COUNT y l`,
REWRITE_TAC [COUNT_LENGTH_FILTER; FILTER_DELETE1] THEN REPEAT GEN_TAC THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[MEM_FILTER; LENGTH_DELETE1]);;
(* ------------------------------------------------------------------------- *)
(* Duplicates in a list. *)
(* ------------------------------------------------------------------------- *)
let LIST_UNIQ_RULES, LIST_UNIQ_INDUCT, LIST_UNIQ_CASES =
new_inductive_definition
`LIST_UNIQ [] /\
(!x xs. LIST_UNIQ xs /\ ~MEM x xs ==> LIST_UNIQ (x :: xs))`;;
let LIST_UNIQ = prove
(`LIST_UNIQ [] /\
(!x. LIST_UNIQ [x]) /\
(!x xs. LIST_UNIQ (x :: xs) <=> ~MEM x xs /\ LIST_UNIQ xs)`,
SIMP_TAC [LIST_UNIQ_RULES; MEM] THEN
REPEAT GEN_TAC THEN EQ_TAC THENL
[ONCE_REWRITE_TAC [ISPEC `h :: t` LIST_UNIQ_CASES] THEN
REWRITE_TAC [CONS_11; NOT_CONS_NIL] THEN
DISCH_THEN (CHOOSE_THEN CHOOSE_TAC) THEN ASM_REWRITE_TAC [];
SIMP_TAC [LIST_UNIQ_RULES]]);;
let LIST_UNIQ_EQ_PAIRWISE_DISTINCT = prove
(`LIST_UNIQ = PAIRWISE (\x y. ~(x = y))`,
REWRITE_TAC[FUN_EQ_THM] THEN
MATCH_MP_TAC list_INDUCT THEN ASM_REWRITE_TAC[LIST_UNIQ; PAIRWISE] THEN
SIMP_TAC[GSYM ALL_MEM] THEN MESON_TAC[]);;
(* !!! forse e' meglio con IMP? *)
(* Magari LIST_UNIQ_COUNT + COUNT_LIST_UNIQ *)
let LIST_UNIQ_COUNT = prove
(`!l. LIST_UNIQ l <=> (!x:A. COUNT x l = if MEM x l then 1 else 0)`,
let IFF_EXPAND = MESON [] `(p <=> q) <=> (p ==> q) /\ (q ==> p)` in
REWRITE_TAC [IFF_EXPAND; FORALL_AND_THM] THEN CONJ_TAC THENL
[MATCH_MP_TAC LIST_UNIQ_INDUCT THEN REWRITE_TAC [COUNT; MEM] THEN
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[ONE];
LIST_INDUCT_TAC THEN REWRITE_TAC [LIST_UNIQ; COUNT; MEM] THEN
DISCH_TAC THEN FIRST_ASSUM (MP_TAC o SPEC `h:A`) THEN
SIMP_TAC [MEM_COUNT; ONE; SUC_INJ] THEN DISCH_TAC THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN GEN_TAC THEN
FIRST_ASSUM (MP_TAC o SPEC `x:A`) THEN
REWRITE_TAC [MEM_COUNT] THEN ARITH_TAC]);;
let LIST_UNIQ_DELETE1 = prove
(`!l x. LIST_UNIQ l ==> LIST_UNIQ (DELETE1 x l)`,
LIST_INDUCT_TAC THEN GEN_TAC THEN
REWRITE_TAC [LIST_UNIQ; DELETE1] THEN STRIP_TAC THEN
COND_CASES_TAC THEN ASM_SIMP_TAC [LIST_UNIQ; NOT_MEM_DELETE1]);;
let DELETE1_LIST_UNIQ = prove
(`!l x:A. ~MEM x (DELETE1 x l) /\ LIST_UNIQ (DELETE1 x l)
==> LIST_UNIQ l`,
LIST_INDUCT_TAC THEN REWRITE_TAC [LIST_UNIQ; DELETE1; MEM] THEN
GEN_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC [MEM; LIST_UNIQ] THEN STRIP_TAC THEN CONJ_TAC THENL
[ASM_MESON_TAC [MEM_DELETE1];
FIRST_X_ASSUM MATCH_MP_TAC THEN EXISTS_TAC `x:A` THEN
ASM_REWRITE_TAC []]);;
let LIST_UNIQ_APPEND = prove
(`!l m. LIST_UNIQ (APPEND l m) <=>
LIST_UNIQ l /\ LIST_UNIQ m /\
!x. ~(MEM x l /\ MEM x m)`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[APPEND; LIST_UNIQ; MEM; MEM_APPEND] THEN
MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Lists and finite sets. *)
(* ------------------------------------------------------------------------- *)
let CARD_LENGTH = prove
(`!l:A list. CARD (set_of_list l) <= LENGTH l`,
LIST_INDUCT_TAC THEN
SIMP_TAC [set_of_list; CARD_CLAUSES; LENGTH;
FINITE_SET_OF_LIST; ARITH] THEN
COND_CASES_TAC THENL
[MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `LENGTH (t:A list)`
THEN ASM_REWRITE_TAC [] THEN ARITH_TAC;
ASM_REWRITE_TAC [LE_SUC]]);;
let LIST_UNIQ_CARD_LENGTH = prove
(`!l:A list. LIST_UNIQ l <=> CARD (set_of_list l) = LENGTH l`,
LIST_INDUCT_TAC THEN SIMP_TAC [LIST_UNIQ; set_of_list; FINITE_SET_OF_LIST;
LENGTH; CARD_CLAUSES; IN_SET_OF_LIST] THEN
FIRST_X_ASSUM SUBST1_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[SUC_INJ] THEN MP_TAC (SPEC `t:A list` CARD_LENGTH) THEN
ARITH_TAC);;
let LIST_UNIQ_LIST_OF_SET = prove
(`!s. FINITE s ==> LIST_UNIQ(list_of_set s)`,
SIMP_TAC[LIST_UNIQ_CARD_LENGTH; SET_OF_LIST_OF_SET; LENGTH_LIST_OF_SET]);;
|