Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 10,954 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
(* ========================================================================= *)
(*  More definitions and theorems and tactics about lists.                   *)
(*                                                                           *)
(*  Author: Marco Maggesi                                                    *)
(*          University of Florence, Italy                                    *)
(*          http://www.math.unifi.it/~maggesi/                               *)
(*                                                                           *)
(*          (c) Copyright, Marco Maggesi, 2005-2007                          *)
(* ========================================================================= *)

parse_as_infix ("::",(23,"right"));;
override_interface("::",`CONS`);;

(* ------------------------------------------------------------------------- *)
(*  Some handy tactics.                                                      *)
(* ------------------------------------------------------------------------- *)

let ASSERT_TAC tm = SUBGOAL_THEN tm ASSUME_TAC;;

let SUFFICE_TAC thl tm =
  SUBGOAL_THEN tm (fun th -> MESON_TAC (th :: thl));;

let LIST_CASES_TAC =
  let th = prove (`!P. P [] /\ (!h t. P (h :: t)) ==> !l. P l`,
                  GEN_TAC THEN STRIP_TAC THEN
                  LIST_INDUCT_TAC THEN ASM_REWRITE_TAC [])
  in
  MATCH_MP_TAC th THEN CONJ_TAC THENL
  [ALL_TAC; GEN_TAC THEN GEN_TAC];;

(* ------------------------------------------------------------------------- *)
(*  Occasionally useful stuff.                                               *)
(* ------------------------------------------------------------------------- *)

let NULL_EQ_NIL = prove
  (`!l. NULL l <=> l = []`,
   LIST_CASES_TAC THEN REWRITE_TAC [NULL; NOT_CONS_NIL]);;

let NULL_LENGTH = prove
  (`!l. NULL l <=> LENGTH l = 0`,
   LIST_CASES_TAC THEN REWRITE_TAC [NULL; LENGTH; NOT_SUC]);;

let LENGTH_FILTER_LE = prove
  (`!f l:A list. LENGTH (FILTER f l) <= LENGTH l`,
   GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC [FILTER; LENGTH; LE_0] THEN
   COND_CASES_TAC THEN
   ASM_SIMP_TAC [LENGTH; LE_SUC; ARITH_RULE `n<=m ==> n<= SUC m`]);;

(* ------------------------------------------------------------------------- *)
(*  Well-founded induction on lists.                                         *)
(* ------------------------------------------------------------------------- *)

let list_WF = prove
  (`!P. (!l. (!l'. LENGTH l' < LENGTH l ==> P l') ==> P l)
        ==> (!l:A list. P l)`,
   MP_TAC (ISPEC `LENGTH:A list->num` WF_MEASURE) THEN
   REWRITE_TAC [WF_IND; MEASURE]);;

(* ------------------------------------------------------------------------- *)
(*  Delete one element from a list.                                          *)
(* ------------------------------------------------------------------------- *)

let DELETE1 = define
  `(!x. DELETE1 x [] = []) /\
   (!x h t. DELETE1 x (h :: t) = if x = h then t
                                          else h :: DELETE1 x t)`;;

let DELETE1_ID = prove
  (`!x l. ~MEM x l ==> DELETE1 x l = l`,
   GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC [MEM; DELETE1] THEN
   COND_CASES_TAC THEN ASM_REWRITE_TAC [NOT_CONS_NIL; CONS_11]);;

let DELETE1_APPEND = prove
  (`!x l1 l2. DELETE1 x (APPEND l1 l2) =
              if MEM x l1 then APPEND (DELETE1 x l1) l2
                          else APPEND l1 (DELETE1 x l2)`,
   GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC [APPEND; DELETE1; MEM] THEN
   GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[MEM; APPEND] THEN
   COND_CASES_TAC THEN ASM_REWRITE_TAC[]);;

let FILTER_DELETE1 = prove
  (`!P x l. FILTER P (DELETE1 x l) =
            if P x then DELETE1 x (FILTER P l) else FILTER P l`,
   GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN
   REPEAT (REWRITE_TAC [DELETE1; FILTER] THEN COND_CASES_TAC) THEN
   ASM_MESON_TAC []);;

let LENGTH_DELETE1 = prove
  (`!l x:A. LENGTH (DELETE1 x l) =
            if MEM x l then PRE (LENGTH l) else LENGTH l`,
   LIST_INDUCT_TAC THEN REWRITE_TAC [MEM; LENGTH; DELETE1] THEN GEN_TAC THEN
   COND_CASES_TAC THEN ASM_REWRITE_TAC[PRE; LENGTH] THEN COND_CASES_TAC THEN
   REWRITE_TAC [ARITH_RULE `SUC (PRE n)=n <=> ~(n=0)`; LENGTH_EQ_NIL] THEN
   ASM_MESON_TAC [MEM]);;

let MEM_DELETE1_MEM_IMP = prove
  (`!h t x. MEM x (DELETE1 h t) ==> MEM x t`,
   GEN_TAC THEN LIST_INDUCT_TAC THEN GEN_TAC THEN
   REWRITE_TAC [MEM; DELETE1] THEN COND_CASES_TAC THEN
   REWRITE_TAC [MEM] THEN STRIP_TAC THEN ASM_SIMP_TAC []);;

let NOT_MEM_DELETE1 = prove
  (`!t h x. ~MEM x t ==> ~MEM x (DELETE1 h t)`,
   LIST_INDUCT_TAC THEN GEN_TAC THEN GEN_TAC THEN
   REWRITE_TAC [MEM; DELETE1] THEN
   COND_CASES_TAC THEN REWRITE_TAC [MEM; DE_MORGAN_THM] THEN
   STRIP_TAC THEN ASM_SIMP_TAC []);;

let MEM_DELETE1 = prove
  (`!l x y:A. MEM x l /\ ~(x = y) ==> MEM x (DELETE1 y l)`,
   LIST_INDUCT_TAC THEN REWRITE_TAC [MEM; DELETE1] THEN
   GEN_TAC THEN GEN_TAC THEN COND_CASES_TAC THENL
   [EXPAND_TAC "h" THEN MESON_TAC [];
    REWRITE_TAC [MEM] THEN ASM_MESON_TAC []]);;

let ALL_DELETE1_ALL_IMP = prove
  (`!P x l. P x /\ ALL P (DELETE1 x l) ==> ALL P l`,
   GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN
   REWRITE_TAC [ALL; DELETE1] THEN
   COND_CASES_TAC THEN ASM_SIMP_TAC [ALL]);;

(* ------------------------------------------------------------------------- *)
(*  Counting occurrences of a given element in a list.                       *)
(* ------------------------------------------------------------------------- *)

let COUNT = define
  `(!x. COUNT x [] = 0) /\
   (!x h t. COUNT x (CONS h t) = if x=h then SUC (COUNT x t) else COUNT x t)`;;

let COUNT_LENGTH_FILTER = prove
  (`!x l. COUNT x l = LENGTH (FILTER ((=) x) l)`,
   GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC [COUNT; FILTER; LENGTH] THEN
   COND_CASES_TAC THEN ASM_REWRITE_TAC [LENGTH]);;

let COUNT_FILTER = prove
  (`!P x l. COUNT x (FILTER P l) =
            if P x then COUNT x l else 0`,
   GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN
   REPEAT (ASM_REWRITE_TAC [COUNT; FILTER] THEN COND_CASES_TAC) THEN
   ASM_MESON_TAC []);;

let COUNT_APPEND = prove
  (`!x l1 l2. COUNT x (APPEND l1 l2) = COUNT x l1 + COUNT x l2`,
    REWRITE_TAC [COUNT_LENGTH_FILTER; LENGTH_APPEND; FILTER_APPEND]);;

let COUNT_LE_LENGTH = prove
  (`!x l. COUNT x l <= LENGTH l`,
   GEN_TAC THEN LIST_INDUCT_TAC THEN
   ASM_REWRITE_TAC [COUNT; LENGTH; LE_REFL] THEN COND_CASES_TAC THEN
   ASM_SIMP_TAC [LE_SUC; ARITH_RULE `n<=m ==> n <= SUC m`]);;

let COUNT_ZERO = prove
  (`!x l. COUNT x l = 0 <=> ~MEM x l`,
   GEN_TAC THEN REWRITE_TAC [COUNT_LENGTH_FILTER; LENGTH_EQ_NIL] THEN
   LIST_INDUCT_TAC THEN REWRITE_TAC [FILTER; MEM] THEN COND_CASES_TAC THEN
   ASM_REWRITE_TAC [NOT_CONS_NIL]);;

let MEM_COUNT = prove
  (`!x l. MEM x l <=> ~(COUNT x l = 0)`,
   MESON_TAC [COUNT_ZERO]);;

let COUNT_DELETE1 = prove
  (`!y x l. COUNT y (DELETE1 (x:A) l) =
            if y=x /\ MEM x l then PRE (COUNT y l) else COUNT y l`,
   REWRITE_TAC [COUNT_LENGTH_FILTER; FILTER_DELETE1] THEN REPEAT GEN_TAC THEN
   COND_CASES_TAC THEN ASM_REWRITE_TAC[MEM_FILTER; LENGTH_DELETE1]);;

(* ------------------------------------------------------------------------- *)
(*  Duplicates in a list.                                                    *)
(* ------------------------------------------------------------------------- *)

let LIST_UNIQ_RULES, LIST_UNIQ_INDUCT, LIST_UNIQ_CASES =
  new_inductive_definition
  `LIST_UNIQ [] /\
   (!x xs. LIST_UNIQ xs /\ ~MEM x xs ==> LIST_UNIQ (x :: xs))`;;

let LIST_UNIQ = prove
  (`LIST_UNIQ [] /\
   (!x. LIST_UNIQ [x]) /\
   (!x xs. LIST_UNIQ (x :: xs) <=> ~MEM x xs /\ LIST_UNIQ xs)`,
   SIMP_TAC [LIST_UNIQ_RULES; MEM] THEN
   REPEAT GEN_TAC THEN EQ_TAC THENL
   [ONCE_REWRITE_TAC [ISPEC `h :: t` LIST_UNIQ_CASES] THEN
    REWRITE_TAC [CONS_11; NOT_CONS_NIL] THEN
    DISCH_THEN (CHOOSE_THEN CHOOSE_TAC) THEN ASM_REWRITE_TAC [];
    SIMP_TAC [LIST_UNIQ_RULES]]);;

let LIST_UNIQ_EQ_PAIRWISE_DISTINCT = prove
 (`LIST_UNIQ = PAIRWISE (\x y. ~(x = y))`,
  REWRITE_TAC[FUN_EQ_THM] THEN
  MATCH_MP_TAC list_INDUCT THEN ASM_REWRITE_TAC[LIST_UNIQ; PAIRWISE] THEN
  SIMP_TAC[GSYM ALL_MEM] THEN MESON_TAC[]);;

(* !!! forse e' meglio con IMP? *)
(* Magari LIST_UNIQ_COUNT + COUNT_LIST_UNIQ *)
let LIST_UNIQ_COUNT = prove
  (`!l. LIST_UNIQ l <=> (!x:A. COUNT x l = if MEM x l then 1 else 0)`,
   let IFF_EXPAND = MESON [] `(p <=> q) <=> (p ==> q) /\ (q ==> p)` in
   REWRITE_TAC [IFF_EXPAND; FORALL_AND_THM] THEN CONJ_TAC THENL
   [MATCH_MP_TAC LIST_UNIQ_INDUCT THEN REWRITE_TAC [COUNT; MEM] THEN
    REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[ONE];
    LIST_INDUCT_TAC THEN REWRITE_TAC [LIST_UNIQ; COUNT; MEM] THEN
    DISCH_TAC THEN FIRST_ASSUM (MP_TAC o SPEC `h:A`) THEN
    SIMP_TAC [MEM_COUNT; ONE; SUC_INJ] THEN DISCH_TAC THEN
    FIRST_X_ASSUM MATCH_MP_TAC THEN GEN_TAC THEN
    FIRST_ASSUM (MP_TAC o SPEC `x:A`) THEN
    REWRITE_TAC [MEM_COUNT] THEN ARITH_TAC]);;

let LIST_UNIQ_DELETE1 = prove
  (`!l x. LIST_UNIQ l ==> LIST_UNIQ (DELETE1 x l)`,
   LIST_INDUCT_TAC THEN GEN_TAC THEN
   REWRITE_TAC [LIST_UNIQ; DELETE1] THEN STRIP_TAC THEN
   COND_CASES_TAC THEN ASM_SIMP_TAC [LIST_UNIQ; NOT_MEM_DELETE1]);;

let DELETE1_LIST_UNIQ = prove
  (`!l x:A. ~MEM x (DELETE1 x l) /\ LIST_UNIQ (DELETE1 x l)
            ==> LIST_UNIQ l`,
   LIST_INDUCT_TAC THEN REWRITE_TAC [LIST_UNIQ; DELETE1; MEM] THEN
   GEN_TAC THEN COND_CASES_TAC THEN
   ASM_REWRITE_TAC [MEM; LIST_UNIQ] THEN STRIP_TAC THEN CONJ_TAC THENL
   [ASM_MESON_TAC [MEM_DELETE1];
    FIRST_X_ASSUM MATCH_MP_TAC THEN EXISTS_TAC `x:A` THEN
    ASM_REWRITE_TAC []]);;

let LIST_UNIQ_APPEND = prove
 (`!l m. LIST_UNIQ (APPEND l m) <=>
         LIST_UNIQ l /\ LIST_UNIQ m /\
         !x. ~(MEM x l /\ MEM x m)`,
  LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[APPEND; LIST_UNIQ; MEM; MEM_APPEND] THEN
  MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(*  Lists and finite sets.                                                   *)
(* ------------------------------------------------------------------------- *)

let CARD_LENGTH = prove
  (`!l:A list. CARD (set_of_list l) <= LENGTH l`,
   LIST_INDUCT_TAC THEN
   SIMP_TAC [set_of_list; CARD_CLAUSES; LENGTH;
             FINITE_SET_OF_LIST; ARITH] THEN
   COND_CASES_TAC THENL
   [MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `LENGTH (t:A list)`
    THEN ASM_REWRITE_TAC [] THEN ARITH_TAC;
    ASM_REWRITE_TAC [LE_SUC]]);;

let LIST_UNIQ_CARD_LENGTH = prove
  (`!l:A list. LIST_UNIQ l <=> CARD (set_of_list l) = LENGTH l`,
   LIST_INDUCT_TAC THEN SIMP_TAC [LIST_UNIQ; set_of_list; FINITE_SET_OF_LIST;
                                  LENGTH; CARD_CLAUSES; IN_SET_OF_LIST] THEN
   FIRST_X_ASSUM SUBST1_TAC THEN COND_CASES_TAC THEN
   ASM_REWRITE_TAC[SUC_INJ] THEN MP_TAC (SPEC `t:A list` CARD_LENGTH) THEN
   ARITH_TAC);;

let LIST_UNIQ_LIST_OF_SET = prove
 (`!s. FINITE s ==> LIST_UNIQ(list_of_set s)`,
  SIMP_TAC[LIST_UNIQ_CARD_LENGTH; SET_OF_LIST_OF_SET; LENGTH_LIST_OF_SET]);;