Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 14,141 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
(* ======== Examples/mizar.ml ============================================== *)
hide_constant "<=";;
horizon := 0;;
let KNASTER_TARSKI = thm `;
let (<=) be A->A->bool;
thus !f. (!x y. x <= y /\ y <= x ==> (x = y)) /\
(!x y z. x <= y /\ y <= z ==> x <= z) /\
(!x y. x <= y ==> f x <= f y) /\
(!X. ?s. (!x. x IN X ==> s <= x) /\
(!s'. (!x. x IN X ==> s' <= x) ==> s' <= s))
==> ?x. f x = x
proof
let f be A->A;
exec DISCH_THEN (LABEL_TAC "L");
!x y. x <= y /\ y <= x ==> (x = y) [antisymmetry] by L;
!x y z. x <= y /\ y <= z ==> x <= z [transitivity] by L;
!x y. x <= y ==> f x <= f y [monotonicity] by L;
!X. ?s:A. (!x. x IN X ==> s <= x) /\
(!s'. (!x. x IN X ==> s' <= x) ==> s' <= s) [least_upper_bound]
by L;
set Y = {b | f b <= b} [Y_def];
!b. b IN Y <=> f b <= b [Y_thm] by ALL_TAC,Y_def,IN_ELIM_THM,BETA_THM;
consider a such that
(!x. x IN Y ==> a <= x) /\
(!a'. (!x. x IN Y ==> a' <= x) ==> a' <= a) [lub] by least_upper_bound;
take a;
!b. b IN Y ==> f a <= b
proof
let b be A;
assume b IN Y [b_in_Y];
f b <= b [L0] by -,Y_thm;
a <= b by b_in_Y,lub;
f a <= f b by -,monotonicity;
thus f a <= b by -,L0,transitivity;
end;
f(a) <= a [Part1] by -,lub;
f(f(a)) <= f(a) by -,monotonicity;
f(a) IN Y by -,Y_thm;
a <= f(a) by -,lub;
qed by -,Part1,antisymmetry`;;
unhide_constant "<=";;
(* ======== Mizarlight/duality.ml ========================================== *)
parse_as_infix("ON",(11,"right"));;
hide_constant "ON";;
let projective = new_definition
`projective((ON):Point->Line->bool) <=>
(!p p'. ~(p = p') ==> ?!l. p ON l /\ p' ON l) /\
(!l l'. ?p. p ON l /\ p ON l') /\
(?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
~(?l. p ON l /\ p' ON l /\ p'' ON l)) /\
(!l. ?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
p ON l /\ p' ON l /\ p'' ON l)`;;
horizon := 1;;
let LEMMA_1 = thm `;
!(ON):Point->Line->bool. projective(ON) ==> !p. ?l. p ON l
proof
let (ON) be Point->Line->bool;
assume projective(ON) [0];
!p p'. ~(p = p') ==> ?!l. p ON l /\ p' ON l [1] by 0,projective;
?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
~(?l. p ON l /\ p' ON l /\ p'' ON l) [3] by 0,projective;
let p be Point;
consider q q' such that ~(q = q':Point);
~(p = q) \/ ~(p = q');
consider l such that p ON l by 1;
take l;
qed`;;
let LEMMA_2 = thm `;
!(ON):Point->Line->bool. projective(ON)
==> !p1 p2 q l l1 l2.
p1 ON l /\ p2 ON l /\ p1 ON l1 /\ p2 ON l2 /\ q ON l2 /\
~(q ON l) /\ ~(p1 = p2) ==> ~(l1 = l2)
proof
let (ON) be Point->Line->bool;
assume projective(ON) [0];
!p p'. ~(p = p') ==> ?!l. p ON l /\ p' ON l [1] by 0,projective;
// here qed already works
let p1 p2 q be Point;
let l l1 l2 be Line;
assume p1 ON l [5];
assume p2 ON l [6];
assume p1 ON l1 [7];
assume p2 ON l2 [9];
assume q ON l2 [10];
assume ~(q ON l) [11];
assume ~(p1 = p2) [12];
assume l1 = l2 [13];
p1 ON l2 by 7;
l = l2 by 1,5,6,9,12;
thus F by 10,11;
end`;;
let PROJECTIVE_DUALITY = thm `;
!(ON):Point->Line->bool. projective(ON) ==> projective (\l p. p ON l)
proof
let (ON) be Point->Line->bool;
assume projective(ON) [0];
!p p'. ~(p = p') ==> ?!l. p ON l /\ p' ON l [1] by 0,projective;
!l l'. ?p. p ON l /\ p ON l' [2] by 0,projective;
?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
~(?l. p ON l /\ p' ON l /\ p'' ON l) [3] by 0,projective;
!l. ?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
p ON l /\ p' ON l /\ p'' ON l [4] by 0,projective;
// dual of axiom 1
!l1 l2. ~(l1 = l2) ==> ?!p. p ON l1 /\ p ON l2 [5]
proof
let l1 l2 be Line;
assume ~(l1 = l2) [6];
consider p such that p ON l1 /\ p ON l2 [7] by 2;
!p'. p' ON l1 /\ p' ON l2 ==> (p' = p)
proof
let p' be Point;
assume p' ON l1 /\ p' ON l2 [8];
assume ~(p' = p);
l1 = l2 by 1,7,8;
thus F by 6;
end;
qed by 7;
// dual of axiom 2
!p1 p2. ?l. p1 ON l /\ p2 ON l [9]
proof
let p1 p2 be Point;
cases;
suppose p1 = p2;
qed by 0,LEMMA_1;
suppose ~(p1 = p2);
qed by 1;
end;
// dual of axiom 3
?l1 l2 l3. ~(l1 = l2) /\ ~(l2 = l3) /\ ~(l1 = l3) /\
~(?p. p ON l1 /\ p ON l2 /\ p ON l3) [10]
proof
consider p1 p2 p3 such that
~(p1 = p2) /\ ~(p2 = p3) /\ ~(p1 = p3) /\
~(?l. p1 ON l /\ p2 ON l /\ p3 ON l) [11] by 3;
~(p1 = p3) by 11;
?!l1. p1 ON l1 /\ p3 ON l1 by 1; // ADDED STEP
consider l1 such that p1 ON l1 /\ p3 ON l1 /\
!l'. p1 ON l' /\ p3 ON l' ==> (l1 = l') [12];
~(p2 = p3) by 11;
?!l2. p2 ON l2 /\ p3 ON l2 by 1; // ADDED STEP
consider l2 such that p2 ON l2 /\ p3 ON l2 /\
!l'. p2 ON l' /\ p3 ON l' ==> (l2 = l') [13];
~(p1 = p2) by 11;
?!l3. p1 ON l3 /\ p2 ON l3 by 1; // ADDED STEP
consider l3 such that p1 ON l3 /\ p2 ON l3 /\
!l'. p1 ON l' /\ p2 ON l' ==> (l3 = l') [14];
take l1; take l2; take l3;
thus ~(l1 = l2) /\ ~(l2 = l3) /\ ~(l1 = l3) [15] by 11,12,13,14;
assume ?q. q ON l1 /\ q ON l2 /\ q ON l3;
consider q such that q ON l1 /\ q ON l2 /\ q ON l3;
(p1 = q) /\ (p2 = q) /\ (p3 = q) by 5,12,13,14,15;
thus F by 11;
end;
// dual of axiom 4
!p0. ?l0 L1 L2. ~(l0 = L1) /\ ~(L1 = L2) /\ ~(l0 = L2) /\
p0 ON l0 /\ p0 ON L1 /\ p0 ON L2
proof
let p0 be Point;
consider l0 such that p0 ON l0 [16] by 0,LEMMA_1;
consider p such that ~(p = p0) /\ p ON l0 [17] by 4;
consider q such that ~(q ON l0) [18] by 3;
consider l1 such that p ON l1 /\ q ON l1 [19] by 1,16;
consider r such that r ON l1 /\ ~(r = p) /\ ~(r = q) [20]
proof
consider r1 r2 r3 such that
~(r1 = r2) /\ ~(r2 = r3) /\ ~(r1 = r3) /\
r1 ON l1 /\ r2 ON l1 /\ r3 ON l1 [21] by 4;
~(r1 = p) /\ ~(r1 = q) \/
~(r2 = p) /\ ~(r2 = q) \/
~(r3 = p) /\ ~(r3 = q);
qed by 21;
~(p0 ON l1) [22]
proof
assume p0 ON l1;
l1 = l0 by 1,16,17,19;
qed by 18,19;
~(p0 = r) by 20;
consider L1 such that r ON L1 /\ p0 ON L1 [23] by 1;
consider L2 such that q ON L2 /\ p0 ON L2 [24] by 1,16,18;
take l0; take L1; take L2;
thus ~(l0 = L1) by 0,17,19,20,22,23,LEMMA_2;
thus ~(L1 = L2) by 0,19,20,22,23,24,LEMMA_2;
thus ~(l0 = L2) by 18,24;
thus p0 ON l0 /\ p0 ON L2 /\ p0 ON L1 by 16,24,23;
end;
qed by REWRITE_TAC,5,9,10,projective`;;
unhide_constant "ON";;
(* ======== Mizarlight/duality_holby.ml ==================================== *)
horizon := 1;;
let Line_INDUCT,Line_RECURSION = define_type
"fano_Line = Line_1 | Line_2 | Line_3 | Line_4 |
Line_5 | Line_6 | Line_7";;
let Point_INDUCT,Point_RECURSION = define_type
"fano_Point = Point_1 | Point_2 | Point_3 | Point_4 |
Point_5 | Point_6 | Point_7";;
let Point_DISTINCT = distinctness "fano_Point";;
let Line_DISTINCT = distinctness "fano_Line";;
let fano_incidence =
[1,1; 1,2; 1,3; 2,1; 2,4; 2,5; 3,1; 3,6; 3,7; 4,2; 4,4;
4,6; 5,2; 5,5; 5,7; 6,3; 6,4; 6,7; 7,3; 7,5; 7,6];;
let fano_point i = mk_const("Point_"^string_of_int i,[])
and fano_line i = mk_const("Line_"^string_of_int i,[]);;
let fano_clause (i,j) =
let p = `p:fano_Point` and l = `l:fano_Line` in
mk_conj(mk_eq(p,fano_point i),mk_eq(l,fano_line j));;
let ON = new_definition
(mk_eq(`((ON):fano_Point->fano_Line->bool) p l`,
list_mk_disj(map fano_clause fano_incidence)));;
let ON_CLAUSES = prove
(list_mk_conj(allpairs
(fun i j -> mk_eq(list_mk_comb(`(ON)`,[fano_point i; fano_line j]),
if mem (i,j) fano_incidence then `T` else `F`))
(1--7) (1--7)),
REWRITE_TAC[ON; Line_DISTINCT; Point_DISTINCT]);;
let FORALL_POINT = thm `;
!P. (!p. P p) <=> P Point_1 /\ P Point_2 /\ P Point_3 /\ P Point_4 /\
P Point_5 /\ P Point_6 /\ P Point_7
by Point_INDUCT`;;
let EXISTS_POINT = thm `;
!P. (?p. P p) <=> P Point_1 \/ P Point_2 \/ P Point_3 \/ P Point_4 \/
P Point_5 \/ P Point_6 \/ P Point_7
proof
let P be fano_Point->bool;
~(?p. P p) <=> ~(P Point_1 \/ P Point_2 \/ P Point_3 \/ P Point_4 \/
P Point_5 \/ P Point_6 \/ P Point_7)
by REWRITE_TAC,DE_MORGAN_THM,NOT_EXISTS_THM,FORALL_POINT;
qed`;;
let FORALL_LINE = thm `;
!P. (!p. P p) <=> P Line_1 /\ P Line_2 /\ P Line_3 /\ P Line_4 /\
P Line_5 /\ P Line_6 /\ P Line_7
by Line_INDUCT`;;
let EXISTS_LINE = thm `;
!P. (?p. P p) <=> P Line_1 \/ P Line_2 \/ P Line_3 \/ P Line_4 \/
P Line_5 \/ P Line_6 \/ P Line_7
proof
let P be fano_Line->bool;
~(?p. P p) <=> ~(P Line_1 \/ P Line_2 \/ P Line_3 \/ P Line_4 \/
P Line_5 \/ P Line_6 \/ P Line_7)
by REWRITE_TAC,DE_MORGAN_THM,NOT_EXISTS_THM,FORALL_LINE;
qed;`;;
let FANO_TAC =
GEN_REWRITE_TAC DEPTH_CONV
[FORALL_POINT; EXISTS_LINE; EXISTS_POINT; FORALL_LINE] THEN
GEN_REWRITE_TAC DEPTH_CONV
(basic_rewrites() @ [ON_CLAUSES; Point_DISTINCT; Line_DISTINCT]);;
let AXIOM_1 = thm `;
!p p'. ~(p = p') ==> ?l. p ON l /\ p' ON l /\
!l'. p ON l' /\ p' ON l' ==> (l' = l)
by TIMED_TAC 3 FANO_TAC`;;
let AXIOM_2 = thm `;
!l l'. ?p. p ON l /\ p ON l' by FANO_TAC`;;
let AXIOM_3 = thm `;
?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
~(?l. p ON l /\ p' ON l /\ p'' ON l)
by TIMED_TAC 2 FANO_TAC`;;
let AXIOM_4 = thm `;
!l. ?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
p ON l /\ p' ON l /\ p'' ON l
by TIMED_TAC 3 FANO_TAC`;;
let AXIOM_1' = thm `;
!p p' l l'. ~(p = p') /\ p ON l /\ p' ON l /\ p ON l' /\ p' ON l'
==> (l' = l)
proof
let p p' be fano_Point;
let l l' be fano_Line;
assume ~(p = p') /\ p ON l /\ p' ON l /\ p ON l' /\ p' ON l' [1];
consider l1 such that p ON l1 /\ p' ON l1 /\
!l'. p ON l' /\ p' ON l' ==> (l' = l1) [2]
by 1,AXIOM_1;
l = l1 by 1,2;
.= l' by 1,2;
qed`;;
let LEMMA_1' = thm `;
!O. ?l. O ON l
proof
consider p p' p'' such that
~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
~(?l. p ON l /\ p' ON l /\ p'' ON l) [1] by AXIOM_3;
let O be fano_Point;
~(p = O) \/ ~(p' = O) by 1;
consider P such that ~(P = O) [2];
consider l such that O ON l /\ P ON l /\
!l'. O ON l' /\ P ON l' ==> (l' = l) [3] by 2,AXIOM_1;
thus ?l. O ON l by 3;
end`;;
let DUAL_1 = thm `;
!l l'. ~(l = l') ==> ?p. p ON l /\ p ON l' /\
!p'. p' ON l /\ p' ON l' ==> (p' = p)
proof
assume ~thesis;
consider l l' such that ~(l = l') /\ !p. p ON l /\ p ON l'
==> ?p'. p' ON l /\ p' ON l' /\ ~(p' = p) [1];
consider p such that p ON l /\ p ON l' [2] by AXIOM_2;
consider p' such that p' ON l /\ p' ON l' /\ ~(p' = p) [3] by 1,2;
thus F by 1,2,AXIOM_1';
end`;;
let DUAL_2 = thm `;
!p p'. ?l. p ON l /\ p' ON l
proof
let p p' be fano_Point;
?l. p ON l [1] by LEMMA_1';
(p = p') \/
?l. p ON l /\ p' ON l /\
!l'. p ON l' /\ p' ON l' ==> (l' = l) by AXIOM_1;
qed by 1`;;
let DUAL_3 = thm `;
?l1 l2 l3. ~(l1 = l2) /\ ~(l2 = l3) /\ ~(l1 = l3) /\
~(?p. p ON l1 /\ p ON l2 /\ p ON l3)
proof
consider p1 p2 p3 such that
~(p1 = p2) /\ ~(p2 = p3) /\ ~(p1 = p3) /\
~(?l. p1 ON l /\ p2 ON l /\ p3 ON l) [1] by AXIOM_3;
consider l1 such that p1 ON l1 /\ p3 ON l1 [2] by DUAL_2;
consider l2 such that p2 ON l2 /\ p3 ON l2 [3] by DUAL_2;
consider l3 such that p1 ON l3 /\ p2 ON l3 [4] by DUAL_2;
take l1; take l2; take l3;
thus ~(l1 = l2) /\ ~(l2 = l3) /\ ~(l1 = l3) [5] by 1,2,3,4;
assume ~thesis;
consider q such that q ON l1 /\ q ON l2 /\ q ON l3 [6];
consider q' such that q' ON l1 /\ q' ON l3 /\
!p'. p' ON l1 /\ p' ON l3 ==> (p' = q') [7] by 5,DUAL_1;
q = q' by 6,7;
.= p1 by 2,4,7;
thus F by 1,3,6;
end`;;
let DUAL_4 = thm `;
!O. ?OP OQ OR. ~(OP = OQ) /\ ~(OQ = OR) /\ ~(OP = OR) /\
O ON OP /\ O ON OQ /\ O ON OR
proof
let O be fano_Point;
consider OP such that O ON OP [1] by LEMMA_1';
consider p p' p'' such that
~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
p ON OP /\ p' ON OP /\ p'' ON OP [2] by AXIOM_4;
~(p = O) \/ ~(p' = O) by 2;
consider P such that ~(P = O) /\ P ON OP [3] by 2;
consider q q' q'' such that
~(q = q') /\ ~(q' = q'') /\ ~(q = q'') /\
~(?l. q ON l /\ q' ON l /\ q'' ON l) [4] by AXIOM_3;
~(q ON OP) \/ ~(q' ON OP) \/ ~(q'' ON OP) by 4;
consider Q such that ~(Q ON OP) [5];
consider l such that P ON l /\ Q ON l [6] by DUAL_2;
consider r r' r'' such that
~(r = r') /\ ~(r' = r'') /\ ~(r = r'') /\
r ON l /\ r' ON l /\ r'' ON l [7] by AXIOM_4;
((r = P) \/ (r = Q) \/ ~(r = P) /\ ~(r = Q)) /\
((r' = P) \/ (r' = Q) \/ ~(r' = P) /\ ~(r' = Q));
consider R such that R ON l /\ ~(R = P) /\ ~(R = Q) [8] by 7;
consider OQ such that O ON OQ /\ Q ON OQ [9] by DUAL_2;
consider OR such that O ON OR /\ R ON OR [10] by DUAL_2;
take OP; take OQ; take OR;
~(O ON l) by 1,3,5,6,AXIOM_1';
thus ~(OP = OQ) /\ ~(OQ = OR) /\ ~(OP = OR) /\
O ON OP /\ O ON OQ /\ O ON OR by 1,3,5,6,8,9,10,AXIOM_1';
end`;;
(* ======== Tutorial/Changing_proof_style.ml =============================== *)
horizon := 1;;
let NSQRT_2_4 = thm `;
!p q. p * p = 2 * q * q ==> q = 0
proof
!p. (!m. m < p ==> (!q. m * m = 2 * q * q ==> q = 0))
==> (!q. p * p = 2 * q * q ==> q = 0)
proof
let p be num;
assume !m. m < p ==> !q. m * m = 2 * q * q ==> q = 0 [A];
let q be num;
assume p * p = 2 * q * q [B];
EVEN(p * p) <=> EVEN(2 * q * q);
EVEN(p) by TIMED_TAC 2 o MESON_TAC,ARITH,EVEN_MULT;
// "EVEN 2 by CONV_TAC o HOL_BY,ARITH;" takes over a minute...
consider m such that p = 2 * m [C] by EVEN_EXISTS;
cases by ARITH_TAC;
suppose q < p;
q * q = 2 * m * m ==> m = 0 by A;
qed by NUM_RING,B,C;
suppose p <= q;
p * p <= q * q by LE_MULT2;
q * q = 0 by ARITH_TAC,B;
qed by NUM_RING;
end;
qed by MATCH_MP_TAC,num_WF`;;
|