Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 14,141 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
(* ======== Examples/mizar.ml ============================================== *)

hide_constant "<=";;

horizon := 0;;

let KNASTER_TARSKI = thm `;
  let (<=) be A->A->bool;
  thus !f. (!x y. x <= y /\ y <= x ==> (x = y)) /\
      (!x y z. x <= y /\ y <= z ==> x <= z) /\
      (!x y. x <= y ==> f x <= f y) /\
      (!X. ?s. (!x. x IN X ==> s <= x) /\
                 (!s'. (!x. x IN X ==> s' <= x) ==> s' <= s))
      ==> ?x. f x = x
  proof
    let f be A->A;
    exec DISCH_THEN (LABEL_TAC "L");
    !x y. x <= y /\ y <= x ==> (x = y) [antisymmetry] by L;
    !x y z. x <= y /\ y <= z ==> x <= z [transitivity] by L;
    !x y. x <= y ==> f x <= f y [monotonicity] by L;
    !X. ?s:A. (!x. x IN X ==> s <= x) /\
              (!s'. (!x. x IN X ==> s' <= x) ==> s' <= s) [least_upper_bound]
      by L;
    set Y = {b | f b <= b} [Y_def];
    !b. b IN Y <=> f b <= b [Y_thm] by ALL_TAC,Y_def,IN_ELIM_THM,BETA_THM;
    consider a such that
      (!x. x IN Y ==> a <= x) /\
      (!a'. (!x. x IN Y ==> a' <= x) ==> a' <= a) [lub] by least_upper_bound;
    take a;
    !b. b IN Y ==> f a <= b
    proof
      let b be A;
      assume b IN Y [b_in_Y];
      f b <= b [L0] by -,Y_thm;
      a <= b by b_in_Y,lub;
      f a <= f b by -,monotonicity;
      thus f a <= b by -,L0,transitivity;
    end;
    f(a) <= a [Part1] by -,lub;
    f(f(a)) <= f(a) by -,monotonicity;
    f(a) IN Y by -,Y_thm;
    a <= f(a) by -,lub;
  qed by -,Part1,antisymmetry`;;

unhide_constant "<=";;

(* ======== Mizarlight/duality.ml ========================================== *)

parse_as_infix("ON",(11,"right"));;

hide_constant "ON";;

let projective = new_definition
 `projective((ON):Point->Line->bool) <=>
        (!p p'. ~(p = p') ==> ?!l. p ON l /\ p' ON l) /\
        (!l l'. ?p. p ON l /\ p ON l') /\
        (?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
                    ~(?l. p ON l /\ p' ON l /\ p'' ON l)) /\
        (!l. ?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
                        p ON l /\ p' ON l /\ p'' ON l)`;;

horizon := 1;;

let LEMMA_1 = thm `;
  !(ON):Point->Line->bool. projective(ON) ==> !p. ?l. p ON l
proof
  let (ON) be Point->Line->bool;
  assume projective(ON) [0];
  !p p'. ~(p = p') ==> ?!l. p ON l /\ p' ON l [1] by 0,projective;
  ?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
             ~(?l. p ON l /\ p' ON l /\ p'' ON l) [3] by 0,projective;
  let p be Point;
  consider q q' such that ~(q = q':Point);
  ~(p = q) \/ ~(p = q');
  consider l such that p ON l by 1;
  take l;
qed`;;

let LEMMA_2 = thm `;
  !(ON):Point->Line->bool. projective(ON)
   ==> !p1 p2 q l l1 l2.
     p1 ON l /\ p2 ON l /\ p1 ON l1 /\ p2 ON l2 /\ q ON l2 /\
     ~(q ON l) /\ ~(p1 = p2) ==> ~(l1 = l2)
proof
  let (ON) be Point->Line->bool;
  assume projective(ON) [0];
  !p p'. ~(p = p') ==> ?!l. p ON l /\ p' ON l [1] by 0,projective;
// here qed already works
  let p1 p2 q be Point;
  let l l1 l2 be Line;
  assume p1 ON l [5];
  assume p2 ON l [6];
  assume p1 ON l1 [7];
  assume p2 ON l2 [9];
  assume q ON l2 [10];
  assume ~(q ON l) [11];
  assume ~(p1 = p2) [12];
  assume l1 = l2 [13];
  p1 ON l2 by 7;
  l = l2 by 1,5,6,9,12;
  thus F by 10,11;
end`;;

let PROJECTIVE_DUALITY = thm `;
  !(ON):Point->Line->bool. projective(ON) ==> projective (\l p. p ON l)
proof
  let (ON) be Point->Line->bool;
  assume projective(ON) [0];
  !p p'. ~(p = p') ==> ?!l. p ON l /\ p' ON l [1] by 0,projective;
  !l l'. ?p. p ON l /\ p ON l' [2] by 0,projective;
  ?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
             ~(?l. p ON l /\ p' ON l /\ p'' ON l) [3] by 0,projective;
  !l. ?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
                 p ON l /\ p' ON l /\ p'' ON l [4] by 0,projective;
// dual of axiom 1
  !l1 l2. ~(l1 = l2) ==> ?!p. p ON l1 /\ p ON l2 [5]
  proof
    let l1 l2 be Line;
    assume ~(l1 = l2) [6];
    consider p such that p ON l1 /\ p ON l2 [7] by 2;
    !p'. p' ON l1 /\ p' ON l2 ==> (p' = p)
    proof
      let p' be Point;
      assume p' ON l1 /\ p' ON l2 [8];
      assume ~(p' = p);
      l1 = l2 by 1,7,8;
      thus F by 6;
    end;
  qed by 7;
// dual of axiom 2
  !p1 p2. ?l. p1 ON l /\ p2 ON l [9]
  proof
    let p1 p2 be Point;
    cases;
    suppose p1 = p2;
    qed by 0,LEMMA_1;
    suppose ~(p1 = p2);
    qed by 1;
  end;
// dual of axiom 3
  ?l1 l2 l3. ~(l1 = l2) /\ ~(l2 = l3) /\ ~(l1 = l3) /\
             ~(?p. p ON l1 /\ p ON l2 /\ p ON l3) [10]
  proof
    consider p1 p2 p3 such that
      ~(p1 = p2) /\ ~(p2 = p3) /\ ~(p1 = p3) /\
      ~(?l. p1 ON l /\ p2 ON l /\ p3 ON l) [11] by 3;
    ~(p1 = p3) by 11;
    ?!l1. p1 ON l1 /\ p3 ON l1 by 1;  // ADDED STEP
    consider l1 such that p1 ON l1 /\ p3 ON l1 /\
      !l'. p1 ON l' /\ p3 ON l' ==> (l1 = l') [12];
    ~(p2 = p3) by 11;
    ?!l2. p2 ON l2 /\ p3 ON l2 by 1;  // ADDED STEP
    consider l2 such that p2 ON l2 /\ p3 ON l2 /\
      !l'. p2 ON l' /\ p3 ON l' ==> (l2 = l') [13];
    ~(p1 = p2) by 11;
    ?!l3. p1 ON l3 /\ p2 ON l3 by 1;  // ADDED STEP
    consider l3 such that p1 ON l3 /\ p2 ON l3 /\
      !l'. p1 ON l' /\ p2 ON l' ==> (l3 = l') [14];
    take l1; take l2; take l3;
    thus ~(l1 = l2) /\ ~(l2 = l3) /\ ~(l1 = l3) [15] by 11,12,13,14;
    assume ?q. q ON l1 /\ q ON l2 /\ q ON l3;
    consider q such that q ON l1 /\ q ON l2 /\ q ON l3;
    (p1 = q) /\ (p2 = q) /\ (p3 = q) by 5,12,13,14,15;
    thus F by 11;
  end;
// dual of axiom 4
  !p0. ?l0 L1 L2. ~(l0 = L1) /\ ~(L1 = L2) /\ ~(l0 = L2) /\
                  p0 ON l0 /\ p0 ON L1 /\ p0 ON L2
  proof
    let p0 be Point;
    consider l0 such that p0 ON l0 [16] by 0,LEMMA_1;
    consider p such that ~(p = p0) /\ p ON l0 [17] by 4;
    consider q such that ~(q ON l0) [18] by 3;
    consider l1 such that p ON l1 /\ q ON l1 [19] by 1,16;
    consider r such that r ON l1 /\ ~(r = p) /\ ~(r = q) [20]
    proof
      consider r1 r2 r3 such that
        ~(r1 = r2) /\ ~(r2 = r3) /\ ~(r1 = r3) /\
       r1 ON l1 /\ r2 ON l1 /\ r3 ON l1 [21] by 4;
      ~(r1 = p) /\ ~(r1 = q) \/
      ~(r2 = p) /\ ~(r2 = q) \/
      ~(r3 = p) /\ ~(r3 = q);
    qed by 21;
    ~(p0 ON l1) [22]
    proof
      assume p0 ON l1;
      l1 = l0 by 1,16,17,19;
    qed by 18,19;
    ~(p0 = r) by 20;
    consider L1 such that r ON L1 /\ p0 ON L1 [23] by 1;
    consider L2 such that q ON L2 /\ p0 ON L2 [24] by 1,16,18;
    take l0; take L1; take L2;
    thus ~(l0 = L1) by 0,17,19,20,22,23,LEMMA_2;
    thus ~(L1 = L2) by 0,19,20,22,23,24,LEMMA_2;
    thus ~(l0 = L2) by 18,24;
    thus p0 ON l0 /\ p0 ON L2 /\ p0 ON L1 by 16,24,23;
  end;
qed by REWRITE_TAC,5,9,10,projective`;;

unhide_constant "ON";;

(* ======== Mizarlight/duality_holby.ml ==================================== *)

horizon := 1;;

let Line_INDUCT,Line_RECURSION = define_type
 "fano_Line = Line_1 | Line_2 | Line_3 | Line_4 |
              Line_5 | Line_6 | Line_7";;

let Point_INDUCT,Point_RECURSION = define_type
 "fano_Point = Point_1 | Point_2 | Point_3 | Point_4 |
               Point_5 | Point_6 | Point_7";;

let Point_DISTINCT = distinctness "fano_Point";;

let Line_DISTINCT = distinctness "fano_Line";;

let fano_incidence =
  [1,1; 1,2; 1,3; 2,1; 2,4; 2,5; 3,1; 3,6; 3,7; 4,2; 4,4;
   4,6; 5,2; 5,5; 5,7; 6,3; 6,4; 6,7; 7,3; 7,5; 7,6];;

let fano_point i = mk_const("Point_"^string_of_int i,[])
and fano_line i = mk_const("Line_"^string_of_int i,[]);;

let fano_clause (i,j) =
  let p = `p:fano_Point` and l = `l:fano_Line` in
  mk_conj(mk_eq(p,fano_point i),mk_eq(l,fano_line j));;

let ON = new_definition
 (mk_eq(`((ON):fano_Point->fano_Line->bool) p l`,
        list_mk_disj(map fano_clause fano_incidence)));;

let ON_CLAUSES = prove
 (list_mk_conj(allpairs
    (fun i j -> mk_eq(list_mk_comb(`(ON)`,[fano_point i; fano_line j]),
                      if mem (i,j) fano_incidence then `T` else `F`))
    (1--7) (1--7)),
  REWRITE_TAC[ON; Line_DISTINCT; Point_DISTINCT]);;

let FORALL_POINT = thm `;
  !P. (!p. P p) <=> P Point_1 /\ P Point_2 /\ P Point_3 /\ P Point_4 /\
                    P Point_5 /\ P Point_6 /\ P Point_7
    by Point_INDUCT`;;

let EXISTS_POINT = thm `;
  !P. (?p. P p) <=> P Point_1 \/ P Point_2 \/ P Point_3 \/ P Point_4 \/
                    P Point_5 \/ P Point_6 \/ P Point_7
proof
  let P be fano_Point->bool;
  ~(?p. P p) <=> ~(P Point_1 \/ P Point_2 \/ P Point_3 \/ P Point_4 \/
                   P Point_5 \/ P Point_6 \/ P Point_7)
    by REWRITE_TAC,DE_MORGAN_THM,NOT_EXISTS_THM,FORALL_POINT;
qed`;;

let FORALL_LINE = thm `;
  !P. (!p. P p) <=> P Line_1 /\ P Line_2 /\ P Line_3 /\ P Line_4 /\
                    P Line_5 /\ P Line_6 /\ P Line_7
    by Line_INDUCT`;;

let EXISTS_LINE = thm `;
  !P. (?p. P p) <=> P Line_1 \/ P Line_2 \/ P Line_3 \/ P Line_4 \/
                    P Line_5 \/ P Line_6 \/ P Line_7
proof
  let P be fano_Line->bool;
  ~(?p. P p) <=> ~(P Line_1 \/ P Line_2 \/ P Line_3 \/ P Line_4 \/
                   P Line_5 \/ P Line_6 \/ P Line_7)
    by REWRITE_TAC,DE_MORGAN_THM,NOT_EXISTS_THM,FORALL_LINE;
qed;`;;

let FANO_TAC =
  GEN_REWRITE_TAC DEPTH_CONV
   [FORALL_POINT; EXISTS_LINE; EXISTS_POINT; FORALL_LINE] THEN
  GEN_REWRITE_TAC DEPTH_CONV
   (basic_rewrites() @ [ON_CLAUSES; Point_DISTINCT; Line_DISTINCT]);;

let AXIOM_1 = thm `;
  !p p'. ~(p = p') ==> ?l. p ON l /\ p' ON l /\
                           !l'. p ON l' /\ p' ON l' ==> (l' = l)
    by TIMED_TAC 3 FANO_TAC`;;

let AXIOM_2 = thm `;
  !l l'. ?p. p ON l /\ p ON l' by FANO_TAC`;;

let AXIOM_3 = thm `;
  ?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
             ~(?l. p ON l /\ p' ON l /\ p'' ON l)
    by TIMED_TAC 2 FANO_TAC`;;

let AXIOM_4 = thm `;
  !l. ?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
                 p ON l /\ p' ON l /\ p'' ON l
    by TIMED_TAC 3 FANO_TAC`;;

let AXIOM_1' = thm `;
  !p p' l l'. ~(p = p') /\ p ON l /\ p' ON l /\ p ON l' /\ p' ON l'
              ==> (l' = l)
proof
  let p p' be fano_Point;
  let l l' be fano_Line;
  assume ~(p = p') /\ p ON l /\ p' ON l /\ p ON l' /\ p' ON l' [1];
  consider l1 such that p ON l1 /\ p' ON l1 /\
                        !l'. p ON l' /\ p' ON l' ==> (l' = l1) [2]
    by 1,AXIOM_1;
  l = l1 by 1,2;
    .= l' by 1,2;
qed`;;

let LEMMA_1' = thm `;
  !O. ?l. O ON l
proof
  consider p p' p'' such that
    ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
    ~(?l. p ON l /\ p' ON l /\ p'' ON l) [1] by AXIOM_3;
  let O be fano_Point;
  ~(p = O) \/ ~(p' = O) by 1;
  consider P such that ~(P = O) [2];
  consider l such that O ON l /\ P ON l /\
    !l'. O ON l' /\ P ON l' ==> (l' = l) [3] by 2,AXIOM_1;
  thus ?l. O ON l by 3;
end`;;

let DUAL_1 = thm `;
  !l l'. ~(l = l') ==> ?p. p ON l /\ p ON l' /\
         !p'. p' ON l /\ p' ON l' ==> (p' = p)
proof
  assume ~thesis;
  consider l l' such that ~(l = l') /\ !p. p ON l /\ p ON l'
                          ==> ?p'. p' ON l /\ p' ON l' /\ ~(p' = p) [1];
  consider p such that p ON l /\ p ON l' [2] by AXIOM_2;
  consider p' such that p' ON l /\ p' ON l' /\ ~(p' = p) [3] by 1,2;
  thus F by 1,2,AXIOM_1';
end`;;

let DUAL_2 = thm `;
  !p p'. ?l. p ON l /\ p' ON l
proof
  let p p' be fano_Point;
  ?l. p ON l [1] by LEMMA_1';
  (p = p') \/
    ?l. p ON l /\ p' ON l /\
        !l'. p ON l' /\ p' ON l' ==> (l' = l) by AXIOM_1;
qed by 1`;;

let DUAL_3 = thm `;
  ?l1 l2 l3. ~(l1 = l2) /\ ~(l2 = l3) /\ ~(l1 = l3) /\
             ~(?p. p ON l1 /\ p ON l2 /\ p ON l3)
proof
  consider p1 p2 p3 such that
    ~(p1 = p2) /\ ~(p2 = p3) /\ ~(p1 = p3) /\
    ~(?l. p1 ON l /\ p2 ON l /\ p3 ON l) [1] by AXIOM_3;
  consider l1 such that p1 ON l1 /\ p3 ON l1 [2] by DUAL_2;
  consider l2 such that p2 ON l2 /\ p3 ON l2 [3] by DUAL_2;
  consider l3 such that p1 ON l3 /\ p2 ON l3 [4] by DUAL_2;
  take l1; take l2; take l3;
  thus ~(l1 = l2) /\ ~(l2 = l3) /\ ~(l1 = l3) [5] by 1,2,3,4;
  assume ~thesis;
  consider q such that q ON l1 /\ q ON l2 /\ q ON l3 [6];
  consider q' such that q' ON l1 /\ q' ON l3 /\
    !p'. p' ON l1 /\ p' ON l3 ==> (p' = q') [7] by 5,DUAL_1;
  q = q' by 6,7;
    .= p1 by 2,4,7;
  thus F by 1,3,6;
end`;;

let DUAL_4 = thm `;
  !O. ?OP OQ OR. ~(OP = OQ) /\ ~(OQ = OR) /\ ~(OP = OR) /\
                 O ON OP /\ O ON OQ /\ O ON OR
proof
  let O be fano_Point;
  consider OP such that O ON OP [1] by LEMMA_1';
  consider p p' p'' such that
    ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
    p ON OP /\ p' ON OP /\ p'' ON OP [2] by AXIOM_4;
  ~(p = O) \/ ~(p' = O) by 2;
  consider P such that ~(P = O) /\ P ON OP [3] by 2;
  consider q q' q'' such that
    ~(q = q') /\ ~(q' = q'') /\ ~(q = q'') /\
    ~(?l. q ON l /\ q' ON l /\ q'' ON l) [4] by AXIOM_3;
  ~(q ON OP) \/ ~(q' ON OP) \/ ~(q'' ON OP) by 4;
  consider Q such that ~(Q ON OP) [5];
  consider l such that P ON l /\ Q ON l [6] by DUAL_2;
  consider r r' r'' such that
  ~(r = r') /\ ~(r' = r'') /\ ~(r = r'') /\
  r ON l /\ r' ON l /\ r'' ON l [7] by AXIOM_4;
  ((r = P) \/ (r = Q) \/ ~(r = P) /\ ~(r = Q)) /\
  ((r' = P) \/ (r' = Q) \/ ~(r' = P) /\ ~(r' = Q));
  consider R such that R ON l /\ ~(R = P) /\ ~(R = Q) [8] by 7;
  consider OQ such that O ON OQ /\ Q ON OQ [9] by DUAL_2;
  consider OR such that O ON OR /\ R ON OR [10] by DUAL_2;
  take OP; take OQ; take OR;
  ~(O ON l) by 1,3,5,6,AXIOM_1';
  thus ~(OP = OQ) /\ ~(OQ = OR) /\ ~(OP = OR) /\
       O ON OP /\ O ON OQ /\ O ON OR by 1,3,5,6,8,9,10,AXIOM_1';
end`;;

(* ======== Tutorial/Changing_proof_style.ml =============================== *)

horizon := 1;;

let NSQRT_2_4 = thm `;
  !p q. p * p = 2 * q * q ==> q = 0
proof
  !p. (!m. m < p ==> (!q. m * m = 2 * q * q ==> q = 0))
      ==> (!q. p * p = 2 * q * q ==> q = 0)
  proof
    let p be num;
    assume !m. m < p ==> !q. m * m = 2 * q * q ==> q = 0 [A];
    let q be num;
    assume p * p = 2 * q * q [B];
    EVEN(p * p) <=> EVEN(2 * q * q);
    EVEN(p) by TIMED_TAC 2 o MESON_TAC,ARITH,EVEN_MULT;
//  "EVEN 2 by CONV_TAC o HOL_BY,ARITH;" takes over a minute...
    consider m such that p = 2 * m [C] by EVEN_EXISTS;
    cases by ARITH_TAC;
    suppose q < p;
      q * q = 2 * m * m ==> m = 0 by A;
    qed by NUM_RING,B,C;
    suppose p <= q;
      p * p <= q * q by LE_MULT2;
      q * q = 0 by ARITH_TAC,B;
    qed by NUM_RING;
  end;
qed by MATCH_MP_TAC,num_WF`;;