Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 24,126 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 |
section \<open>Implementation\<close>
theory Affine_Code
imports
Affine_Approximation
Intersection
begin
text \<open>Implementing partial deviations as sorted lists of coefficients.\<close>
subsection \<open>Reverse Sorted, Distinct Association Lists\<close>
typedef (overloaded) ('a, 'b) slist =
"{xs::('a::linorder \<times> 'b) list. distinct (map fst xs) \<and> sorted (rev (map fst xs))}"
by (auto intro!: exI[where x="[]"])
setup_lifting type_definition_slist
lift_definition map_of_slist::"(nat, 'a::zero) slist \<Rightarrow> nat \<Rightarrow> 'a option" is map_of .
lemma finite_dom_map_of_slist[intro, simp]: "finite (dom (map_of_slist xs))"
by transfer (auto simp: finite_dom_map_of)
abbreviation "the_default a x \<equiv> (case x of None \<Rightarrow> a | Some b \<Rightarrow> b)"
definition "Pdevs_raw xs i = the_default 0 (map_of xs i)"
lemma nonzeros_Pdevs_raw_subset: "{i. Pdevs_raw xs i \<noteq> 0} \<subseteq> dom (map_of xs)"
unfolding Pdevs_raw_def[abs_def]
by transfer (auto simp: Pdevs_raw_def split: option.split_asm)
lift_definition Pdevs::"(nat, 'a::zero) slist \<Rightarrow> 'a pdevs"
is Pdevs_raw
by (rule finite_subset[OF nonzeros_Pdevs_raw_subset]) (simp add: finite_dom_map_of)
code_datatype Pdevs
subsection \<open>Degree\<close>
primrec degree_list::"(nat \<times> 'a::zero) list \<Rightarrow> nat" where
"degree_list [] = 0"
| "degree_list (x#xs) = (if snd x = 0 then degree_list xs else Suc (fst x))"
lift_definition degree_slist::"(nat, 'a::zero) slist \<Rightarrow> nat" is degree_list .
lemma degree_list_eq_zeroD:
assumes "degree_list xs = 0"
shows "the_default 0 (map_of xs i) = 0"
using assms
by (induct xs) (auto simp: Pdevs_raw_def sorted_append split: if_split_asm)
lemma degree_slist_eq_zeroD: "degree_slist xs = 0 \<Longrightarrow> degree (Pdevs xs) = 0"
unfolding degree_eq_Suc_max
by transfer (auto dest: degree_list_eq_zeroD simp: Pdevs_raw_def)
lemma degree_slist_eq_SucD: "degree_slist xs = Suc n \<Longrightarrow> pdevs_apply (Pdevs xs) n \<noteq> 0"
proof (transfer, goal_cases)
case (1 xs n)
thus ?case
by (induct xs)
(auto simp: Pdevs_raw_def sorted_append map_of_eq_None_iff[symmetric]
split: if_split_asm option.split_asm)
qed
lemma degree_slist_zero:
"degree_slist xs = n \<Longrightarrow> n \<le> j \<Longrightarrow> pdevs_apply (Pdevs xs) j = 0"
proof (transfer, goal_cases)
case (1 xs n j)
thus ?case
by (induct xs)
(auto simp: Pdevs_raw_def sorted_append split: if_split_asm option.split)
qed
lemma compute_degree[code]: "degree (Pdevs xs) = degree_slist xs"
by (cases "degree_slist xs")
(auto dest: degree_slist_eq_zeroD degree_slist_eq_SucD intro!: degree_eqI degree_slist_zero)
subsection \<open>Auxiliary Definitions\<close>
fun binop where
"binop f z1 z2 [] [] = []"
| "binop f z1 z2 ((i, x)#xs) [] = (i, f x z2) # binop f z1 z2 xs []"
| "binop f z1 z2 [] ((i, y)#ys) = (i, f z1 y) # binop f z1 z2 [] ys"
| "binop f z1 z2 ((i, x)#xs) ((j, y)#ys) =
(if (i = j) then (i, f x y) # binop f z1 z2 xs ys
else if (i > j) then (i, f x z2) # binop f z1 z2 xs ((j, y)#ys)
else (j, f z1 y) # binop f z1 z2 ((i, x)#xs) ys)"
lemma set_binop_elemD1:
"(a, b) \<in> set (binop f z1 z2 xs ys) \<Longrightarrow> (a \<in> set (map fst xs) \<or> a \<in> set (map fst ys))"
by (induct f z1 z2 xs ys rule: binop.induct) (auto split: if_split_asm)
lemma set_binop_elemD2:
"(a, b) \<in> set (binop f z1 z2 xs ys) \<Longrightarrow>
(\<exists>x\<in>set (map snd xs). b = f x z2) \<or>
(\<exists>y\<in>set (map snd ys). b = f z1 y) \<or>
(\<exists>x\<in>set (map snd xs). \<exists>y\<in>set (map snd ys). b = f x y)"
by (induct f z1 z2 xs ys rule: binop.induct) (auto split: if_split_asm)
abbreviation "rsorted\<equiv>\<lambda>x. sorted (rev x)"
lemma rsorted_binop:
fixes xs::"('a::linorder * 'b) list" and ys::"('a::linorder * 'c) list"
assumes "rsorted ((map fst xs))"
assumes "rsorted ((map fst ys))"
shows "rsorted ((map fst (binop f z1 z2 xs ys)))"
using assms
by (induct f z1 z2 xs ys rule: binop.induct) (force simp: sorted_append dest!: set_binop_elemD1)+
lemma distinct_binop:
fixes xs::"('a::linorder * 'b) list" and ys::"('a::linorder * 'c) list"
assumes "distinct (map fst xs)"
assumes "distinct (map fst ys)"
assumes "rsorted ((map fst xs))"
assumes "rsorted ((map fst ys))"
shows "distinct (map fst (binop f z1 z2 xs ys))"
using assms
by (induct f z1 z2 xs ys rule: binop.induct)
(force dest!: set_binop_elemD1 simp: sorted_append)+
lemma binop_plus:
fixes b::"(nat * 'a::euclidean_space) list"
shows
"(\<Sum>(i, y)\<leftarrow>binop (+) 0 0 b ba. e i *\<^sub>R y) = (\<Sum>(i, y)\<leftarrow>b. e i *\<^sub>R y) + (\<Sum>(i, y)\<leftarrow>ba. e i *\<^sub>R y)"
by (induct "(+) ::'a\<Rightarrow>_" "0::'a" "0::'a" b ba rule: binop.induct)
(auto simp: algebra_simps)
lemma binop_compose:
"binop (\<lambda>x y. f (g x y)) z1 z2 xs ys = map (apsnd f) (binop g z1 z2 xs ys)"
by (induct "\<lambda>x y. f (g x y)" z1 z2 xs ys rule: binop.induct) auto
lemma linear_cmul_left[intro, simp]: "linear ((*) x::real \<Rightarrow> _)"
by (auto intro!: linearI simp: algebra_simps)
lemma length_merge_sorted_eq:
"length (binop f z1 z2 xs ys) = length (binop g y1 y2 xs ys)"
by (induction f z1 z2 xs ys rule: binop.induct) auto
subsection \<open>Pointswise Addition\<close>
lift_definition add_slist::"(nat, 'a::{plus, zero}) slist \<Rightarrow> (nat, 'a) slist \<Rightarrow> (nat, 'a) slist" is
"\<lambda>xs ys. binop (+) 0 0 xs ys"
by (auto simp: intro!: distinct_binop rsorted_binop)
lemma map_of_binop[simp]: "rsorted (map fst xs) \<Longrightarrow> rsorted (map fst ys) \<Longrightarrow>
distinct (map fst xs) \<Longrightarrow> distinct (map fst ys) \<Longrightarrow>
map_of (binop f z1 z2 xs ys) i =
(case map_of xs i of
Some x \<Rightarrow> Some (f x (case map_of ys i of Some x \<Rightarrow> x | None \<Rightarrow> z2))
| None \<Rightarrow> (case map_of ys i of Some y \<Rightarrow> Some (f z1 y) | None \<Rightarrow> None))"
by (induct f z1 z2 xs ys rule: binop.induct)
(auto split: option.split option.split_asm simp: sorted_append)
lemma pdevs_apply_Pdevs_add_slist[simp]:
fixes xs ys::"(nat, 'a::monoid_add) slist"
shows "pdevs_apply (Pdevs (add_slist xs ys)) i =
pdevs_apply (Pdevs xs) i + pdevs_apply (Pdevs ys) i"
by (transfer) (auto simp: Pdevs_raw_def split: option.split)
lemma compute_add_pdevs[code]: "add_pdevs (Pdevs xs) (Pdevs ys) = Pdevs (add_slist xs ys)"
by (rule pdevs_eqI) simp
subsection \<open>prod of pdevs\<close>
lift_definition prod_slist::"(nat, 'a::zero) slist \<Rightarrow> (nat, 'b::zero) slist \<Rightarrow> (nat, ('a \<times> 'b)) slist" is
"\<lambda>xs ys. binop Pair 0 0 xs ys"
by (auto simp: intro!: distinct_binop rsorted_binop)
lemma pdevs_apply_Pdevs_prod_slist[simp]:
"pdevs_apply (Pdevs (prod_slist xs ys)) i = (pdevs_apply (Pdevs xs) i, pdevs_apply (Pdevs ys) i)"
by transfer (auto simp: Pdevs_raw_def zero_prod_def split: option.splits)
lemma compute_prod_of_pdevs[code]: "prod_of_pdevs (Pdevs xs) (Pdevs ys) = Pdevs (prod_slist xs ys)"
by (rule pdevs_eqI) simp
subsection \<open>Set of Coefficients\<close>
lift_definition set_slist::"(nat, 'a::real_vector) slist \<Rightarrow> (nat * 'a) set" is set .
lemma finite_set_slist[intro, simp]: "finite (set_slist xs)"
by transfer simp
subsection \<open>Domain\<close>
lift_definition list_of_slist::"('a::linorder, 'b::zero) slist \<Rightarrow> ('a * 'b) list"
is "\<lambda>xs. filter (\<lambda>x. snd x \<noteq> 0) xs" .
lemma compute_pdevs_domain[code]: "pdevs_domain (Pdevs xs) = set (map fst (list_of_slist xs))"
unfolding pdevs_domain_def
by transfer (force simp: Pdevs_raw_def split: option.split_asm)
lemma sort_rev_eq_sort: "distinct xs \<Longrightarrow> sort (rev xs) = sort xs"
by (rule sorted_distinct_set_unique) auto
lemma compute_list_of_pdevs[code]: "list_of_pdevs (Pdevs xs) = list_of_slist xs"
proof -
have "list_of_pdevs (Pdevs xs) =
map (\<lambda>i. (i, pdevs_apply (Pdevs xs) i)) (rev (sorted_list_of_set (pdevs_domain (Pdevs xs))))"
by (simp add: list_of_pdevs_def)
also have "(sorted_list_of_set (pdevs_domain (Pdevs xs))) = rev (map fst (list_of_slist xs))"
unfolding compute_pdevs_domain sorted_list_of_set_sort_remdups
proof (transfer, goal_cases)
case prems: (1 xs)
hence distinct: "distinct (map fst [x\<leftarrow>xs . snd x \<noteq> 0])"
by (auto simp: filter_map distinct_map intro: subset_inj_on)
with prems show ?case
using sort_rev_eq_sort[symmetric, OF distinct]
by (auto simp: rev_map rev_filter distinct_map distinct_remdups_id
intro!: sorted_sort_id sorted_filter)
qed
also
have "map (\<lambda>i. (i, pdevs_apply (Pdevs xs) i)) (rev \<dots>) = list_of_slist xs"
proof (transfer, goal_cases)
case (1 xs)
thus ?case
unfolding Pdevs_raw_def o_def rev_rev_ident map_map
by (subst map_cong[where g="\<lambda>x. x"]) (auto simp: map_filter_map_filter)
qed
finally show ?thesis .
qed
lift_definition slist_of_pdevs::"'a pdevs \<Rightarrow> (nat, 'a::real_vector) slist" is list_of_pdevs
by (auto simp: list_of_pdevs_def rev_map rev_filter
filter_map o_def distinct_map image_def
intro!: distinct_filter sorted_filter[of "\<lambda>x. x", simplified])
subsection \<open>Application\<close>
lift_definition slist_apply::"('a::linorder, 'b::zero) slist \<Rightarrow> 'a \<Rightarrow> 'b" is
"\<lambda>xs i. the_default 0 (map_of xs i)" .
lemma compute_pdevs_apply[code]: "pdevs_apply (Pdevs x) i = slist_apply x i"
by transfer (auto simp: Pdevs_raw_def)
subsection \<open>Total Deviation\<close>
lift_definition tdev_slist::"(nat, 'a::ordered_euclidean_space) slist \<Rightarrow> 'a" is
"sum_list o map (abs o snd)" .
lemma tdev_slist_sum: "tdev_slist xs = sum (abs \<circ> snd) (set_slist xs)"
by transfer (auto simp: distinct_map sum_list_distinct_conv_sum_set[symmetric] o_def)
lemma pdevs_apply_set_slist: "x \<in> set_slist xs \<Longrightarrow> snd x = pdevs_apply (Pdevs xs) (fst x)"
by transfer (auto simp: Pdevs_raw_def)
lemma
tdev_list_eq_zeroI:
shows "(\<And>i. pdevs_apply (Pdevs xs) i = 0) \<Longrightarrow> tdev_slist xs = 0"
unfolding tdev_slist_sum
by (auto simp: pdevs_apply_set_slist)
lemma inj_on_fst_set_slist: "inj_on fst (set_slist xs)"
by transfer (simp add: distinct_map)
lemma pdevs_apply_Pdevs_eq_0:
"pdevs_apply (Pdevs xs) i = 0 \<longleftrightarrow> ((\<forall>x. (i, x) \<in> set_slist xs \<longrightarrow> x = 0))"
by transfer (safe, auto simp: Pdevs_raw_def split: option.split)
lemma compute_tdev[code]: "tdev (Pdevs xs) = tdev_slist xs"
proof -
have "tdev (Pdevs xs) = (\<Sum>i<degree (Pdevs xs). \<bar>pdevs_apply (Pdevs xs) i\<bar>)"
by (simp add: tdev_def)
also have "\<dots> =
(\<Sum>i <degree (Pdevs xs).
if pdevs_apply (Pdevs xs) i = 0 then 0 else \<bar>pdevs_apply (Pdevs xs) i\<bar>)"
by (auto intro!: sum.cong)
also have "\<dots> =
(\<Sum>i\<in>{0..<degree (Pdevs xs)} \<inter> {x. pdevs_apply (Pdevs xs) x \<noteq> 0}.
\<bar>pdevs_apply (Pdevs xs) i\<bar>)"
by (auto simp: sum.If_cases Collect_neg_eq atLeast0LessThan)
also have "\<dots> = (\<Sum>x\<in>fst ` set_slist xs. \<bar>pdevs_apply (Pdevs xs) x\<bar>)"
by (rule sum.mono_neutral_cong_left)
(force simp: pdevs_apply_Pdevs_eq_0 intro!: imageI degree_gt)+
also have "\<dots> = (\<Sum>x\<in>set_slist xs. \<bar>pdevs_apply (Pdevs xs) (fst x)\<bar>)"
by (rule sum.reindex_cong[of fst]) (auto simp: inj_on_fst_set_slist)
also have "\<dots> = tdev_slist xs"
by (simp add: tdev_slist_sum pdevs_apply_set_slist)
finally show ?thesis .
qed
subsection \<open>Minkowski Sum\<close>
lemma dropWhile_rsorted_eq_filter:
"rsorted (map fst xs) \<Longrightarrow> dropWhile (\<lambda>(i, x). i \<ge> (m::nat)) xs = filter (\<lambda>(i, x). i < m) xs"
(is "_ \<Longrightarrow> ?lhs xs = ?rhs xs")
proof (induct xs)
case (Cons x xs)
hence "?rhs (x#xs) = ?lhs (x#xs)"
by (auto simp: sorted_append filter_id_conv intro: sym)
thus ?case ..
qed simp
lift_definition msum_slist::"nat \<Rightarrow> (nat, 'a) slist \<Rightarrow> (nat, 'a) slist \<Rightarrow> (nat, 'a) slist"
is "\<lambda>m xs ys. map (apfst (\<lambda>n. n + m)) ys @ dropWhile (\<lambda>(i, x). i \<ge> m) xs"
proof (safe, goal_cases)
case (1 n l1 l2)
then have "set (dropWhile (\<lambda>(i, x). n \<le> i) l1) \<subseteq> set l1"
by (simp add: set_dropWhileD subrelI)
with 1 show ?case
by (auto simp add: distinct_map add.commute [of _ n] intro!: comp_inj_on intro: subset_inj_on)
(simp add: dropWhile_rsorted_eq_filter)
next
case prems: (2 n l1 l2)
hence "sorted (map ((\<lambda>na. na + n) \<circ> fst) (rev l2))"
by(simp add: sorted_iff_nth_mono rev_map)
with prems show ?case
by (auto simp: sorted_append dropWhile_rsorted_eq_filter rev_map rev_filter sorted_filter)
qed
lemma slist_apply_msum_slist:
"slist_apply (msum_slist m xs ys) i =
(if i < m then slist_apply xs i else slist_apply ys (i - m))"
proof (transfer, goal_cases)
case prems: (1 m xs ys i)
thus ?case
proof (cases "i \<in> dom (map_of (map (\<lambda>(x, y). (x + m, y)) ys))")
case False
have "\<And>a. i < m \<Longrightarrow> i \<notin> fst ` {x \<in> set xs. case x of (i, x) \<Rightarrow> i < m} \<Longrightarrow> (i, a) \<notin> set xs"
"\<And>a. i \<notin> fst ` set xs \<Longrightarrow> (i, a) \<notin> set xs"
"\<And>a. m \<le> i \<Longrightarrow> i \<notin> fst ` (\<lambda>(x, y). (x + m, y)) ` set ys \<Longrightarrow> (i - m, a) \<notin> set ys"
by force+
thus ?thesis
using prems False
by (auto simp add: dropWhile_rsorted_eq_filter map_of_eq_None_iff distinct_map_fst_snd_eqD
split: option.split dest!: map_of_SomeD)
qed (force simp: map_of_eq_None_iff distinct_map_fst_snd_eqD
split: option.split
dest!: map_of_SomeD)
qed
lemma pdevs_apply_msum_slist:
"pdevs_apply (Pdevs (msum_slist m xs ys)) i =
(if i < m then pdevs_apply (Pdevs xs) i else pdevs_apply (Pdevs ys) (i - m))"
by (auto simp: compute_pdevs_apply slist_apply_msum_slist)
lemma compute_msum_pdevs[code]: "msum_pdevs m (Pdevs xs) (Pdevs ys) = Pdevs (msum_slist m xs ys)"
by (rule pdevs_eqI) (auto simp: pdevs_apply_msum_slist pdevs_apply_msum_pdevs)
subsection \<open>Unary Operations\<close>
lift_definition map_slist::"('a \<Rightarrow> 'b) \<Rightarrow> (nat, 'a) slist \<Rightarrow> (nat, 'b) slist" is "\<lambda>f. map (apsnd f)"
by simp
lemma pdevs_apply_map_slist:
"f 0 = 0 \<Longrightarrow> pdevs_apply (Pdevs (map_slist f xs)) i = f (pdevs_apply (Pdevs xs) i)"
by transfer
(force simp: Pdevs_raw_def map_of_eq_None_iff distinct_map_fst_snd_eqD image_def
split: option.split dest: distinct_map_fst_snd_eqD)
lemma compute_scaleR_pdves[code]: "scaleR_pdevs r (Pdevs xs) = Pdevs (map_slist (\<lambda>x. r *\<^sub>R x) xs)"
and compute_pdevs_scaleR[code]: "pdevs_scaleR (Pdevs rs) x = Pdevs (map_slist (\<lambda>r. r *\<^sub>R x) rs)"
and compute_uminus_pdevs[code]: "uminus_pdevs (Pdevs xs) = Pdevs (map_slist (\<lambda>x. - x) xs)"
and compute_abs_pdevs[code]: "abs_pdevs (Pdevs xs) = Pdevs (map_slist abs xs)"
and compute_pdevs_inner[code]: "pdevs_inner (Pdevs xs) b = Pdevs (map_slist (\<lambda>x. x \<bullet> b) xs)"
and compute_pdevs_inner2[code]:
"pdevs_inner2 (Pdevs xs) b c = Pdevs (map_slist (\<lambda>x. (x \<bullet> b, x \<bullet> c)) xs)"
and compute_inner_scaleR_pdevs[code]:
"inner_scaleR_pdevs x (Pdevs ys) = Pdevs (map_slist (\<lambda>y. (x \<bullet> y) *\<^sub>R y) ys)"
and compute_trunc_pdevs[code]:
"trunc_pdevs p (Pdevs xs) = Pdevs (map_slist (\<lambda>x. eucl_truncate_down p x) xs)"
and compute_trunc_err_pdevs[code]:
"trunc_err_pdevs p (Pdevs xs) = Pdevs (map_slist (\<lambda>x. eucl_truncate_down p x - x) xs)"
by (auto intro!: pdevs_eqI simp: pdevs_apply_map_slist zero_prod_def abs_pdevs_def)
subsection \<open>Filter\<close>
lift_definition filter_slist::"(nat \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> (nat, 'a) slist \<Rightarrow> (nat, 'a) slist"
is "\<lambda>P xs. filter (\<lambda>(i, x). (P i x)) xs"
by (auto simp: o_def filter_map distinct_map rev_map rev_filter sorted_filter
intro: subset_inj_on)
lemma slist_apply_filter_slist: "slist_apply (filter_slist P xs) i =
(if P i (slist_apply xs i) then slist_apply xs i else 0)"
by transfer (force simp: Pdevs_raw_def o_def map_of_eq_None_iff distinct_map_fst_snd_eqD
dest: map_of_SomeD distinct_map_fst_snd_eqD split: option.split)
lemma pdevs_apply_filter_slist: "pdevs_apply (Pdevs (filter_slist P xs)) i =
(if P i (pdevs_apply (Pdevs xs) i) then pdevs_apply (Pdevs xs) i else 0)"
by (simp add: compute_pdevs_apply slist_apply_filter_slist)
lemma compute_filter_pdevs[code]: "filter_pdevs P (Pdevs xs) = Pdevs (filter_slist P xs)"
by (auto simp: pdevs_apply_filter_slist intro!: pdevs_eqI)
subsection \<open>Constant\<close>
lift_definition zero_slist::"(nat, 'a) slist" is "[]" by simp
lemma compute_zero_pdevs[code]: "zero_pdevs = Pdevs (zero_slist)"
by transfer (auto simp: Pdevs_raw_def)
lift_definition One_slist::"(nat, 'a::executable_euclidean_space) slist"
is "rev (zip [0..<length (Basis_list::'a list)] (Basis_list::'a list))"
by (simp add: zip_rev[symmetric])
lemma
map_of_rev_zip_upto_length_eq_nth:
assumes "i < length B" "d = length B"
shows "(map_of (rev (zip [0..<d] B)) i) = Some (B ! i)"
proof -
have "length (rev [0..<length B]) = length (rev B)"
by simp
from map_of_zip_is_Some[OF this, of i] assms
obtain y where y: "map_of (zip (rev [0..<length B]) (rev B)) i = Some y"
by (auto simp: zip_rev)
hence "y = B ! i"
by (auto simp: in_set_zip rev_nth)
with y show ?thesis
by (simp add: zip_rev assms)
qed
lemma
map_of_rev_zip_upto_length_eq_None:
assumes "\<not>i < length B"
assumes "d = length B"
shows "(map_of (rev (zip [0..<d] B)) i) = None"
using assms
by (auto simp: map_of_eq_None_iff in_set_zip)
lemma pdevs_apply_One_slist:
"pdevs_apply (Pdevs One_slist) i =
(if i < length (Basis_list::'a::executable_euclidean_space list)
then (Basis_list::'a list) ! i
else 0)"
by transfer (auto simp: Pdevs_raw_def map_of_rev_zip_upto_length_eq_nth map_of_rev_zip_upto_length_eq_None
in_set_zip split: option.split)
lemma compute_One_pdevs[code]: "One_pdevs = Pdevs One_slist"
by (rule pdevs_eqI) (simp add: pdevs_apply_One_slist)
lift_definition coord_slist::"nat \<Rightarrow> (nat, real) slist" is "\<lambda>i. [(i, 1)]" by simp
lemma compute_coord_pdevs[code]: "coord_pdevs i = Pdevs (coord_slist i)"
by transfer (auto simp: Pdevs_raw_def)
subsection \<open>Update\<close>
primrec update_list::"nat \<Rightarrow> 'a \<Rightarrow> (nat * 'a) list \<Rightarrow> (nat * 'a) list"
where
"update_list n x [] = [(n, x)]"
| "update_list n x (y#ys) =
(if n > fst y then (n, x)#y#ys
else if n = fst y then (n, x)#ys
else y#(update_list n x ys))"
lemma map_of_update_list[simp]: "map_of (update_list n x ys) = (map_of ys)(n:=Some x)"
by (induct ys) auto
lemma in_set_update_listD:
assumes "y \<in> set (update_list n x ys)"
shows "y = (n, x) \<or> (y \<in> set ys)"
using assms
by (induct ys) (auto split: if_split_asm)
lemma in_set_update_listI:
"y = (n, x) \<or> (fst y \<noteq> n \<and> y \<in> set ys) \<Longrightarrow> y \<in> set (update_list n x ys)"
by (induct ys) (auto split: if_split_asm)
lemma in_set_update_list: "(n, x) \<in> set (update_list n x xs)"
by (induct xs) simp_all
lemma overwrite_update_list: "(a, b) \<in> set xs \<Longrightarrow> (a, b) \<notin> set (update_list n x xs) \<Longrightarrow> a = n"
by (induct xs) (auto split: if_split_asm)
lemma insert_update_list:
"distinct (map fst xs) \<Longrightarrow> rsorted (map fst xs) \<Longrightarrow> (a, b) \<in> set (update_list a x xs) \<Longrightarrow> b = x"
by (induct xs) (force split: if_split_asm simp: sorted_append)+
lemma set_update_list_eq: "distinct (map fst xs) \<Longrightarrow> rsorted (map fst xs) \<Longrightarrow>
set (update_list n x xs) = insert (n, x) (set xs - {x. fst x = n})"
by (auto intro!: in_set_update_listI dest: in_set_update_listD simp: insert_update_list)
lift_definition update_slist::"nat \<Rightarrow> 'a \<Rightarrow> (nat, 'a) slist \<Rightarrow> (nat, 'a) slist" is update_list
proof goal_cases
case (1 n a l)
thus ?case
by (induct l) (force simp: sorted_append distinct_map not_less dest!: in_set_update_listD)+
qed
lemma pdevs_apply_update_slist: "pdevs_apply (Pdevs (update_slist n x xs)) i =
(if i = n then x else pdevs_apply (Pdevs xs) i)"
by transfer (auto simp: Pdevs_raw_def)
lemma compute_pdev_upd[code]: "pdev_upd (Pdevs xs) n x = Pdevs (update_slist n x xs)"
by (rule pdevs_eqI) (auto simp: pdevs_apply_update_slist)
subsection \<open>Approximate Total Deviation\<close>
lift_definition fold_slist::"('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> (nat, 'a::zero) slist \<Rightarrow> 'b \<Rightarrow> 'b"
is "\<lambda>f xs z. fold (f o snd) (filter (\<lambda>x. snd x \<noteq> 0) xs) z" .
lemma Pdevs_raw_Cons:
"Pdevs_raw ((a, b) # xs) = (\<lambda>i. if i = a then b else Pdevs_raw xs i)"
by (auto simp: Pdevs_raw_def map_of_eq_None_iff
dest!: map_of_SomeD
split: option.split)
lemma zeros_aux: "- (\<lambda>i. if i = a then b else Pdevs_raw xs i) -` {0} \<subseteq>
- Pdevs_raw xs -` {0} \<union> {a}"
by auto
lemma compute_tdev'[code]:
"tdev' p (Pdevs xs) = fold_slist (\<lambda>a b. eucl_truncate_up p (\<bar>a\<bar> + b)) xs 0"
unfolding tdev'_def sum_list'_def compute_list_of_pdevs
by transfer (auto simp: o_def fold_map)
subsection \<open>Equality\<close>
lemma slist_apply_list_of_slist_eq: "slist_apply a i = the_default 0 (map_of (list_of_slist a) i)"
by (transfer)
(force split: option.split simp: map_of_eq_None_iff distinct_map_fst_snd_eqD
dest!: map_of_SomeD)
lemma compute_equal_pdevs[code]:
"equal_class.equal (Pdevs a) (Pdevs b) \<longleftrightarrow> (list_of_slist a) = (list_of_slist b)"
by (auto intro!: pdevs_eqI simp: equal_pdevs_def compute_pdevs_apply slist_apply_list_of_slist_eq
compute_list_of_pdevs[symmetric])
subsection \<open>From List of Generators\<close>
lift_definition slist_of_list::"'a::zero list \<Rightarrow> (nat, 'a) slist"
is "\<lambda>xs. rev (zip [0..<length xs] xs)"
by (auto simp: rev_map[symmetric] )
lemma slist_apply_slist_of_list:
"slist_apply (slist_of_list xs) i = (if i < length xs then xs ! i else 0)"
by transfer (auto simp: in_set_zip map_of_rev_zip_upto_length_eq_nth map_of_rev_zip_upto_length_eq_None)
lemma compute_pdevs_of_list[code]: "pdevs_of_list xs = Pdevs (slist_of_list xs)"
by (rule pdevs_eqI)
(auto simp: compute_pdevs_apply slist_apply_slist_of_list pdevs_apply_pdevs_of_list)
text \<open>abstraction function which can be used in code equations\<close>
lift_definition abs_slist_if::"('a::linorder\<times>'b) list \<Rightarrow> ('a, 'b) slist"
is "\<lambda>list. if distinct (map fst list) \<and> rsorted (map fst list) then list else []"
by auto
definition "slist = Abs_slist"
lemma [code_post]: "Abs_slist = slist"
by (simp add: slist_def)
lemma [code]: "slist = (\<lambda>xs.
(if distinct (map fst xs) \<and> rsorted (map fst xs) then abs_slist_if xs else Code.abort (STR '''') (\<lambda>_. slist xs)))"
by (auto simp add: slist_def abs_slist_if.abs_eq)
abbreviation "pdevs \<equiv> (\<lambda>x. Pdevs (slist x))"
lift_definition nlex_slist::"(nat, point) slist \<Rightarrow> (nat, point) slist" is
"map (\<lambda>(i, x). (i, if lex 0 x then - x else x))"
by (auto simp: o_def split_beta')
lemma Pdevs_raw_map: "f 0 = 0 \<Longrightarrow> Pdevs_raw (map (\<lambda>(i, x). (i, f x)) xs) i = f (Pdevs_raw xs i)"
by (auto simp: Pdevs_raw_def map_of_map split: option.split)
lemma compute_nlex_pdevs[code]: "nlex_pdevs (Pdevs x) = Pdevs (nlex_slist x)"
by transfer (auto simp: Pdevs_raw_map)
end
|