Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 24,126 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
section \<open>Implementation\<close>
theory Affine_Code
  imports
    Affine_Approximation
    Intersection
begin

text \<open>Implementing partial deviations as sorted lists of coefficients.\<close>

subsection \<open>Reverse Sorted, Distinct Association Lists\<close>

typedef (overloaded) ('a, 'b) slist =
  "{xs::('a::linorder \<times> 'b) list. distinct (map fst xs) \<and> sorted (rev (map fst xs))}"
  by (auto intro!: exI[where x="[]"])

setup_lifting type_definition_slist

lift_definition map_of_slist::"(nat, 'a::zero) slist \<Rightarrow> nat \<Rightarrow> 'a option" is map_of .

lemma finite_dom_map_of_slist[intro, simp]: "finite (dom (map_of_slist xs))"
  by transfer (auto simp: finite_dom_map_of)

abbreviation "the_default a x \<equiv> (case x of None \<Rightarrow> a | Some b \<Rightarrow> b)"

definition "Pdevs_raw xs i = the_default 0 (map_of xs i)"

lemma nonzeros_Pdevs_raw_subset: "{i. Pdevs_raw xs i \<noteq> 0} \<subseteq> dom (map_of xs)"
  unfolding Pdevs_raw_def[abs_def]
  by transfer (auto simp: Pdevs_raw_def split: option.split_asm)

lift_definition Pdevs::"(nat, 'a::zero) slist \<Rightarrow> 'a pdevs"
  is Pdevs_raw
  by (rule finite_subset[OF nonzeros_Pdevs_raw_subset]) (simp add: finite_dom_map_of)

code_datatype Pdevs

subsection \<open>Degree\<close>

primrec degree_list::"(nat \<times> 'a::zero) list \<Rightarrow> nat" where
  "degree_list [] = 0"
| "degree_list (x#xs) = (if snd x = 0 then degree_list xs else Suc (fst x))"

lift_definition degree_slist::"(nat, 'a::zero) slist \<Rightarrow> nat" is degree_list .

lemma degree_list_eq_zeroD:
  assumes "degree_list xs = 0"
  shows "the_default 0 (map_of xs i) = 0"
  using assms
  by (induct xs) (auto simp: Pdevs_raw_def sorted_append split: if_split_asm)

lemma degree_slist_eq_zeroD: "degree_slist xs = 0 \<Longrightarrow> degree (Pdevs xs) = 0"
  unfolding degree_eq_Suc_max
  by transfer (auto dest: degree_list_eq_zeroD simp: Pdevs_raw_def)

lemma degree_slist_eq_SucD: "degree_slist xs = Suc n \<Longrightarrow> pdevs_apply (Pdevs xs) n \<noteq> 0"
proof (transfer, goal_cases)
  case (1 xs n)
  thus ?case
    by (induct xs)
      (auto simp: Pdevs_raw_def sorted_append map_of_eq_None_iff[symmetric]
        split: if_split_asm option.split_asm)
qed

lemma degree_slist_zero:
  "degree_slist xs = n \<Longrightarrow> n \<le> j \<Longrightarrow> pdevs_apply (Pdevs xs) j = 0"
proof (transfer, goal_cases)
  case (1 xs n j)
  thus ?case
    by (induct xs)
      (auto simp: Pdevs_raw_def sorted_append split: if_split_asm option.split)
qed

lemma compute_degree[code]: "degree (Pdevs xs) = degree_slist xs"
  by (cases "degree_slist xs")
    (auto dest: degree_slist_eq_zeroD degree_slist_eq_SucD intro!: degree_eqI degree_slist_zero)


subsection \<open>Auxiliary Definitions\<close>

fun binop where
  "binop f z1 z2 [] [] = []"
| "binop f z1 z2 ((i, x)#xs) [] = (i, f x z2) # binop f z1 z2 xs []"
| "binop f z1 z2 [] ((i, y)#ys) = (i, f z1 y) # binop f z1 z2 [] ys"
| "binop f z1 z2 ((i, x)#xs) ((j, y)#ys) =
    (if (i = j)     then (i, f x y) # binop f z1 z2 xs ys
    else if (i > j) then (i, f x z2) # binop f z1 z2 xs ((j, y)#ys)
    else                 (j, f z1 y) # binop f z1 z2 ((i, x)#xs) ys)"

lemma set_binop_elemD1:
  "(a, b) \<in> set (binop f z1 z2 xs ys) \<Longrightarrow> (a \<in> set (map fst xs) \<or> a \<in> set (map fst ys))"
  by (induct f z1 z2 xs ys rule: binop.induct) (auto split: if_split_asm)

lemma set_binop_elemD2:
  "(a, b) \<in> set (binop f z1 z2 xs ys) \<Longrightarrow>
    (\<exists>x\<in>set (map snd xs). b = f x z2) \<or>
    (\<exists>y\<in>set (map snd ys). b = f z1 y) \<or>
    (\<exists>x\<in>set (map snd xs). \<exists>y\<in>set (map snd ys). b = f x y)"
  by (induct f z1 z2 xs ys rule: binop.induct) (auto split: if_split_asm)

abbreviation "rsorted\<equiv>\<lambda>x. sorted (rev x)"

lemma rsorted_binop:
  fixes xs::"('a::linorder * 'b) list" and ys::"('a::linorder * 'c) list"
  assumes "rsorted ((map fst xs))"
  assumes "rsorted ((map fst ys))"
  shows "rsorted ((map fst (binop f z1 z2 xs ys)))"
  using assms
  by (induct f z1 z2 xs ys rule: binop.induct) (force simp: sorted_append dest!: set_binop_elemD1)+

lemma distinct_binop:
  fixes xs::"('a::linorder * 'b) list" and ys::"('a::linorder * 'c) list"
  assumes "distinct (map fst xs)"
  assumes "distinct (map fst ys)"
  assumes "rsorted ((map fst xs))"
  assumes "rsorted ((map fst ys))"
  shows "distinct (map fst (binop f z1 z2 xs ys))"
  using assms
  by (induct f z1 z2 xs ys rule: binop.induct)
    (force dest!: set_binop_elemD1 simp: sorted_append)+

lemma binop_plus:
  fixes b::"(nat * 'a::euclidean_space) list"
  shows
    "(\<Sum>(i, y)\<leftarrow>binop (+) 0 0 b ba. e i *\<^sub>R y) = (\<Sum>(i, y)\<leftarrow>b. e i *\<^sub>R y) + (\<Sum>(i, y)\<leftarrow>ba. e i *\<^sub>R y)"
  by (induct "(+) ::'a\<Rightarrow>_" "0::'a" "0::'a" b ba rule: binop.induct)
    (auto simp: algebra_simps)

lemma binop_compose:
  "binop (\<lambda>x y. f (g x y)) z1 z2 xs ys = map (apsnd f) (binop g z1 z2 xs ys)"
  by (induct "\<lambda>x y. f (g x y)" z1 z2 xs ys rule: binop.induct) auto

lemma linear_cmul_left[intro, simp]: "linear ((*) x::real \<Rightarrow> _)"
  by (auto intro!: linearI simp: algebra_simps)

lemma length_merge_sorted_eq:
  "length (binop f z1 z2 xs ys) = length (binop g y1 y2 xs ys)"
  by (induction f z1 z2 xs ys rule: binop.induct) auto


subsection \<open>Pointswise Addition\<close>

lift_definition add_slist::"(nat, 'a::{plus, zero}) slist \<Rightarrow> (nat, 'a) slist \<Rightarrow> (nat, 'a) slist" is
  "\<lambda>xs ys. binop (+) 0 0 xs ys"
  by (auto simp: intro!: distinct_binop rsorted_binop)

lemma map_of_binop[simp]: "rsorted (map fst xs) \<Longrightarrow> rsorted (map fst ys) \<Longrightarrow>
  distinct (map fst xs) \<Longrightarrow> distinct (map fst ys) \<Longrightarrow>
  map_of (binop f z1 z2 xs ys) i =
  (case map_of xs i of
    Some x \<Rightarrow> Some (f x (case map_of ys i of Some x \<Rightarrow> x | None \<Rightarrow> z2))
  | None \<Rightarrow> (case map_of ys i of Some y \<Rightarrow> Some (f z1 y) | None \<Rightarrow> None))"
  by (induct f z1 z2 xs ys rule: binop.induct)
    (auto split: option.split option.split_asm simp: sorted_append)

lemma pdevs_apply_Pdevs_add_slist[simp]:
  fixes xs ys::"(nat, 'a::monoid_add) slist"
  shows "pdevs_apply (Pdevs (add_slist xs ys)) i =
    pdevs_apply (Pdevs xs) i + pdevs_apply (Pdevs ys) i"
  by (transfer) (auto simp: Pdevs_raw_def split: option.split)

lemma compute_add_pdevs[code]: "add_pdevs (Pdevs xs) (Pdevs ys) = Pdevs (add_slist xs ys)"
  by (rule pdevs_eqI) simp

subsection \<open>prod of pdevs\<close>

lift_definition prod_slist::"(nat, 'a::zero) slist \<Rightarrow> (nat, 'b::zero) slist \<Rightarrow> (nat, ('a \<times> 'b)) slist" is
  "\<lambda>xs ys. binop Pair 0 0 xs ys"
  by (auto simp: intro!: distinct_binop rsorted_binop)

lemma pdevs_apply_Pdevs_prod_slist[simp]:
  "pdevs_apply (Pdevs (prod_slist xs ys)) i = (pdevs_apply (Pdevs xs) i, pdevs_apply (Pdevs ys) i)"
  by transfer (auto simp: Pdevs_raw_def zero_prod_def split: option.splits)

lemma compute_prod_of_pdevs[code]: "prod_of_pdevs (Pdevs xs) (Pdevs ys) = Pdevs (prod_slist xs ys)"
  by (rule pdevs_eqI) simp


subsection \<open>Set of Coefficients\<close>

lift_definition set_slist::"(nat, 'a::real_vector) slist \<Rightarrow> (nat * 'a) set" is set .

lemma finite_set_slist[intro, simp]: "finite (set_slist xs)"
  by transfer simp

subsection \<open>Domain\<close>

lift_definition list_of_slist::"('a::linorder, 'b::zero) slist \<Rightarrow> ('a * 'b) list"
  is "\<lambda>xs. filter (\<lambda>x. snd x \<noteq> 0) xs" .

lemma compute_pdevs_domain[code]: "pdevs_domain (Pdevs xs) = set (map fst (list_of_slist xs))"
  unfolding pdevs_domain_def
  by transfer (force simp: Pdevs_raw_def split: option.split_asm)

lemma sort_rev_eq_sort: "distinct xs \<Longrightarrow> sort (rev xs) = sort xs"
  by (rule sorted_distinct_set_unique) auto

lemma compute_list_of_pdevs[code]: "list_of_pdevs (Pdevs xs) = list_of_slist xs"
proof -
  have "list_of_pdevs (Pdevs xs) =
    map (\<lambda>i. (i, pdevs_apply (Pdevs xs) i)) (rev (sorted_list_of_set (pdevs_domain (Pdevs xs))))"
    by (simp add: list_of_pdevs_def)
  also have "(sorted_list_of_set (pdevs_domain (Pdevs xs))) = rev (map fst (list_of_slist xs))"
    unfolding compute_pdevs_domain sorted_list_of_set_sort_remdups
  proof (transfer, goal_cases)
    case prems: (1 xs)
    hence distinct: "distinct (map fst [x\<leftarrow>xs . snd x \<noteq> 0])"
      by (auto simp: filter_map distinct_map intro: subset_inj_on)
    with prems show ?case
      using sort_rev_eq_sort[symmetric, OF distinct]
      by (auto simp: rev_map rev_filter distinct_map distinct_remdups_id
        intro!: sorted_sort_id sorted_filter)
  qed
  also
  have "map (\<lambda>i. (i, pdevs_apply (Pdevs xs) i)) (rev \<dots>) = list_of_slist xs"
  proof (transfer, goal_cases)
    case (1 xs)
    thus ?case
      unfolding Pdevs_raw_def o_def rev_rev_ident map_map
      by (subst map_cong[where g="\<lambda>x. x"]) (auto simp: map_filter_map_filter)
  qed
  finally show ?thesis .
qed

lift_definition slist_of_pdevs::"'a pdevs \<Rightarrow> (nat, 'a::real_vector) slist" is list_of_pdevs
  by (auto simp: list_of_pdevs_def rev_map rev_filter
    filter_map o_def distinct_map image_def
    intro!: distinct_filter sorted_filter[of "\<lambda>x. x", simplified])

subsection \<open>Application\<close>

lift_definition slist_apply::"('a::linorder, 'b::zero) slist \<Rightarrow> 'a \<Rightarrow> 'b" is
  "\<lambda>xs i. the_default 0 (map_of xs i)" .

lemma compute_pdevs_apply[code]: "pdevs_apply (Pdevs x) i = slist_apply x i"
  by transfer (auto simp: Pdevs_raw_def)


subsection \<open>Total Deviation\<close>

lift_definition tdev_slist::"(nat, 'a::ordered_euclidean_space) slist \<Rightarrow> 'a" is
  "sum_list o map (abs o snd)" .

lemma tdev_slist_sum: "tdev_slist xs = sum (abs \<circ> snd) (set_slist xs)"
  by transfer (auto simp: distinct_map sum_list_distinct_conv_sum_set[symmetric] o_def)

lemma pdevs_apply_set_slist: "x \<in> set_slist xs \<Longrightarrow> snd x = pdevs_apply (Pdevs xs) (fst x)"
  by transfer (auto simp: Pdevs_raw_def)

lemma
  tdev_list_eq_zeroI:
  shows "(\<And>i. pdevs_apply (Pdevs xs) i = 0) \<Longrightarrow> tdev_slist xs = 0"
  unfolding tdev_slist_sum
  by (auto simp: pdevs_apply_set_slist)

lemma inj_on_fst_set_slist: "inj_on fst (set_slist xs)"
  by transfer (simp add: distinct_map)

lemma pdevs_apply_Pdevs_eq_0:
  "pdevs_apply (Pdevs xs) i = 0 \<longleftrightarrow> ((\<forall>x. (i, x) \<in> set_slist xs \<longrightarrow> x = 0))"
  by transfer (safe, auto simp: Pdevs_raw_def split: option.split)

lemma compute_tdev[code]: "tdev (Pdevs xs) = tdev_slist xs"
proof -
  have "tdev (Pdevs xs) = (\<Sum>i<degree (Pdevs xs). \<bar>pdevs_apply (Pdevs xs) i\<bar>)"
    by (simp add: tdev_def)
  also have "\<dots> =
    (\<Sum>i <degree (Pdevs xs).
      if pdevs_apply (Pdevs xs) i = 0 then 0 else \<bar>pdevs_apply (Pdevs xs) i\<bar>)"
    by (auto intro!: sum.cong)
  also have "\<dots> =
    (\<Sum>i\<in>{0..<degree (Pdevs xs)} \<inter> {x. pdevs_apply (Pdevs xs) x \<noteq> 0}.
      \<bar>pdevs_apply (Pdevs xs) i\<bar>)"
    by (auto simp: sum.If_cases Collect_neg_eq atLeast0LessThan)
  also have "\<dots> = (\<Sum>x\<in>fst ` set_slist xs. \<bar>pdevs_apply (Pdevs xs) x\<bar>)"
    by (rule sum.mono_neutral_cong_left)
      (force simp: pdevs_apply_Pdevs_eq_0 intro!: imageI degree_gt)+
  also have "\<dots> = (\<Sum>x\<in>set_slist xs. \<bar>pdevs_apply (Pdevs xs) (fst x)\<bar>)"
    by (rule sum.reindex_cong[of fst]) (auto simp: inj_on_fst_set_slist)
  also have "\<dots> = tdev_slist xs"
    by (simp add: tdev_slist_sum pdevs_apply_set_slist)
  finally show ?thesis .
qed


subsection \<open>Minkowski Sum\<close>

lemma dropWhile_rsorted_eq_filter:
  "rsorted (map fst xs) \<Longrightarrow> dropWhile (\<lambda>(i, x). i \<ge> (m::nat)) xs = filter (\<lambda>(i, x). i < m) xs"
  (is "_ \<Longrightarrow> ?lhs xs = ?rhs xs")
proof (induct xs)
  case (Cons x xs)
  hence "?rhs (x#xs) = ?lhs (x#xs)"
    by (auto simp: sorted_append filter_id_conv intro: sym)
  thus ?case ..
qed simp

lift_definition msum_slist::"nat \<Rightarrow> (nat, 'a) slist \<Rightarrow> (nat, 'a) slist \<Rightarrow> (nat, 'a) slist"
  is "\<lambda>m xs ys. map (apfst (\<lambda>n. n + m)) ys @ dropWhile (\<lambda>(i, x). i \<ge> m) xs"
proof (safe, goal_cases)
  case (1 n l1 l2)
  then have "set (dropWhile (\<lambda>(i, x). n \<le> i) l1) \<subseteq> set l1"
    by (simp add: set_dropWhileD subrelI)
  with 1 show ?case
    by (auto simp add: distinct_map add.commute [of _ n] intro!: comp_inj_on intro: subset_inj_on)
      (simp add: dropWhile_rsorted_eq_filter)
next
  case prems: (2 n l1 l2)
  hence "sorted (map ((\<lambda>na. na + n) \<circ> fst) (rev l2))"
    by(simp add: sorted_iff_nth_mono rev_map)
  with prems show ?case
    by (auto simp: sorted_append dropWhile_rsorted_eq_filter rev_map rev_filter sorted_filter)
qed

lemma slist_apply_msum_slist:
  "slist_apply (msum_slist m xs ys) i =
    (if i < m then slist_apply xs i else slist_apply ys (i - m))"
proof (transfer, goal_cases)
  case prems: (1 m xs ys i)
  thus ?case
  proof (cases "i \<in> dom (map_of (map (\<lambda>(x, y). (x + m, y)) ys))")
    case False
    have "\<And>a. i < m \<Longrightarrow> i \<notin> fst ` {x \<in> set xs. case x of (i, x) \<Rightarrow> i < m} \<Longrightarrow> (i, a) \<notin> set xs"
      "\<And>a. i \<notin> fst ` set xs \<Longrightarrow> (i, a) \<notin> set xs"
      "\<And>a. m \<le> i \<Longrightarrow> i \<notin> fst ` (\<lambda>(x, y). (x + m, y)) ` set ys \<Longrightarrow> (i - m, a) \<notin> set ys"
       by force+
    thus ?thesis
      using prems False
      by (auto simp add: dropWhile_rsorted_eq_filter map_of_eq_None_iff distinct_map_fst_snd_eqD
        split: option.split dest!: map_of_SomeD)
  qed (force simp: map_of_eq_None_iff distinct_map_fst_snd_eqD
    split: option.split
    dest!: map_of_SomeD)
qed

lemma pdevs_apply_msum_slist:
  "pdevs_apply (Pdevs (msum_slist m xs ys)) i =
    (if i < m then pdevs_apply (Pdevs xs) i else pdevs_apply (Pdevs ys) (i - m))"
  by (auto simp: compute_pdevs_apply slist_apply_msum_slist)

lemma compute_msum_pdevs[code]: "msum_pdevs m (Pdevs xs) (Pdevs ys) = Pdevs (msum_slist m xs ys)"
  by (rule pdevs_eqI) (auto simp: pdevs_apply_msum_slist pdevs_apply_msum_pdevs)


subsection \<open>Unary Operations\<close>

lift_definition map_slist::"('a \<Rightarrow> 'b) \<Rightarrow> (nat, 'a) slist \<Rightarrow> (nat, 'b) slist" is "\<lambda>f. map (apsnd f)"
  by simp

lemma pdevs_apply_map_slist:
  "f 0 = 0 \<Longrightarrow> pdevs_apply (Pdevs (map_slist f xs)) i = f (pdevs_apply (Pdevs xs) i)"
  by transfer
    (force simp: Pdevs_raw_def map_of_eq_None_iff distinct_map_fst_snd_eqD image_def
      split: option.split dest: distinct_map_fst_snd_eqD)

lemma compute_scaleR_pdves[code]: "scaleR_pdevs r (Pdevs xs) = Pdevs (map_slist (\<lambda>x. r *\<^sub>R x) xs)"
  and compute_pdevs_scaleR[code]: "pdevs_scaleR (Pdevs rs) x = Pdevs (map_slist (\<lambda>r. r *\<^sub>R x) rs)"
  and compute_uminus_pdevs[code]: "uminus_pdevs (Pdevs xs) = Pdevs (map_slist (\<lambda>x. - x) xs)"
  and compute_abs_pdevs[code]: "abs_pdevs (Pdevs xs) = Pdevs (map_slist abs xs)"
  and compute_pdevs_inner[code]: "pdevs_inner (Pdevs xs) b = Pdevs (map_slist (\<lambda>x. x \<bullet> b) xs)"
  and compute_pdevs_inner2[code]:
    "pdevs_inner2 (Pdevs xs) b c = Pdevs (map_slist (\<lambda>x. (x \<bullet> b, x \<bullet> c)) xs)"
  and compute_inner_scaleR_pdevs[code]:
    "inner_scaleR_pdevs x (Pdevs ys) = Pdevs (map_slist (\<lambda>y. (x \<bullet> y) *\<^sub>R y) ys)"
  and compute_trunc_pdevs[code]:
    "trunc_pdevs p (Pdevs xs) = Pdevs (map_slist (\<lambda>x. eucl_truncate_down p x) xs)"
  and compute_trunc_err_pdevs[code]:
    "trunc_err_pdevs p (Pdevs xs) = Pdevs (map_slist (\<lambda>x. eucl_truncate_down p x - x) xs)"
  by (auto intro!: pdevs_eqI simp: pdevs_apply_map_slist zero_prod_def abs_pdevs_def)

  
subsection \<open>Filter\<close>

lift_definition filter_slist::"(nat \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> (nat, 'a) slist \<Rightarrow> (nat, 'a) slist"
  is "\<lambda>P xs. filter (\<lambda>(i, x). (P i x)) xs"
  by (auto simp: o_def filter_map distinct_map rev_map rev_filter sorted_filter
    intro: subset_inj_on)

lemma slist_apply_filter_slist: "slist_apply (filter_slist P xs) i =
  (if P i (slist_apply xs i) then slist_apply xs i else 0)"
  by transfer (force simp: Pdevs_raw_def o_def map_of_eq_None_iff distinct_map_fst_snd_eqD
    dest: map_of_SomeD distinct_map_fst_snd_eqD split: option.split)

lemma pdevs_apply_filter_slist: "pdevs_apply (Pdevs (filter_slist P xs)) i =
  (if P i (pdevs_apply (Pdevs xs) i) then pdevs_apply (Pdevs xs) i else 0)"
  by (simp add: compute_pdevs_apply slist_apply_filter_slist)

lemma compute_filter_pdevs[code]: "filter_pdevs P (Pdevs xs) = Pdevs (filter_slist P xs)"
  by (auto simp: pdevs_apply_filter_slist intro!: pdevs_eqI)


subsection \<open>Constant\<close>

lift_definition zero_slist::"(nat, 'a) slist" is "[]" by simp

lemma compute_zero_pdevs[code]: "zero_pdevs = Pdevs (zero_slist)"
  by transfer (auto simp: Pdevs_raw_def)

lift_definition One_slist::"(nat, 'a::executable_euclidean_space) slist"
  is "rev (zip [0..<length (Basis_list::'a list)] (Basis_list::'a list))"
  by (simp add: zip_rev[symmetric])

lemma
  map_of_rev_zip_upto_length_eq_nth:
  assumes "i < length B" "d = length B"
  shows "(map_of (rev (zip [0..<d] B)) i) = Some (B ! i)"
proof -
  have "length (rev [0..<length B]) = length (rev B)"
    by simp
  from map_of_zip_is_Some[OF this, of i] assms
  obtain y where y: "map_of (zip (rev [0..<length B]) (rev B)) i = Some y"
    by (auto simp: zip_rev)
  hence "y = B ! i"
    by (auto simp: in_set_zip rev_nth)
  with y show ?thesis
    by (simp add: zip_rev assms)
qed

lemma
  map_of_rev_zip_upto_length_eq_None:
  assumes "\<not>i < length B"
  assumes "d = length B"
  shows "(map_of (rev (zip [0..<d] B)) i) = None"
  using assms
  by (auto simp: map_of_eq_None_iff in_set_zip)

lemma pdevs_apply_One_slist:
  "pdevs_apply (Pdevs One_slist) i =
    (if i < length (Basis_list::'a::executable_euclidean_space list)
    then (Basis_list::'a list) ! i
    else 0)"
  by transfer (auto simp: Pdevs_raw_def map_of_rev_zip_upto_length_eq_nth map_of_rev_zip_upto_length_eq_None
      in_set_zip split: option.split)
  
lemma compute_One_pdevs[code]: "One_pdevs = Pdevs One_slist"
  by (rule pdevs_eqI) (simp add: pdevs_apply_One_slist)

lift_definition coord_slist::"nat \<Rightarrow> (nat, real) slist" is "\<lambda>i. [(i, 1)]" by simp

lemma compute_coord_pdevs[code]: "coord_pdevs i = Pdevs (coord_slist i)"
  by transfer (auto simp: Pdevs_raw_def)


subsection \<open>Update\<close>

primrec update_list::"nat \<Rightarrow> 'a \<Rightarrow> (nat * 'a) list \<Rightarrow> (nat * 'a) list"
  where
  "update_list n x [] = [(n, x)]"
| "update_list n x (y#ys) =
    (if n > fst y then (n, x)#y#ys
    else if n = fst y then (n, x)#ys
    else y#(update_list n x ys))"

lemma map_of_update_list[simp]: "map_of (update_list n x ys) = (map_of ys)(n:=Some x)"
  by (induct ys) auto

lemma in_set_update_listD:
  assumes "y \<in> set (update_list n x ys)"
  shows "y = (n, x) \<or> (y \<in> set ys)"
  using assms
  by (induct ys) (auto split: if_split_asm)

lemma in_set_update_listI:
  "y = (n, x) \<or> (fst y \<noteq> n \<and> y \<in> set ys) \<Longrightarrow> y \<in> set (update_list n x ys)"
  by (induct ys) (auto split: if_split_asm)

lemma in_set_update_list: "(n, x) \<in> set (update_list n x xs)"
  by (induct xs) simp_all

lemma overwrite_update_list: "(a, b) \<in> set xs \<Longrightarrow> (a, b) \<notin> set (update_list n x xs) \<Longrightarrow> a = n"
  by (induct xs) (auto split: if_split_asm)

lemma insert_update_list:
  "distinct (map fst xs) \<Longrightarrow> rsorted (map fst xs) \<Longrightarrow> (a, b) \<in> set (update_list a x xs) \<Longrightarrow> b = x"
  by (induct xs) (force split: if_split_asm simp: sorted_append)+

lemma set_update_list_eq: "distinct (map fst xs) \<Longrightarrow> rsorted (map fst xs) \<Longrightarrow>
    set (update_list n x xs) = insert (n, x) (set xs - {x. fst x = n})"
  by (auto intro!: in_set_update_listI dest: in_set_update_listD simp: insert_update_list)

lift_definition update_slist::"nat \<Rightarrow> 'a \<Rightarrow> (nat, 'a) slist \<Rightarrow> (nat, 'a) slist" is update_list
proof goal_cases
  case (1 n a l)
  thus ?case
    by (induct l) (force simp: sorted_append distinct_map not_less dest!: in_set_update_listD)+
qed

lemma pdevs_apply_update_slist: "pdevs_apply (Pdevs (update_slist n x xs)) i =
  (if i = n then x else pdevs_apply (Pdevs xs) i)"
  by transfer (auto simp: Pdevs_raw_def)

lemma compute_pdev_upd[code]: "pdev_upd (Pdevs xs) n x = Pdevs (update_slist n x xs)"
  by (rule pdevs_eqI) (auto simp: pdevs_apply_update_slist)


subsection \<open>Approximate Total Deviation\<close>

lift_definition fold_slist::"('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> (nat, 'a::zero) slist \<Rightarrow> 'b \<Rightarrow> 'b"
  is "\<lambda>f xs z. fold (f o snd) (filter (\<lambda>x. snd x \<noteq> 0) xs) z" .

lemma Pdevs_raw_Cons:
  "Pdevs_raw ((a, b) # xs) = (\<lambda>i. if i = a then b else Pdevs_raw xs i)"
  by (auto simp: Pdevs_raw_def map_of_eq_None_iff
    dest!: map_of_SomeD
    split: option.split)

lemma zeros_aux: "- (\<lambda>i. if i = a then b else Pdevs_raw xs i) -` {0} \<subseteq>
  - Pdevs_raw xs -` {0} \<union> {a}"
  by auto

lemma compute_tdev'[code]:
  "tdev' p (Pdevs xs) = fold_slist (\<lambda>a b. eucl_truncate_up p (\<bar>a\<bar> + b)) xs 0"
  unfolding tdev'_def sum_list'_def compute_list_of_pdevs
  by transfer (auto simp: o_def fold_map)

subsection \<open>Equality\<close>

lemma slist_apply_list_of_slist_eq: "slist_apply a i = the_default 0 (map_of (list_of_slist a) i)"
  by (transfer)
    (force split: option.split simp: map_of_eq_None_iff distinct_map_fst_snd_eqD
      dest!: map_of_SomeD)

lemma compute_equal_pdevs[code]:
  "equal_class.equal (Pdevs a) (Pdevs b) \<longleftrightarrow> (list_of_slist a) = (list_of_slist b)"
  by (auto intro!: pdevs_eqI simp: equal_pdevs_def compute_pdevs_apply slist_apply_list_of_slist_eq
    compute_list_of_pdevs[symmetric])


subsection \<open>From List of Generators\<close>

lift_definition slist_of_list::"'a::zero list \<Rightarrow> (nat, 'a) slist"
  is "\<lambda>xs. rev (zip [0..<length xs] xs)"
  by (auto simp: rev_map[symmetric] )

lemma slist_apply_slist_of_list:
  "slist_apply (slist_of_list xs) i = (if i < length xs then xs ! i else 0)"
  by transfer (auto simp: in_set_zip map_of_rev_zip_upto_length_eq_nth map_of_rev_zip_upto_length_eq_None)

lemma compute_pdevs_of_list[code]: "pdevs_of_list xs = Pdevs (slist_of_list xs)"
  by (rule pdevs_eqI)
    (auto simp: compute_pdevs_apply slist_apply_slist_of_list pdevs_apply_pdevs_of_list)

text \<open>abstraction function which can be used in code equations\<close>

lift_definition abs_slist_if::"('a::linorder\<times>'b) list \<Rightarrow> ('a, 'b) slist"
  is "\<lambda>list. if distinct (map fst list) \<and> rsorted (map fst list) then list else []"
  by auto

definition "slist = Abs_slist"

lemma [code_post]: "Abs_slist = slist"
  by (simp add: slist_def)

lemma [code]: "slist = (\<lambda>xs.
  (if distinct (map fst xs) \<and> rsorted (map fst xs) then abs_slist_if xs else Code.abort (STR '''') (\<lambda>_. slist xs)))"
  by (auto simp add: slist_def abs_slist_if.abs_eq)

abbreviation "pdevs \<equiv> (\<lambda>x. Pdevs (slist x))"

lift_definition nlex_slist::"(nat, point) slist \<Rightarrow> (nat, point) slist" is
  "map (\<lambda>(i, x). (i, if lex 0 x then - x else x))"
  by (auto simp: o_def split_beta')

lemma Pdevs_raw_map: "f 0 = 0 \<Longrightarrow> Pdevs_raw (map (\<lambda>(i, x). (i, f x)) xs) i = f (Pdevs_raw xs i)"
  by (auto simp: Pdevs_raw_def map_of_map split: option.split)

lemma compute_nlex_pdevs[code]: "nlex_pdevs (Pdevs x) = Pdevs (nlex_slist x)"
  by transfer (auto simp: Pdevs_raw_map)

end