Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 83,935 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 |
section \<open>Affine Form\<close>
theory Affine_Form
imports
"HOL-Analysis.Multivariate_Analysis"
"HOL-Combinatorics.List_Permutation"
Affine_Arithmetic_Auxiliarities
Executable_Euclidean_Space
begin
subsection \<open>Auxiliary developments\<close>
lemma sum_list_mono:
fixes xs ys::"'a::ordered_ab_group_add list"
shows
"length xs = length ys \<Longrightarrow> (\<And>x y. (x, y) \<in> set (zip xs ys) \<Longrightarrow> x \<le> y) \<Longrightarrow>
sum_list xs \<le> sum_list ys"
by (induct xs ys rule: list_induct2) (auto simp: algebra_simps intro: add_mono)
lemma
fixes xs::"'a::ordered_comm_monoid_add list"
shows sum_list_nonneg: "(\<And>x. x \<in> set xs \<Longrightarrow> x \<ge> 0) \<Longrightarrow> sum_list xs \<ge> 0"
by (induct xs) (auto intro!: add_nonneg_nonneg)
lemma map_filter:
"map f (filter (\<lambda>x. P (f x)) xs) = filter P (map f xs)"
by (induct xs) simp_all
lemma
map_of_zip_upto2_length_eq_nth:
assumes "distinct B"
assumes "i < length B"
shows "(map_of (zip B [0..<length B]) (B ! i)) = Some i"
proof -
have "length [0..<length B] = length B"
by simp
from map_of_zip_is_Some[OF this, of i] assms
have "map_of (zip B [0..<length B]) (B ! i) = Some i"
using assms by (auto simp: in_set_zip)
thus ?thesis by simp
qed
lemma distinct_map_fst_snd_eqD:
"distinct (map fst xs) \<Longrightarrow> (i, a) \<in> set xs \<Longrightarrow> (i, b) \<in> set xs \<Longrightarrow> a = b"
by (metis (lifting) map_of_is_SomeI option.inject)
lemma length_filter_snd_zip:
"length ys = length xs \<Longrightarrow> length (filter (p \<circ> snd) (zip ys xs)) = length (filter p xs)"
by (induct ys xs rule: list_induct2) (auto )
lemma filter_snd_nth:
"length ys = length xs \<Longrightarrow> n < length (filter p xs) \<Longrightarrow>
snd (filter (p \<circ> snd) (zip ys xs) ! n) = filter p xs ! n"
by (induct ys xs arbitrary: n rule: list_induct2) (auto simp: o_def nth_Cons split: nat.split)
lemma distinct_map_snd_fst_eqD:
"distinct (map snd xs) \<Longrightarrow> (i, a) \<in> set xs \<Longrightarrow> (j, a) \<in> set xs \<Longrightarrow> i = j"
by (metis Pair_inject inj_on_contraD snd_conv distinct_map)
lemma map_of_mapk_inj_on_SomeI:
"inj_on f (fst ` (set t)) \<Longrightarrow> map_of t k = Some x \<Longrightarrow>
map_of (map (case_prod (\<lambda>k. Pair (f k))) t) (f k) = Some x"
by (induct t) (auto simp add: inj_on_def dest!: map_of_SomeD split: if_split_asm)
lemma map_abs_nonneg[simp]:
fixes xs::"'a::ordered_ab_group_add_abs list"
shows "list_all (\<lambda>x. x \<ge> 0) xs \<Longrightarrow> map abs xs = xs"
by (induct xs) auto
lemma the_inv_into_image_eq: "inj_on f A \<Longrightarrow> Y \<subseteq> f ` A \<Longrightarrow> the_inv_into A f ` Y = f -` Y \<inter> A"
using f_the_inv_into_f the_inv_into_f_f[where f = f and A = A]
by force
lemma image_fst_zip: "length ys = length xs \<Longrightarrow> fst ` set (zip ys xs) = set ys"
by (metis dom_map_of_conv_image_fst dom_map_of_zip)
lemma inj_on_fst_set_zip_distinct[simp]:
"distinct xs \<Longrightarrow> length xs = length ys \<Longrightarrow> inj_on fst (set (zip xs ys))"
by (force simp add: in_set_zip distinct_conv_nth intro!: inj_onI)
lemma mem_greaterThanLessThan_absI:
fixes x::real
assumes "abs x < 1"
shows "x \<in> {-1 <..< 1}"
using assms by (auto simp: abs_real_def split: if_split_asm)
lemma minus_one_less_divideI: "b > 0 \<Longrightarrow> -b < a \<Longrightarrow> -1 < a / (b::real)"
by (auto simp: field_simps)
lemma divide_less_oneI: "b > 0 \<Longrightarrow> b > a \<Longrightarrow> a / (b::real) < 1"
by (auto simp: field_simps)
lemma closed_segment_real:
fixes a b::real
shows "closed_segment a b = (if a \<le> b then {a .. b} else {b .. a})" (is "_ = ?if")
proof safe
fix x assume "x \<in> closed_segment a b"
from segment_bound[OF this]
show "x \<in> ?if" by (auto simp: abs_real_def split: if_split_asm)
next
fix x
assume "x \<in> ?if"
thus "x \<in> closed_segment a b"
by (auto simp: closed_segment_def intro!: exI[where x="(x - a)/(b - a)"]
simp: divide_simps algebra_simps)
qed
subsection \<open>Partial Deviations\<close>
typedef (overloaded) 'a pdevs = "{x::nat \<Rightarrow> 'a::zero. finite {i. x i \<noteq> 0}}"
\<comment> \<open>TODO: unify with polynomials\<close>
morphisms pdevs_apply Abs_pdev
by (auto intro!: exI[where x="\<lambda>x. 0"])
setup_lifting type_definition_pdevs
lemma pdevs_eqI: "(\<And>i. pdevs_apply x i = pdevs_apply y i) \<Longrightarrow> x = y"
by transfer auto
definition pdevs_val :: "(nat \<Rightarrow> real) \<Rightarrow> 'a::real_normed_vector pdevs \<Rightarrow> 'a"
where "pdevs_val e x = (\<Sum>i. e i *\<^sub>R pdevs_apply x i)"
definition valuate:: "((nat \<Rightarrow> real) \<Rightarrow> 'a) \<Rightarrow> 'a set"
where "valuate x = x ` (UNIV \<rightarrow> {-1 .. 1})"
lemma valuate_ex: "x \<in> valuate f \<longleftrightarrow> (\<exists>e. (\<forall>i. e i \<in> {-1 .. 1}) \<and> x = f e)"
unfolding valuate_def
by (auto simp add: valuate_def Pi_iff) blast
instantiation pdevs :: (equal) equal
begin
definition equal_pdevs::"'a pdevs \<Rightarrow> 'a pdevs \<Rightarrow> bool"
where "equal_pdevs a b \<longleftrightarrow> a = b"
instance proof qed (simp add: equal_pdevs_def)
end
subsection \<open>Affine Forms\<close>
text \<open>The data structure of affine forms represents particular sets, zonotopes\<close>
type_synonym 'a aform = "'a \<times> 'a pdevs"
subsection \<open>Evaluation, Range, Joint Range\<close>
definition aform_val :: "(nat \<Rightarrow> real) \<Rightarrow> 'a::real_normed_vector aform \<Rightarrow> 'a"
where "aform_val e X = fst X + pdevs_val e (snd X)"
definition Affine ::
"'a::real_normed_vector aform \<Rightarrow> 'a set"
where "Affine X = valuate (\<lambda>e. aform_val e X)"
definition Joints ::
"'a::real_normed_vector aform list \<Rightarrow> 'a list set"
where "Joints XS = valuate (\<lambda>e. map (aform_val e) XS)"
lemma Joints_nthE:
assumes "zs \<in> Joints ZS"
obtains e where
"\<And>i. i < length zs \<Longrightarrow> zs ! i = aform_val e (ZS ! i)"
"\<And>i. e i \<in> {-1..1}"
using assms
by atomize_elim (auto simp: Joints_def Pi_iff valuate_ex)
lemma Joints_mapE:
assumes "ys \<in> Joints YS"
obtains e where
"ys = map (\<lambda>x. aform_val e x) YS"
"\<And>i. e i \<in> {-1 .. 1}"
using assms
by (force simp: Joints_def valuate_def)
lemma
zipped_subset_mapped_Elem:
assumes "xs = map (aform_val e) XS"
assumes e: "\<And>i. e i \<in> {-1 .. 1}"
assumes [simp]: "length xs = length XS"
assumes [simp]: "length ys = length YS"
assumes "set (zip ys YS) \<subseteq> set (zip xs XS)"
shows "ys = map (aform_val e) YS"
proof -
from assms have ys: "\<And>i. i < length xs \<Longrightarrow> xs ! i = aform_val e (XS ! i)"
by auto
from assms have set_eq: "{(ys ! i, YS ! i) |i. i < length ys \<and> i < length YS} \<subseteq>
{(xs ! i, XS ! i) |i. i < length xs \<and> i < length XS}"
using assms(2)
by (auto simp: set_zip)
hence "\<forall>i<length YS. \<exists>j<length XS. ys ! i = xs ! j \<and> YS ! i = XS ! j"
by auto
then obtain j where j: "\<And>i. i < length YS \<Longrightarrow> ys ! i = xs ! (j i)"
"\<And>i. i < length YS \<Longrightarrow> YS ! i = XS ! (j i)"
"\<And>i. i < length YS \<Longrightarrow> j i < length XS"
by metis
show ?thesis
using assms
by (auto simp: Joints_def j ys intro!: exI[where x=e] nth_equalityI)
qed
lemma Joints_set_zip_subset:
assumes "xs \<in> Joints XS"
assumes "length xs = length XS"
assumes "length ys = length YS"
assumes "set (zip ys YS) \<subseteq> set (zip xs XS)"
shows "ys \<in> Joints YS"
proof -
from Joints_mapE assms obtain e where
ys: "xs = map (\<lambda>x. aform_val e x) XS"
and e: "\<And>i. e i \<in> {-1 .. 1}"
by blast
show "ys \<in> Joints YS"
using e zipped_subset_mapped_Elem[OF ys e assms(2-4)]
by (auto simp: Joints_def valuate_def intro!: exI[where x=e])
qed
lemma Joints_set_zip:
assumes "ys \<in> Joints YS"
assumes "length xs = length XS"
assumes "length YS = length XS"
assumes sets_eq: "set (zip xs XS) = set (zip ys YS)"
shows "xs \<in> Joints XS"
proof -
from assms have "length ys = length YS"
by (auto simp: Joints_def valuate_def)
from assms(1) this assms(2) show ?thesis
by (rule Joints_set_zip_subset) (simp add: assms)
qed
definition Joints2 ::
"'a::real_normed_vector aform list \<Rightarrow>'b::real_normed_vector aform \<Rightarrow> ('a list \<times> 'b) set"
where "Joints2 XS Y = valuate (\<lambda>e. (map (aform_val e) XS, aform_val e Y))"
lemma Joints2E:
assumes "zs_y \<in> Joints2 ZS Y"
obtains e where
"\<And>i. i < length (fst zs_y) \<Longrightarrow> (fst zs_y) ! i = aform_val e (ZS ! i)"
"snd (zs_y) = aform_val e Y"
"\<And>i. e i \<in> {-1..1}"
using assms
by atomize_elim (auto simp: Joints2_def Pi_iff valuate_ex)
lemma nth_in_AffineI:
assumes "xs \<in> Joints XS"
assumes "i < length XS"
shows "xs ! i \<in> Affine (XS ! i)"
using assms by (force simp: Affine_def Joints_def valuate_def)
lemma Cons_nth_in_Joints1:
assumes "xs \<in> Joints XS"
assumes "i < length XS"
shows "((xs ! i) # xs) \<in> Joints ((XS ! i) # XS)"
using assms by (force simp: Joints_def valuate_def)
lemma Cons_nth_in_Joints2:
assumes "xs \<in> Joints XS"
assumes "i < length XS"
assumes "j < length XS"
shows "((xs ! i) #(xs ! j) # xs) \<in> Joints ((XS ! i)#(XS ! j) # XS)"
using assms by (force simp: Joints_def valuate_def)
lemma Joints_swap:
"x#y#xs\<in>Joints (X#Y#XS) \<longleftrightarrow> y#x#xs \<in> Joints (Y#X#XS)"
by (force simp: Joints_def valuate_def)
lemma Joints_swap_Cons_append:
"length xs = length XS \<Longrightarrow> x#ys@xs\<in>Joints (X#YS@XS) \<longleftrightarrow> ys@x#xs \<in> Joints (YS@X#XS)"
by (auto simp: Joints_def valuate_def)
lemma Joints_ConsD:
"x#xs\<in>Joints (X#XS) \<Longrightarrow> xs \<in> Joints XS"
by (force simp: Joints_def valuate_def)
lemma Joints_appendD1:
"ys@xs\<in>Joints (YS@XS) \<Longrightarrow> length xs = length XS \<Longrightarrow> xs \<in> Joints XS"
by (force simp: Joints_def valuate_def)
lemma Joints_appendD2:
"ys@xs\<in>Joints (YS@XS) \<Longrightarrow> length ys = length YS \<Longrightarrow> ys \<in> Joints YS"
by (force simp: Joints_def valuate_def)
lemma Joints_imp_length_eq: "xs \<in> Joints XS \<Longrightarrow> length xs = length XS"
by (auto simp: Joints_def valuate_def)
lemma Joints_rotate[simp]: "xs@[x] \<in> Joints (XS @[X]) \<longleftrightarrow> x#xs \<in> Joints (X#XS)"
by (auto simp: Joints_def valuate_def)
subsection \<open>Domain\<close>
definition "pdevs_domain x = {i. pdevs_apply x i \<noteq> 0}"
lemma finite_pdevs_domain[intro, simp]: "finite (pdevs_domain x)"
unfolding pdevs_domain_def by transfer
lemma in_pdevs_domain[simp]: "i \<in> pdevs_domain x \<longleftrightarrow> pdevs_apply x i \<noteq> 0"
by (auto simp: pdevs_domain_def)
subsection \<open>Least Fresh Index\<close>
definition degree::"'a::real_vector pdevs \<Rightarrow> nat"
where "degree x = (LEAST i. \<forall>j\<ge>i. pdevs_apply x j = 0)"
lemma degree[rule_format, intro, simp]:
shows "\<forall>j\<ge>degree x. pdevs_apply x j = 0"
unfolding degree_def
proof (rule LeastI_ex)
have "\<And>j. j > Max (pdevs_domain x) \<Longrightarrow> j \<notin> (pdevs_domain x)"
by (metis Max_less_iff all_not_in_conv less_irrefl_nat finite_pdevs_domain)
then show "\<exists>xa. \<forall>j\<ge>xa. pdevs_apply x j = 0"
by (auto intro!: exI[where x="Max (pdevs_domain x) + 1"])
qed
lemma degree_le:
assumes d: "\<forall>j \<ge> d. pdevs_apply x j = 0"
shows "degree x \<le> d"
unfolding degree_def
by (rule Least_le) (rule d)
lemma degree_gt: "pdevs_apply x j \<noteq> 0 \<Longrightarrow> degree x > j"
by auto
lemma pdevs_val_pdevs_domain: "pdevs_val e X = (\<Sum>i\<in>pdevs_domain X. e i *\<^sub>R pdevs_apply X i)"
by (auto simp: pdevs_val_def intro!: suminf_finite)
lemma pdevs_val_sum_le: "degree X \<le> d \<Longrightarrow> pdevs_val e X = (\<Sum>i < d. e i *\<^sub>R pdevs_apply X i)"
by (force intro!: degree_gt sum.mono_neutral_cong_left simp: pdevs_val_pdevs_domain)
lemmas pdevs_val_sum = pdevs_val_sum_le[OF order_refl]
lemma pdevs_val_zero[simp]: "pdevs_val (\<lambda>_. 0) x = 0"
by (auto simp: pdevs_val_sum)
lemma degree_eqI:
assumes "pdevs_apply x d \<noteq> 0"
assumes "\<And>j. j > d \<Longrightarrow> pdevs_apply x j = 0"
shows "degree x = Suc d"
unfolding eq_iff
by (auto intro!: degree_gt degree_le assms simp: Suc_le_eq)
lemma finite_degree_nonzero[intro, simp]: "finite {i. pdevs_apply x i \<noteq> 0}"
by transfer (auto simp: vimage_def Collect_neg_eq)
lemma degree_eq_Suc_max:
"degree x = (if (\<forall>i. pdevs_apply x i = 0) then 0 else Suc (Max {i. pdevs_apply x i \<noteq> 0}))"
proof -
{
assume "\<And>i. pdevs_apply x i = 0"
hence ?thesis
by auto (metis degree_le le_0_eq)
} moreover {
fix i assume "pdevs_apply x i \<noteq> 0"
hence ?thesis
using Max_in[OF finite_degree_nonzero, of x]
by (auto intro!: degree_eqI) (metis Max.coboundedI[OF finite_degree_nonzero] in_pdevs_domain
le_eq_less_or_eq less_asym pdevs_domain_def)
} ultimately show ?thesis
by blast
qed
lemma pdevs_val_degree_cong:
assumes "b = d"
assumes "\<And>i. i < degree b \<Longrightarrow> a i = c i"
shows "pdevs_val a b = pdevs_val c d"
using assms
by (auto simp: pdevs_val_sum)
abbreviation degree_aform::"'a::real_vector aform \<Rightarrow> nat"
where "degree_aform X \<equiv> degree (snd X)"
lemma degree_cong: "(\<And>i. (pdevs_apply x i = 0) = (pdevs_apply y i = 0)) \<Longrightarrow> degree x = degree y"
unfolding degree_def
by auto
lemma Least_True_nat[intro, simp]: "(LEAST i::nat. True) = 0"
by (metis (lifting) One_nat_def less_one not_less_Least not_less_eq)
lemma sorted_list_of_pdevs_domain_eq:
"sorted_list_of_set (pdevs_domain X) = filter ((\<noteq>) 0 o pdevs_apply X) [0..<degree X]"
by (auto simp: degree_gt intro!: sorted_distinct_set_unique sorted_filter[of "\<lambda>x. x", simplified])
subsection \<open>Total Deviation\<close>
definition tdev::"'a::ordered_euclidean_space pdevs \<Rightarrow> 'a" where
"tdev x = (\<Sum>i<degree x. \<bar>pdevs_apply x i\<bar>)"
lemma abs_pdevs_val_le_tdev: "e \<in> UNIV \<rightarrow> {-1 .. 1} \<Longrightarrow> \<bar>pdevs_val e x\<bar> \<le> tdev x"
by (force simp: pdevs_val_sum tdev_def abs_scaleR Pi_iff
intro!: order_trans[OF sum_abs] sum_mono scaleR_left_le_one_le
intro: abs_leI)
subsection \<open>Binary Pointwise Operations\<close>
definition binop_pdevs_raw::"('a::zero \<Rightarrow> 'b::zero \<Rightarrow> 'c::zero) \<Rightarrow>
(nat \<Rightarrow> 'a) \<Rightarrow> (nat \<Rightarrow> 'b) \<Rightarrow> nat \<Rightarrow> 'c"
where "binop_pdevs_raw f x y i = (if x i = 0 \<and> y i = 0 then 0 else f (x i) (y i))"
lemma nonzeros_binop_pdevs_subset:
"{i. binop_pdevs_raw f x y i \<noteq> 0} \<subseteq> {i. x i \<noteq> 0} \<union> {i. y i \<noteq> 0}"
by (auto simp: binop_pdevs_raw_def)
lift_definition binop_pdevs::
"('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a::zero pdevs \<Rightarrow> 'b::zero pdevs \<Rightarrow> 'c::zero pdevs"
is binop_pdevs_raw
using nonzeros_binop_pdevs_subset
by (rule finite_subset) auto
lemma pdevs_apply_binop_pdevs[simp]: "pdevs_apply (binop_pdevs f x y) i =
(if pdevs_apply x i = 0 \<and> pdevs_apply y i = 0 then 0 else f (pdevs_apply x i) (pdevs_apply y i))"
by transfer (auto simp: binop_pdevs_raw_def)
subsection \<open>Addition\<close>
definition add_pdevs::"'a::real_vector pdevs \<Rightarrow> 'a pdevs \<Rightarrow> 'a pdevs"
where "add_pdevs = binop_pdevs (+)"
lemma pdevs_apply_add_pdevs[simp]:
"pdevs_apply (add_pdevs X Y) n = pdevs_apply X n + pdevs_apply Y n"
by (auto simp: add_pdevs_def)
lemma pdevs_val_add_pdevs[simp]:
fixes x y::"'a::euclidean_space"
shows "pdevs_val e (add_pdevs X Y) = pdevs_val e X + pdevs_val e Y"
proof -
let ?sum = "\<lambda>m X. \<Sum>i < m. e i *\<^sub>R pdevs_apply X i"
let ?m = "max (degree X) (degree Y)"
have "pdevs_val e X + pdevs_val e Y = ?sum (degree X) X + ?sum (degree Y) Y"
by (simp add: pdevs_val_sum)
also have "?sum (degree X) X = ?sum ?m X"
by (rule sum.mono_neutral_cong_left) auto
also have "?sum (degree Y) Y = ?sum ?m Y"
by (rule sum.mono_neutral_cong_left) auto
also have "?sum ?m X + ?sum ?m Y = (\<Sum>i < ?m. e i *\<^sub>R (pdevs_apply X i + pdevs_apply Y i))"
by (simp add: scaleR_right_distrib sum.distrib)
also have "\<dots> = (\<Sum>i. e i *\<^sub>R (pdevs_apply X i + pdevs_apply Y i))"
by (rule suminf_finite[symmetric]) auto
also have "\<dots> = pdevs_val e (add_pdevs X Y)"
by (simp add: pdevs_val_def)
finally show "pdevs_val e (add_pdevs X Y) = pdevs_val e X + pdevs_val e Y" by simp
qed
subsection \<open>Total Deviation\<close>
lemma tdev_eq_zero_iff: fixes X::"real pdevs" shows "tdev X = 0 \<longleftrightarrow> (\<forall>e. pdevs_val e X = 0)"
by (force simp add: pdevs_val_sum tdev_def sum_nonneg_eq_0_iff
dest!: spec[where x="\<lambda>i. if pdevs_apply X i \<ge> 0 then 1 else -1"] split: if_split_asm)
lemma tdev_nonneg[intro, simp]: "tdev X \<ge> 0"
by (auto simp: tdev_def)
lemma tdev_nonpos_iff[simp]: "tdev X \<le> 0 \<longleftrightarrow> tdev X = 0"
by (auto simp: order.antisym)
subsection \<open>Unary Operations\<close>
definition unop_pdevs_raw::
"('a::zero \<Rightarrow> 'b::zero) \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'b"
where "unop_pdevs_raw f x i = (if x i = 0 then 0 else f (x i))"
lemma nonzeros_unop_pdevs_subset: "{i. unop_pdevs_raw f x i \<noteq> 0} \<subseteq> {i. x i \<noteq> 0}"
by (auto simp: unop_pdevs_raw_def)
lift_definition unop_pdevs::
"('a \<Rightarrow> 'b) \<Rightarrow> 'a::zero pdevs \<Rightarrow> 'b::zero pdevs"
is unop_pdevs_raw
using nonzeros_unop_pdevs_subset
by (rule finite_subset) auto
lemma pdevs_apply_unop_pdevs[simp]: "pdevs_apply (unop_pdevs f x) i =
(if pdevs_apply x i = 0 then 0 else f (pdevs_apply x i))"
by transfer (auto simp: unop_pdevs_raw_def)
lemma pdevs_domain_unop_linear:
assumes "linear f"
shows "pdevs_domain (unop_pdevs f x) \<subseteq> pdevs_domain x"
proof -
interpret f: linear f by fact
show ?thesis
by (auto simp: f.zero)
qed
lemma
pdevs_val_unop_linear:
assumes "linear f"
shows "pdevs_val e (unop_pdevs f x) = f (pdevs_val e x)"
proof -
interpret f: linear f by fact
have *: "\<And>i. (if pdevs_apply x i = 0 then 0 else f (pdevs_apply x i)) = f (pdevs_apply x i)"
by (auto simp: f.zero)
have "pdevs_val e (unop_pdevs f x) =
(\<Sum>i\<in>pdevs_domain (unop_pdevs f x). e i *\<^sub>R f (pdevs_apply x i))"
by (auto simp add: pdevs_val_pdevs_domain *)
also have "\<dots> = (\<Sum>xa\<in>pdevs_domain x. e xa *\<^sub>R f (pdevs_apply x xa))"
by (auto intro!: sum.mono_neutral_cong_left)
also have "\<dots> = f (pdevs_val e x)"
by (auto simp add: pdevs_val_pdevs_domain f.sum f.scaleR)
finally show ?thesis .
qed
subsection \<open>Pointwise Scaling of Partial Deviations\<close>
definition scaleR_pdevs::"real \<Rightarrow> 'a::real_vector pdevs \<Rightarrow> 'a pdevs"
where "scaleR_pdevs r x = unop_pdevs ((*\<^sub>R) r) x"
lemma pdevs_apply_scaleR_pdevs[simp]:
"pdevs_apply (scaleR_pdevs x Y) n = x *\<^sub>R pdevs_apply Y n"
by (auto simp: scaleR_pdevs_def)
lemma degree_scaleR_pdevs[simp]: "degree (scaleR_pdevs r x) = (if r = 0 then 0 else degree x)"
unfolding degree_def
by auto
lemma pdevs_val_scaleR_pdevs[simp]:
fixes x::real and Y::"'a::real_normed_vector pdevs"
shows "pdevs_val e (scaleR_pdevs x Y) = x *\<^sub>R pdevs_val e Y"
by (auto simp: pdevs_val_sum scaleR_sum_right ac_simps)
subsection \<open>Partial Deviations Scale Pointwise\<close>
definition pdevs_scaleR::"real pdevs \<Rightarrow> 'a::real_vector \<Rightarrow> 'a pdevs"
where "pdevs_scaleR r x = unop_pdevs (\<lambda>r. r *\<^sub>R x) r"
lemma pdevs_apply_pdevs_scaleR[simp]:
"pdevs_apply (pdevs_scaleR X y) n = pdevs_apply X n *\<^sub>R y"
by (auto simp: pdevs_scaleR_def)
lemma degree_pdevs_scaleR[simp]: "degree (pdevs_scaleR r x) = (if x = 0 then 0 else degree r)"
unfolding degree_def
by auto
lemma pdevs_val_pdevs_scaleR[simp]:
fixes X::"real pdevs" and y::"'a::real_normed_vector"
shows "pdevs_val e (pdevs_scaleR X y) = pdevs_val e X *\<^sub>R y"
by (auto simp: pdevs_val_sum scaleR_sum_left)
subsection \<open>Pointwise Unary Minus\<close>
definition uminus_pdevs::"'a::real_vector pdevs \<Rightarrow> 'a pdevs"
where "uminus_pdevs = unop_pdevs uminus"
lemma pdevs_apply_uminus_pdevs[simp]: "pdevs_apply (uminus_pdevs x) = - pdevs_apply x"
by (auto simp: uminus_pdevs_def)
lemma degree_uminus_pdevs[simp]: "degree (uminus_pdevs x) = degree x"
by (rule degree_cong) simp
lemma pdevs_val_uminus_pdevs[simp]: "pdevs_val e (uminus_pdevs x) = - pdevs_val e x"
unfolding pdevs_val_sum
by (auto simp: sum_negf)
definition "uminus_aform X = (- fst X, uminus_pdevs (snd X))"
lemma fst_uminus_aform[simp]: "fst (uminus_aform Y) = - fst Y"
by (simp add: uminus_aform_def)
lemma aform_val_uminus_aform[simp]: "aform_val e (uminus_aform X) = - aform_val e X"
by (auto simp: uminus_aform_def aform_val_def)
subsection \<open>Constant\<close>
lift_definition zero_pdevs::"'a::zero pdevs" is "\<lambda>_. 0" by simp
lemma pdevs_apply_zero_pdevs[simp]: "pdevs_apply zero_pdevs i = 0"
by transfer simp
lemma pdevs_val_zero_pdevs[simp]: "pdevs_val e zero_pdevs = 0"
by (auto simp: pdevs_val_def)
definition "num_aform f = (f, zero_pdevs)"
subsection \<open>Inner Product\<close>
definition pdevs_inner::"'a::euclidean_space pdevs \<Rightarrow> 'a \<Rightarrow> real pdevs"
where "pdevs_inner x b = unop_pdevs (\<lambda>x. x \<bullet> b) x"
lemma pdevs_apply_pdevs_inner[simp]: "pdevs_apply (pdevs_inner p a) i = pdevs_apply p i \<bullet> a"
by (simp add: pdevs_inner_def)
lemma pdevs_val_pdevs_inner[simp]: "pdevs_val e (pdevs_inner p a) = pdevs_val e p \<bullet> a"
by (auto simp add: inner_sum_left pdevs_val_pdevs_domain intro!: sum.mono_neutral_cong_left)
definition inner_aform::"'a::euclidean_space aform \<Rightarrow> 'a \<Rightarrow> real aform"
where "inner_aform X b = (fst X \<bullet> b, pdevs_inner (snd X) b)"
subsection \<open>Inner Product Pair\<close>
definition inner2::"'a::euclidean_space \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> real*real"
where "inner2 x n l = (x \<bullet> n, x \<bullet> l)"
definition pdevs_inner2::"'a::euclidean_space pdevs \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> (real*real) pdevs"
where "pdevs_inner2 X n l = unop_pdevs (\<lambda>x. inner2 x n l) X"
lemma pdevs_apply_pdevs_inner2[simp]: "pdevs_apply (pdevs_inner2 p a b) i = (pdevs_apply p i \<bullet> a, pdevs_apply p i \<bullet> b)"
by (simp add: pdevs_inner2_def inner2_def zero_prod_def)
definition inner2_aform::"'a::euclidean_space aform \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> (real*real) aform"
where "inner2_aform X a b = (inner2 (fst X) a b, pdevs_inner2 (snd X) a b)"
lemma linear_inner2[intro, simp]: "linear (\<lambda>x. inner2 x n i)"
by unfold_locales (auto simp: inner2_def algebra_simps)
lemma aform_val_inner2_aform[simp]: "aform_val e (inner2_aform Z n i) = inner2 (aform_val e Z) n i"
proof -
have "aform_val e (inner2_aform Z n i) = inner2 (fst Z) n i + inner2 (pdevs_val e (snd Z)) n i"
by (auto simp: aform_val_def inner2_aform_def pdevs_inner2_def pdevs_val_unop_linear)
also have "\<dots> = inner2 (aform_val e Z) n i"
by (simp add: inner2_def algebra_simps aform_val_def)
finally show ?thesis .
qed
subsection \<open>Update\<close>
lemma pdevs_val_upd[simp]:
"pdevs_val (e(n := e')) X = pdevs_val e X - e n * pdevs_apply X n + e' * pdevs_apply X n"
unfolding pdevs_val_def
by (subst suminf_finite[OF finite.insertI[OF finite_degree_nonzero], of n X],
auto simp: pdevs_val_def sum.insert_remove)+
lemma nonzeros_fun_upd:
"{i. (f(n := a)) i \<noteq> 0} \<subseteq> {i. f i \<noteq> 0} \<union> {n}"
by (auto split: if_split_asm)
lift_definition pdev_upd::"'a::real_vector pdevs \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a pdevs"
is "\<lambda>x n a. x(n:=a)"
by (rule finite_subset[OF nonzeros_fun_upd]) simp
lemma pdevs_apply_pdev_upd[simp]:
"pdevs_apply (pdev_upd X n x) = (pdevs_apply X)(n:=x)"
by transfer simp
lemma pdevs_val_pdev_upd[simp]:
"pdevs_val e (pdev_upd X n x) = pdevs_val e X + e n *\<^sub>R x - e n *\<^sub>R pdevs_apply X n"
unfolding pdevs_val_def
by (subst suminf_finite[OF finite.insertI[OF finite_degree_nonzero], of n X],
auto simp: pdevs_val_def sum.insert_remove)+
lemma degree_pdev_upd:
assumes "x = 0 \<longleftrightarrow> pdevs_apply X n = 0"
shows "degree (pdev_upd X n x) = degree X"
using assms
by (auto intro!: degree_cong split: if_split_asm)
lemma degree_pdev_upd_le:
assumes "degree X \<le> n"
shows "degree (pdev_upd X n x) \<le> Suc n"
using assms
by (auto intro!: degree_le)
subsection \<open>Inf/Sup\<close>
definition "Inf_aform X = fst X - tdev (snd X)"
definition "Sup_aform X = fst X + tdev (snd X)"
lemma Inf_aform:
assumes "e \<in> UNIV \<rightarrow> {-1 .. 1}"
shows "Inf_aform X \<le> aform_val e X"
using order_trans[OF abs_ge_minus_self abs_pdevs_val_le_tdev[OF assms]]
by (auto simp: Inf_aform_def aform_val_def minus_le_iff)
lemma Sup_aform:
assumes "e \<in> UNIV \<rightarrow> {-1 .. 1}"
shows "aform_val e X \<le> Sup_aform X"
using order_trans[OF abs_ge_self abs_pdevs_val_le_tdev[OF assms]]
by (auto simp: Sup_aform_def aform_val_def)
subsection \<open>Minkowski Sum\<close>
definition msum_pdevs_raw::"nat\<Rightarrow>(nat \<Rightarrow> 'a::real_vector)\<Rightarrow>(nat \<Rightarrow> 'a)\<Rightarrow>(nat\<Rightarrow>'a)" where
"msum_pdevs_raw n x y i = (if i < n then x i else y (i - n))"
lemma nonzeros_msum_pdevs_raw:
"{i. msum_pdevs_raw n f g i \<noteq> 0} = ({0..<n} \<inter> {i. f i \<noteq> 0}) \<union> (+) n ` ({i. g i \<noteq> 0})"
by (force simp: msum_pdevs_raw_def not_less split: if_split_asm)
lift_definition msum_pdevs::"nat\<Rightarrow>'a::real_vector pdevs\<Rightarrow>'a pdevs\<Rightarrow>'a pdevs" is msum_pdevs_raw
unfolding nonzeros_msum_pdevs_raw by simp
lemma pdevs_apply_msum_pdevs: "pdevs_apply (msum_pdevs n f g) i =
(if i < n then pdevs_apply f i else pdevs_apply g (i - n))"
by transfer (auto simp: msum_pdevs_raw_def)
lemma degree_least_nonzero:
assumes "degree f \<noteq> 0"
shows "pdevs_apply f (degree f - 1) \<noteq> 0"
proof
assume H: "pdevs_apply f (degree f - 1) = 0"
{
fix j
assume "j\<ge>degree f - 1"
with H have "pdevs_apply f j = 0"
by (cases "degree f - 1 = j") auto
}
from degree_le[rule_format, OF this]
have "degree f \<le> degree f - 1"
by blast
with assms show False by simp
qed
lemma degree_leI:
assumes "(\<And>i. pdevs_apply y i = 0 \<Longrightarrow> pdevs_apply x i = 0)"
shows "degree x \<le> degree y"
proof cases
assume "degree x \<noteq> 0"
from degree_least_nonzero[OF this]
have "pdevs_apply y (degree x - 1) \<noteq> 0"
by (auto simp: assms split: if_split_asm)
from degree_gt[OF this] show ?thesis
by simp
qed simp
lemma degree_msum_pdevs_ge1:
shows "degree f \<le> n \<Longrightarrow> degree f \<le> degree (msum_pdevs n f g)"
by (rule degree_leI) (auto simp: pdevs_apply_msum_pdevs split: if_split_asm)
lemma degree_msum_pdevs_ge2:
assumes "degree f \<le> n"
shows "degree g \<le> degree (msum_pdevs n f g) - n"
proof cases
assume "degree g \<noteq> 0"
hence "pdevs_apply g (degree g - 1) \<noteq> 0" by (rule degree_least_nonzero)
hence "pdevs_apply (msum_pdevs n f g) (n + degree g - 1) \<noteq> 0"
using assms
by (auto simp: pdevs_apply_msum_pdevs)
from degree_gt[OF this]
show ?thesis
by simp
qed simp
lemma degree_msum_pdevs_le:
shows "degree (msum_pdevs n f g) \<le> n + degree g"
by (auto intro!: degree_le simp: pdevs_apply_msum_pdevs)
lemma
sum_msum_pdevs_cases:
assumes "degree f \<le> n"
assumes [simp]: "\<And>i. e i 0 = 0"
shows
"(\<Sum>i <degree (msum_pdevs n f g).
e i (if i < n then pdevs_apply f i else pdevs_apply g (i - n))) =
(\<Sum>i <degree f. e i (pdevs_apply f i)) + (\<Sum>i <degree g. e (i + n) (pdevs_apply g i))"
(is "?lhs = ?rhs")
proof -
have "?lhs = (\<Sum>i\<in>{..<degree (msum_pdevs n f g)} \<inter> {i. i < n}. e i (pdevs_apply f i)) +
(\<Sum>i\<in>{..<degree (msum_pdevs n f g)} \<inter> - {i. i < n}. e i (pdevs_apply g (i - n)))"
(is "_ = ?sum_f + ?sum_g")
by (simp add: sum.If_cases if_distrib)
also have "?sum_f = (\<Sum>i = 0..<degree f. e i (pdevs_apply f i))"
using assms degree_msum_pdevs_ge1[of f n g]
by (intro sum.mono_neutral_cong_right) auto
also
have "?sum_g = (\<Sum>i\<in>{0 + n..<degree (msum_pdevs n f g) - n + n}. e i (pdevs_apply g (i - n)))"
by (rule sum.cong) auto
also have "\<dots> = (\<Sum>i = 0..<degree (msum_pdevs n f g) - n. e (i + n) (pdevs_apply g (i + n - n)))"
by (rule sum.shift_bounds_nat_ivl)
also have "\<dots> = (\<Sum>i = 0..<degree g. e (i + n) (pdevs_apply g i))"
using assms degree_msum_pdevs_ge2[of f n]
by (intro sum.mono_neutral_cong_right) (auto intro!: sum.mono_neutral_cong_right)
finally show ?thesis
by (simp add: atLeast0LessThan)
qed
lemma tdev_msum_pdevs: "degree f \<le> n \<Longrightarrow> tdev (msum_pdevs n f g) = tdev f + tdev g"
by (auto simp: tdev_def pdevs_apply_msum_pdevs intro!: sum_msum_pdevs_cases)
lemma pdevs_val_msum_pdevs:
"degree f \<le> n \<Longrightarrow> pdevs_val e (msum_pdevs n f g) = pdevs_val e f + pdevs_val (\<lambda>i. e (i + n)) g"
by (auto simp: pdevs_val_sum pdevs_apply_msum_pdevs intro!: sum_msum_pdevs_cases)
definition msum_aform::"nat \<Rightarrow> 'a::real_vector aform \<Rightarrow> 'a aform \<Rightarrow> 'a aform"
where "msum_aform n f g = (fst f + fst g, msum_pdevs n (snd f) (snd g))"
lemma fst_msum_aform[simp]: "fst (msum_aform n f g) = fst f + fst g"
by (simp add: msum_aform_def)
lemma snd_msum_aform[simp]: "snd (msum_aform n f g) = msum_pdevs n (snd f) (snd g)"
by (simp add: msum_aform_def)
lemma finite_nonzero_summable: "finite {i. f i \<noteq> 0} \<Longrightarrow> summable f"
by (auto intro!: sums_summable sums_finite)
lemma aform_val_msum_aform:
assumes "degree_aform f \<le> n"
shows "aform_val e (msum_aform n f g) = aform_val e f + aform_val (\<lambda>i. e (i + n)) g"
using assms
by (auto simp: pdevs_val_msum_pdevs aform_val_def)
lemma Inf_aform_msum_aform:
"degree_aform X \<le> n \<Longrightarrow> Inf_aform (msum_aform n X Y) = Inf_aform X + Inf_aform Y"
by (simp add: Inf_aform_def tdev_msum_pdevs)
lemma Sup_aform_msum_aform:
"degree_aform X \<le> n \<Longrightarrow> Sup_aform (msum_aform n X Y) = Sup_aform X + Sup_aform Y"
by (simp add: Sup_aform_def tdev_msum_pdevs)
definition "independent_from d Y = msum_aform d (0, zero_pdevs) Y"
definition "independent_aform X Y = independent_from (degree_aform X) Y"
lemma degree_zero_pdevs[simp]: "degree zero_pdevs = 0"
by (metis degree_least_nonzero pdevs_apply_zero_pdevs)
lemma independent_aform_Joints:
assumes "x \<in> Affine X"
assumes "y \<in> Affine Y"
shows "[x, y] \<in> Joints [X, independent_aform X Y]"
using assms
unfolding Affine_def valuate_def Joints_def
apply safe
subgoal premises prems for e ea
using prems
by (intro image_eqI[where x="\<lambda>i. if i < degree_aform X then e i else ea (i - degree_aform X)"])
(auto simp: aform_val_def pdevs_val_msum_pdevs Pi_iff
independent_aform_def independent_from_def intro!: pdevs_val_degree_cong)
done
lemma msum_aform_Joints:
assumes "d \<ge> degree_aform X"
assumes "\<And>X. X \<in> set XS \<Longrightarrow> d \<ge> degree_aform X"
assumes "(x#xs) \<in> Joints (X#XS)"
assumes "y \<in> Affine Y"
shows "((x + y)#x#xs) \<in> Joints (msum_aform d X Y#X#XS)"
using assms
unfolding Joints_def valuate_def Affine_def
proof (safe, goal_cases)
case (1 e ea a b zs)
then show ?case
by (intro image_eqI[where x = "\<lambda>i. if i < d then e i else ea (i - d)"])
(force simp: aform_val_def pdevs_val_msum_pdevs intro!: intro!: pdevs_val_degree_cong)+
qed
lemma Joints_msum_aform:
assumes "d \<ge> degree_aform X"
assumes "\<And>Y. Y \<in> set YS \<Longrightarrow> d \<ge> degree_aform Y"
shows "Joints (msum_aform d X Y#YS) = {((x + y)#ys) |x y ys. y \<in> Affine Y \<and> x#ys \<in> Joints (X#YS)}"
unfolding Affine_def valuate_def Joints_def
proof (safe, goal_cases)
case (1 x e)
thus ?case
using assms
by (intro exI[where x = "aform_val e X"] exI[where x = "aform_val ((\<lambda>i. e (i + d))) Y"])
(auto simp add: aform_val_def pdevs_val_msum_pdevs)
next
case (2 x xa y ys e ea)
thus ?case using assms
by (intro image_eqI[where x="\<lambda>i. if i < d then ea i else e (i - d)"])
(force simp: aform_val_def pdevs_val_msum_pdevs Pi_iff intro!: pdevs_val_degree_cong)+
qed
lemma Joints_singleton_image: "Joints [x] = (\<lambda>x. [x]) ` Affine x"
by (auto simp: Joints_def Affine_def valuate_def)
lemma Collect_extract_image: "{g (f x y) |x y. P x y} = g ` {f x y |x y. P x y}"
by auto
lemma inj_Cons: "inj (\<lambda>x. x#xs)"
by (auto intro!: injI)
lemma Joints_Nil[simp]: "Joints [] = {[]}"
by (force simp: Joints_def valuate_def)
lemma msum_pdevs_zero_ident[simp]: "msum_pdevs 0 zero_pdevs x = x"
by transfer (auto simp: msum_pdevs_raw_def)
lemma msum_aform_zero_ident[simp]: "msum_aform 0 (0, zero_pdevs) x = x"
by (simp add: msum_aform_def)
lemma mem_Joints_singleton: "(x \<in> Joints [X]) = (\<exists>y. x = [y] \<and> y \<in> Affine X)"
by (auto simp: Affine_def valuate_def Joints_def)
lemma singleton_mem_Joints[simp]: "[x] \<in> Joints [X] \<longleftrightarrow> x \<in> Affine X"
by (auto simp: mem_Joints_singleton)
lemma msum_aform_Joints_without_first:
assumes "d \<ge> degree_aform X"
assumes "\<And>X. X \<in> set XS \<Longrightarrow> d \<ge> degree_aform X"
assumes "(x#xs) \<in> Joints (X#XS)"
assumes "y \<in> Affine Y"
assumes "z = x + y"
shows "z#xs \<in> Joints (msum_aform d X Y#XS)"
unfolding \<open>z = x + y\<close>
using msum_aform_Joints[OF assms(1-4)]
by (force simp: Joints_def valuate_def)
lemma Affine_msum_aform:
assumes "d \<ge> degree_aform X"
shows "Affine (msum_aform d X Y) = {x + y |x y. x \<in> Affine X \<and> y \<in> Affine Y}"
using Joints_msum_aform[OF assms, of Nil Y, simplified, unfolded mem_Joints_singleton]
by (auto simp add: Joints_singleton_image Collect_extract_image[where g="\<lambda>x. [x]"]
inj_image_eq_iff[OF inj_Cons] )
lemma Affine_zero_pdevs[simp]: "Affine (0, zero_pdevs) = {0}"
by (force simp: Affine_def valuate_def aform_val_def)
lemma Affine_independent_aform:
"Affine (independent_aform X Y) = Affine Y"
by (auto simp: independent_aform_def independent_from_def Affine_msum_aform)
lemma
abs_diff_eq1:
fixes l u::"'a::ordered_euclidean_space"
shows "l \<le> u \<Longrightarrow> \<bar>u - l\<bar> = u - l"
by (metis abs_of_nonneg diff_add_cancel le_add_same_cancel2)
lemma compact_sum:
fixes f :: "'a \<Rightarrow> 'b::topological_space \<Rightarrow> 'c::real_normed_vector"
assumes "finite I"
assumes "\<And>i. i \<in> I \<Longrightarrow> compact (S i)"
assumes "\<And>i. i \<in> I \<Longrightarrow> continuous_on (S i) (f i)"
assumes "I \<subseteq> J"
shows "compact {\<Sum>i\<in>I. f i (x i) | x. x \<in> Pi J S}"
using assms
proof (induct I)
case empty
thus ?case
proof (cases "\<exists>x. x \<in> Pi J S")
case False
hence *: "{\<Sum>i\<in>{}. f i (x i) |x. x \<in> Pi J S} = {}"
by (auto simp: Pi_iff)
show ?thesis unfolding * by simp
qed auto
next
case (insert a I)
hence "{\<Sum>i\<in>insert a I. f i (xa i) |xa. xa \<in> Pi J S}
= {x + y |x y. x \<in> f a ` S a \<and> y \<in> {\<Sum>i\<in>I. f i (x i) |x. x \<in> Pi J S}}"
proof safe
fix s x
assume "s \<in> S a" "x \<in> Pi J S"
thus "\<exists>xa. f a s + (\<Sum>i\<in>I. f i (x i)) = (\<Sum>i\<in>insert a I. f i (xa i)) \<and> xa \<in> Pi J S"
using insert
by (auto intro!: exI[where x="x(a:=s)"] sum.cong)
qed force
also have "compact \<dots>"
using insert
by (intro compact_sums) (auto intro!: compact_continuous_image)
finally show ?case .
qed
lemma compact_Affine:
fixes X::"'a::ordered_euclidean_space aform"
shows "compact (Affine X)"
proof -
have "Affine X = {x + y|x y. x \<in> {fst X} \<and>
y \<in> {(\<Sum>i \<in> {0..<degree_aform X}. e i *\<^sub>R pdevs_apply (snd X) i) | e. e \<in> UNIV \<rightarrow> {-1 .. 1}}}"
by (auto simp: Affine_def valuate_def aform_val_def pdevs_val_sum atLeast0LessThan)
also have "compact \<dots>"
by (rule compact_sums) (auto intro!: compact_sum continuous_intros)
finally show ?thesis .
qed
lemma Joints2_JointsI:
"(xs, x) \<in> Joints2 XS X \<Longrightarrow> x#xs \<in> Joints (X#XS)"
by (auto simp: Joints_def Joints2_def valuate_def)
subsection \<open>Splitting\<close>
definition "split_aform X i =
(let xi = pdevs_apply (snd X) i /\<^sub>R 2
in ((fst X - xi, pdev_upd (snd X) i xi), (fst X + xi, pdev_upd (snd X) i xi)))"
lemma split_aformE:
assumes "e \<in> UNIV \<rightarrow> {-1 .. 1}"
assumes "x = aform_val e X"
obtains err where "x = aform_val (e(i:=err)) (fst (split_aform X i))" "err \<in> {-1 .. 1}"
| err where "x = aform_val (e(i:=err)) (snd (split_aform X i))" "err \<in> {-1 .. 1}"
proof (atomize_elim)
let ?thesis = "(\<exists>err. x = aform_val (e(i := err)) (fst (split_aform X i)) \<and> err \<in> {- 1..1}) \<or>
(\<exists>err. x = aform_val (e(i := err)) (snd (split_aform X i)) \<and> err \<in> {- 1..1})"
{
assume "pdevs_apply (snd X) i = 0"
hence "X = fst (split_aform X i)"
by (auto simp: split_aform_def intro!: prod_eqI pdevs_eqI)
with assms have ?thesis by (auto intro!: exI[where x="e i"])
} moreover {
assume "pdevs_apply (snd X) i \<noteq> 0"
hence [simp]: "degree_aform X > i"
by (rule degree_gt)
note assms(2)
also
have "aform_val e X = fst X + (\<Sum>i<degree_aform X. e i *\<^sub>R pdevs_apply (snd X) i)"
by (simp add: aform_val_def pdevs_val_sum)
also
have rewr: "{..<degree_aform X} = {0..<degree_aform X} - {i} \<union> {i}"
by auto
have "(\<Sum>i<degree_aform X. e i *\<^sub>R pdevs_apply (snd X) i) =
(\<Sum>i \<in> {0..<degree_aform X} - {i}. e i *\<^sub>R pdevs_apply (snd X) i) +
e i *\<^sub>R pdevs_apply (snd X) i"
by (subst rewr, subst sum.union_disjoint) auto
finally have "x = fst X + \<dots>" .
hence "x = aform_val (e(i:=2 * e i - 1)) (snd (split_aform X i))"
"x = aform_val (e(i:=2 * e i + 1)) (fst (split_aform X i))"
by (auto simp: aform_val_def split_aform_def Let_def pdevs_val_sum atLeast0LessThan
Diff_eq degree_pdev_upd if_distrib sum.If_cases field_simps
scaleR_left_distrib[symmetric])
moreover
have "2 * e i - 1 \<in> {-1 .. 1} \<or> 2 * e i + 1 \<in> {-1 .. 1}"
using assms by (auto simp: not_le Pi_iff dest!: spec[where x=i])
ultimately have ?thesis by blast
} ultimately show ?thesis by blast
qed
lemma pdevs_val_add: "pdevs_val (\<lambda>i. e i + f i) xs = pdevs_val e xs + pdevs_val f xs"
by (auto simp: pdevs_val_pdevs_domain algebra_simps sum.distrib)
lemma pdevs_val_minus: "pdevs_val (\<lambda>i. e i - f i) xs = pdevs_val e xs - pdevs_val f xs"
by (auto simp: pdevs_val_pdevs_domain algebra_simps sum_subtractf)
lemma pdevs_val_cmul: "pdevs_val (\<lambda>i. u * e i) xs = u *\<^sub>R pdevs_val e xs"
by (auto simp: pdevs_val_pdevs_domain scaleR_sum_right)
lemma atLeastAtMost_absI: "- a \<le> a \<Longrightarrow> \<bar>x::real\<bar> \<le> \<bar>a\<bar> \<Longrightarrow> x \<in> atLeastAtMost (- a) a"
by auto
lemma divide_atLeastAtMost_1_absI: "\<bar>x::real\<bar> \<le> \<bar>a\<bar> \<Longrightarrow> x/a \<in> {-1 .. 1}"
by (intro atLeastAtMost_absI) (auto simp: divide_le_eq_1)
lemma convex_scaleR_aux: "u + v = 1 \<Longrightarrow> u *\<^sub>R x + v *\<^sub>R x = (x::'a::real_vector)"
by (metis scaleR_add_left scaleR_one)
lemma convex_mult_aux: "u + v = 1 \<Longrightarrow> u * x + v * x = (x::real)"
using convex_scaleR_aux[of u v x] by simp
lemma convex_Affine: "convex (Affine X)"
proof (rule convexI)
fix x y::'a and u v::real
assume "x \<in> Affine X" "y \<in> Affine X" and convex: "0 \<le> u" "0 \<le> v" "u + v = 1"
then obtain e f where x: "x = aform_val e X" "e \<in> UNIV \<rightarrow> {-1 .. 1}"
and y: "y = aform_val f X" "f \<in> UNIV \<rightarrow> {-1 .. 1}"
by (auto simp: Affine_def valuate_def)
let ?conv = "\<lambda>i. u * e i + v * f i"
{
fix i
have "\<bar>?conv i\<bar> \<le> u * \<bar>e i\<bar> + v * \<bar>f i\<bar>"
using convex by (intro order_trans[OF abs_triangle_ineq]) (simp add: abs_mult)
also have "\<dots> \<le> 1"
using convex x y
by (intro convex_bound_le) (auto simp: Pi_iff abs_real_def)
finally have "?conv i \<le> 1" "-1 \<le> ?conv i"
by (auto simp: abs_real_def split: if_split_asm)
}
thus "u *\<^sub>R x + v *\<^sub>R y \<in> Affine X"
using convex x y
by (auto simp: Affine_def valuate_def aform_val_def pdevs_val_add pdevs_val_cmul algebra_simps
convex_scaleR_aux intro!: image_eqI[where x="?conv"])
qed
lemma segment_in_aform_val:
assumes "e \<in> UNIV \<rightarrow> {-1 .. 1}"
assumes "f \<in> UNIV \<rightarrow> {-1 .. 1}"
shows "closed_segment (aform_val e X) (aform_val f X) \<subseteq> Affine X"
proof -
have "aform_val e X \<in> Affine X" "aform_val f X \<in> Affine X"
using assms by (auto simp: Affine_def valuate_def)
with convex_Affine[of X, simplified convex_contains_segment]
show ?thesis
by simp
qed
subsection \<open>From List of Generators\<close>
lift_definition pdevs_of_list::"'a::zero list \<Rightarrow> 'a pdevs"
is "\<lambda>xs i. if i < length xs then xs ! i else 0"
by auto
lemma pdevs_apply_pdevs_of_list:
"pdevs_apply (pdevs_of_list xs) i = (if i < length xs then xs ! i else 0)"
by transfer simp
lemma pdevs_apply_pdevs_of_list_Nil[simp]:
"pdevs_apply (pdevs_of_list []) i = 0"
by transfer auto
lemma pdevs_apply_pdevs_of_list_Cons:
"pdevs_apply (pdevs_of_list (x # xs)) i =
(if i = 0 then x else pdevs_apply (pdevs_of_list xs) (i - 1))"
by transfer auto
lemma pdevs_domain_pdevs_of_list_Cons[simp]: "pdevs_domain (pdevs_of_list (x # xs)) =
(if x = 0 then {} else {0}) \<union> (+) 1 ` pdevs_domain (pdevs_of_list xs)"
by (force simp: pdevs_apply_pdevs_of_list_Cons split: if_split_asm)
lemma pdevs_val_pdevs_of_list_eq[simp]:
"pdevs_val e (pdevs_of_list (x # xs)) = e 0 *\<^sub>R x + pdevs_val (e o (+) 1) (pdevs_of_list xs)"
proof -
have "pdevs_val e (pdevs_of_list (x # xs)) =
(\<Sum>i\<in>pdevs_domain (pdevs_of_list (x # xs)) \<inter> {0}. e i *\<^sub>R x) +
(\<Sum>i\<in>pdevs_domain (pdevs_of_list (x # xs)) \<inter> - {0}.
e i *\<^sub>R pdevs_apply (pdevs_of_list xs) (i - Suc 0))"
(is "_ = ?l + ?r")
by (simp add: pdevs_val_pdevs_domain if_distrib sum.If_cases pdevs_apply_pdevs_of_list_Cons)
also
have "?r = (\<Sum>i\<in>pdevs_domain (pdevs_of_list xs). e (Suc i) *\<^sub>R pdevs_apply (pdevs_of_list xs) i)"
by (rule sum.reindex_cong[of "\<lambda>i. i + 1"]) auto
also have "\<dots> = pdevs_val (e o (+) 1) (pdevs_of_list xs)"
by (simp add: pdevs_val_pdevs_domain )
also have "?l = (\<Sum>i\<in>{0}. e i *\<^sub>R x)"
by (rule sum.mono_neutral_cong_left) auto
also have "\<dots> = e 0 *\<^sub>R x" by simp
finally show ?thesis .
qed
lemma
less_degree_pdevs_of_list_imp_less_length:
assumes "i < degree (pdevs_of_list xs)"
shows "i < length xs"
proof -
from assms have "pdevs_apply (pdevs_of_list xs) (degree (pdevs_of_list xs) - 1) \<noteq> 0"
by (metis degree_least_nonzero less_nat_zero_code)
hence "degree (pdevs_of_list xs) - 1 < length xs"
by (simp add: pdevs_apply_pdevs_of_list split: if_split_asm)
with assms show ?thesis
by simp
qed
lemma tdev_pdevs_of_list[simp]: "tdev (pdevs_of_list xs) = sum_list (map abs xs)"
by (auto simp: tdev_def pdevs_apply_pdevs_of_list sum_list_sum_nth
less_degree_pdevs_of_list_imp_less_length
intro!: sum.mono_neutral_cong_left degree_gt)
lemma pdevs_of_list_Nil[simp]: "pdevs_of_list [] = zero_pdevs"
by (auto intro!: pdevs_eqI)
lemma pdevs_val_inj_sumI:
fixes K::"'a set" and g::"'a \<Rightarrow> nat"
assumes "finite K"
assumes "inj_on g K"
assumes "pdevs_domain x \<subseteq> g ` K"
assumes "\<And>i. i \<in> K \<Longrightarrow> g i \<notin> pdevs_domain x \<Longrightarrow> f i = 0"
assumes "\<And>i. i \<in> K \<Longrightarrow> g i \<in> pdevs_domain x \<Longrightarrow> f i = e (g i) *\<^sub>R pdevs_apply x (g i)"
shows "pdevs_val e x = (\<Sum>i\<in>K. f i)"
proof -
have [simp]: "inj_on (the_inv_into K g) (pdevs_domain x)"
using assms
by (auto simp: intro!: subset_inj_on[OF inj_on_the_inv_into])
{
fix y assume y: "y \<in> pdevs_domain x"
have g_inv: "g (the_inv_into K g y) = y"
by (meson assms(2) assms(3) y f_the_inv_into_f subset_eq)
have inv_in: "the_inv_into K g y \<in> K"
by (meson assms(2) assms(3) y subset_iff in_pdevs_domain the_inv_into_into)
have inv3: "the_inv_into (pdevs_domain x) (the_inv_into K g) (the_inv_into K g y) =
g (the_inv_into K g y)"
using assms y
by (subst the_inv_into_f_f) (auto simp: f_the_inv_into_f[OF assms(2)])
note g_inv inv_in inv3
} note this[simp]
have "pdevs_val e x = (\<Sum>i\<in>pdevs_domain x. e i *\<^sub>R pdevs_apply x i)"
by (simp add: pdevs_val_pdevs_domain)
also have "\<dots> = (\<Sum>i \<in> the_inv_into K g ` pdevs_domain x. e (g i) *\<^sub>R pdevs_apply x (g i))"
by (rule sum.reindex_cong[OF inj_on_the_inv_into]) auto
also have "\<dots> = (\<Sum>i\<in>K. f i)"
using assms
by (intro sum.mono_neutral_cong_left) (auto simp: the_inv_into_image_eq)
finally show ?thesis .
qed
lemma pdevs_domain_pdevs_of_list_le: "pdevs_domain (pdevs_of_list xs) \<subseteq> {0..<length xs}"
by (auto simp: pdevs_apply_pdevs_of_list split: if_split_asm)
lemma pdevs_val_zip: "pdevs_val e (pdevs_of_list xs) = (\<Sum>(i,x)\<leftarrow>zip [0..<length xs] xs. e i *\<^sub>R x)"
by (auto simp: sum_list_distinct_conv_sum_set
in_set_zip image_fst_zip pdevs_apply_pdevs_of_list distinct_zipI1
intro!: pdevs_val_inj_sumI[of _ fst]
split: if_split_asm)
lemma pdevs_val_map:
\<open>pdevs_val e (pdevs_of_list xs)
= (\<Sum>n\<leftarrow>[0..<length xs]. e n *\<^sub>R xs ! n)\<close>
proof -
have \<open>map2 (\<lambda>i. (*\<^sub>R) (e i)) [0..<length xs] xs =
map (\<lambda>n. e n *\<^sub>R xs ! n) [0..<length xs]\<close>
by (rule nth_equalityI) simp_all
then show ?thesis
by (simp add: pdevs_val_zip)
qed
lemma scaleR_sum_list:
fixes xs::"'a::real_vector list"
shows "a *\<^sub>R sum_list xs = sum_list (map (scaleR a) xs)"
by (induct xs) (auto simp: algebra_simps)
lemma pdevs_val_const_pdevs_of_list: "pdevs_val (\<lambda>_. c) (pdevs_of_list xs) = c *\<^sub>R sum_list xs"
unfolding pdevs_val_zip split_beta' scaleR_sum_list
by (rule arg_cong) (auto intro!: nth_equalityI)
lemma pdevs_val_partition:
assumes "e \<in> UNIV \<rightarrow> I"
obtains f g where "pdevs_val e (pdevs_of_list xs) =
pdevs_val f (pdevs_of_list (filter p xs)) +
pdevs_val g (pdevs_of_list (filter (Not o p) xs))"
"f \<in> UNIV \<rightarrow> I"
"g \<in> UNIV \<rightarrow> I"
proof -
obtain i where i: "i \<in> I"
by (metis assms funcset_mem iso_tuple_UNIV_I)
let ?zip = "zip [0..<length xs] xs"
define part where "part = partition (p \<circ> snd) ?zip"
let ?f =
"(\<lambda>n. if n < degree (pdevs_of_list (filter p xs)) then e (map fst (fst part) ! n) else i)"
let ?g =
"(\<lambda>n. if n < degree (pdevs_of_list (filter (Not \<circ> p) xs))
then e (map fst (snd part) ! n)
else i)"
show ?thesis
proof
have "pdevs_val e (pdevs_of_list xs) = (\<Sum>(i,x)\<leftarrow>?zip. e i *\<^sub>R x)"
by (rule pdevs_val_zip)
also have "\<dots> = (\<Sum>(i, x)\<in>set ?zip. e i *\<^sub>R x)"
by (simp add: sum_list_distinct_conv_sum_set distinct_zipI1)
also
have [simp]: "set (fst part) \<inter> set (snd part) = {}"
by (auto simp: part_def)
from partition_set[of "p o snd" ?zip "fst part" "snd part"]
have "set ?zip = set (fst part) \<union> set (snd part)"
by (auto simp: part_def)
also have "(\<Sum>a\<in>set (fst part) \<union> set (snd part). case a of (i, x) \<Rightarrow> e i *\<^sub>R x) =
(\<Sum>(i, x)\<in>set (fst part). e i *\<^sub>R x) + (\<Sum>(i, x)\<in>set (snd part). e i *\<^sub>R x)"
by (auto simp: split_beta sum_Un)
also
have "(\<Sum>(i, x)\<in>set (fst part). e i *\<^sub>R x) = (\<Sum>(i, x)\<leftarrow>(fst part). e i *\<^sub>R x)"
by (simp add: sum_list_distinct_conv_sum_set distinct_zipI1 part_def)
also have "\<dots> = (\<Sum>i<length (fst part). case (fst part ! i) of (i, x) \<Rightarrow> e i *\<^sub>R x)"
by (subst sum_list_sum_nth) (simp add: split_beta' atLeast0LessThan)
also have "\<dots> =
pdevs_val (\<lambda>n. e (map fst (fst part) ! n)) (pdevs_of_list (map snd (fst part)))"
by (force
simp: pdevs_val_zip sum_list_distinct_conv_sum_set distinct_zipI1 split_beta' in_set_zip
intro!:
sum.reindex_cong[where l=fst] image_eqI[where x = "(x, map snd (fst part) ! x)" for x])
also
have "(\<Sum>(i, x)\<in>set (snd part). e i *\<^sub>R x) = (\<Sum>(i, x)\<leftarrow>(snd part). e i *\<^sub>R x)"
by (simp add: sum_list_distinct_conv_sum_set distinct_zipI1 part_def)
also have "\<dots> = (\<Sum>i<length (snd part). case (snd part ! i) of (i, x) \<Rightarrow> e i *\<^sub>R x)"
by (subst sum_list_sum_nth) (simp add: split_beta' atLeast0LessThan)
also have "\<dots> =
pdevs_val (\<lambda>n. e (map fst (snd part) ! n)) (pdevs_of_list (map snd (snd part)))"
by (force simp: pdevs_val_zip sum_list_distinct_conv_sum_set distinct_zipI1 split_beta'
in_set_zip
intro!: sum.reindex_cong[where l=fst]
image_eqI[where x = "(x, map snd (snd part) ! x)" for x])
also
have "pdevs_val (\<lambda>n. e (map fst (fst part) ! n)) (pdevs_of_list (map snd (fst part))) =
pdevs_val (\<lambda>n.
if n < degree (pdevs_of_list (map snd (fst part))) then e (map fst (fst part) ! n) else i)
(pdevs_of_list (map snd (fst part)))"
by (rule pdevs_val_degree_cong) simp_all
also
have "pdevs_val (\<lambda>n. e (map fst (snd part) ! n)) (pdevs_of_list (map snd (snd part))) =
pdevs_val (\<lambda>n.
if n < degree (pdevs_of_list (map snd (snd part))) then e (map fst (snd part) ! n) else i)
(pdevs_of_list (map snd (snd part)))"
by (rule pdevs_val_degree_cong) simp_all
also have "map snd (snd part) = filter (Not o p) xs"
by (simp add: part_def filter_map[symmetric] o_assoc)
also have "map snd (fst part) = filter p xs"
by (simp add: part_def filter_map[symmetric])
finally
show
"pdevs_val e (pdevs_of_list xs) =
pdevs_val ?f (pdevs_of_list (filter p xs)) +
pdevs_val ?g (pdevs_of_list (filter (Not \<circ> p) xs))" .
show "?f \<in> UNIV \<rightarrow> I" "?g \<in> UNIV \<rightarrow> I"
using assms \<open>i\<in>I\<close>
by (auto simp: Pi_iff)
qed
qed
lemma pdevs_apply_pdevs_of_list_append:
"pdevs_apply (pdevs_of_list (xs @ zs)) i =
(if i < length xs
then pdevs_apply (pdevs_of_list xs) i else pdevs_apply (pdevs_of_list zs) (i - length xs))"
by (auto simp: pdevs_apply_pdevs_of_list nth_append)
lemma degree_pdevs_of_list_le_length[intro, simp]: "degree (pdevs_of_list xs) \<le> length xs"
by (metis less_irrefl_nat le_less_linear less_degree_pdevs_of_list_imp_less_length)
lemma degree_pdevs_of_list_append:
"degree (pdevs_of_list (xs @ ys)) \<le> length xs + degree (pdevs_of_list ys)"
by (rule degree_le) (auto simp: pdevs_apply_pdevs_of_list_append)
lemma pdevs_val_pdevs_of_list_append:
assumes "f \<in> UNIV \<rightarrow> I"
assumes "g \<in> UNIV \<rightarrow> I"
obtains e where
"pdevs_val f (pdevs_of_list xs) + pdevs_val g (pdevs_of_list ys) =
pdevs_val e (pdevs_of_list (xs @ ys))"
"e \<in> UNIV \<rightarrow> I"
proof
let ?e = "(\<lambda>i. if i < length xs then f i else g (i - length xs))"
have f: "pdevs_val f (pdevs_of_list xs) =
(\<Sum>i\<in>{..<length xs}. ?e i *\<^sub>R pdevs_apply (pdevs_of_list (xs @ ys)) i)"
by (auto simp: pdevs_val_sum degree_gt pdevs_apply_pdevs_of_list_append
intro: sum.mono_neutral_cong_left)
have g: "pdevs_val g (pdevs_of_list ys) =
(\<Sum>i=length xs ..<length xs + degree (pdevs_of_list ys).
?e i *\<^sub>R pdevs_apply (pdevs_of_list (xs @ ys)) i)"
(is "_ = ?sg")
by (auto simp: pdevs_val_sum pdevs_apply_pdevs_of_list_append
intro!: inj_onI image_eqI[where x="length xs + x" for x]
sum.reindex_cong[where l="\<lambda>i. i - length xs"])
show "pdevs_val f (pdevs_of_list xs) + pdevs_val g (pdevs_of_list ys) =
pdevs_val ?e (pdevs_of_list (xs @ ys))"
unfolding f g
by (subst sum.union_disjoint[symmetric])
(force simp: pdevs_val_sum ivl_disj_un degree_pdevs_of_list_append
intro!: sum.mono_neutral_cong_right
split: if_split_asm)+
show "?e \<in> UNIV \<rightarrow> I"
using assms by (auto simp: Pi_iff)
qed
lemma
sum_general_mono:
fixes f::"'a\<Rightarrow>('b::ordered_ab_group_add)"
assumes [simp,intro]: "finite s" "finite t"
assumes f: "\<And>x. x \<in> s - t \<Longrightarrow> f x \<le> 0"
assumes g: "\<And>x. x \<in> t - s \<Longrightarrow> g x \<ge> 0"
assumes fg: "\<And>x. x \<in> s \<inter> t \<Longrightarrow> f x \<le> g x"
shows "(\<Sum>x \<in> s. f x) \<le> (\<Sum>x \<in> t. g x)"
proof -
have "s = (s - t) \<union> (s \<inter> t)" and [intro, simp]: "(s - t) \<inter> (s \<inter> t) = {}" by auto
hence "(\<Sum>x \<in> s. f x) = (\<Sum>x \<in> s - t \<union> s \<inter> t. f x)"
using assms by simp
also have "\<dots> = (\<Sum>x \<in> s - t. f x) + (\<Sum>x \<in> s \<inter> t. f x)"
by (simp add: sum_Un)
also have "(\<Sum>x \<in> s - t. f x) \<le> 0"
by (auto intro!: sum_nonpos f)
also have "0 \<le> (\<Sum>x \<in> t - s. g x)"
by (auto intro!: sum_nonneg g)
also have "(\<Sum>x \<in> s \<inter> t. f x) \<le> (\<Sum>x \<in> s \<inter> t. g x)"
by (auto intro!: sum_mono fg)
also
have [intro, simp]: "(t - s) \<inter> (s \<inter> t) = {}" by auto
hence "sum g (t - s) + sum g (s \<inter> t) = sum g ((t - s) \<union> (s \<inter> t))"
by (simp add: sum_Un)
also have "\<dots> = sum g t"
by (auto intro!: sum.cong)
finally show ?thesis by simp
qed
lemma degree_pdevs_of_list_eq':
\<open>degree (pdevs_of_list xs) = Min {n. n \<le> length xs \<and> (\<forall>m. n \<le> m \<longrightarrow> m < length xs \<longrightarrow> xs ! m = 0)}\<close>
apply (simp add: degree_def pdevs_apply_pdevs_of_list)
apply (rule Least_equality)
apply auto
apply (subst (asm) Min_le_iff)
apply auto
apply (subst Min_le_iff)
apply auto
apply (metis le_cases not_less)
done
lemma pdevs_val_permuted:
\<open>pdevs_val (e \<circ> p) (pdevs_of_list (permute_list p xs)) = pdevs_val e (pdevs_of_list xs)\<close> (is \<open>?r = ?s\<close>)
if perm: \<open>p permutes {..<length xs}\<close>
proof -
from that have \<open>image_mset p (mset_set {0..<length xs}) = mset_set {0..<length xs}\<close>
by (simp add: permutes_image_mset lessThan_atLeast0)
moreover have \<open>map (\<lambda>n. e (p n) *\<^sub>R permute_list p xs ! n) [0..<length xs] =
map (\<lambda>n. e n *\<^sub>R xs ! n) (map p [0..<length xs])\<close>
using that by (simp add: permute_list_nth)
ultimately show ?thesis
using that by (simp add: pdevs_apply_pdevs_of_list pdevs_val_map
flip: map_map sum_mset_sum_list)
qed
lemma pdevs_val_perm_ex:
assumes "xs <~~> ys"
assumes mem: "e \<in> UNIV \<rightarrow> I"
shows "\<exists>e'. e' \<in> UNIV \<rightarrow> I \<and> pdevs_val e (pdevs_of_list xs) = pdevs_val e' (pdevs_of_list ys)"
proof -
from \<open>mset xs = mset ys\<close>
have \<open>mset ys = mset xs\<close> ..
then obtain p where \<open>p permutes {..<length xs}\<close> \<open>permute_list p xs = ys\<close>
by (rule mset_eq_permutation)
moreover define e' where \<open>e' = e \<circ> p\<close>
ultimately have \<open>e' \<in> UNIV \<rightarrow> I\<close> \<open>pdevs_val e (pdevs_of_list xs) = pdevs_val e' (pdevs_of_list ys)\<close>
using mem by (auto simp add: pdevs_val_permuted)
then show ?thesis by blast
qed
lemma pdevs_val_perm:
assumes "xs <~~> ys"
assumes mem: "e \<in> UNIV \<rightarrow> I"
obtains e' where "e' \<in> UNIV \<rightarrow> I"
"pdevs_val e (pdevs_of_list xs) = pdevs_val e' (pdevs_of_list ys)"
using assms
by (metis pdevs_val_perm_ex)
lemma set_distinct_permI: "set xs = set ys \<Longrightarrow> distinct xs \<Longrightarrow> distinct ys \<Longrightarrow> xs <~~> ys"
by (metis eq_set_perm_remdups remdups_id_iff_distinct)
lemmas pdevs_val_permute = pdevs_val_perm[OF set_distinct_permI]
lemma partition_permI:
"filter p xs @ filter (Not o p) xs <~~> xs"
by simp
lemma pdevs_val_eqI:
assumes "\<And>i. i \<in> pdevs_domain y \<Longrightarrow> i \<in> pdevs_domain x \<Longrightarrow>
e i *\<^sub>R pdevs_apply x i = f i *\<^sub>R pdevs_apply y i"
assumes "\<And>i. i \<in> pdevs_domain y \<Longrightarrow> i \<notin> pdevs_domain x \<Longrightarrow> f i *\<^sub>R pdevs_apply y i = 0"
assumes "\<And>i. i \<in> pdevs_domain x \<Longrightarrow> i \<notin> pdevs_domain y \<Longrightarrow> e i *\<^sub>R pdevs_apply x i = 0"
shows "pdevs_val e x = pdevs_val f y"
using assms
by (force simp: pdevs_val_pdevs_domain
intro!:
sum.reindex_bij_witness_not_neutral[where
i=id and j = id and
S'="pdevs_domain x - pdevs_domain y" and
T'="pdevs_domain y - pdevs_domain x"])
definition
filter_pdevs_raw::"(nat \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> (nat \<Rightarrow> 'a::real_vector) \<Rightarrow> (nat \<Rightarrow> 'a)"
where "filter_pdevs_raw I X = (\<lambda>i. if I i (X i) then X i else 0)"
lemma filter_pdevs_raw_nonzeros: "{i. filter_pdevs_raw s f i \<noteq> 0} = {i. f i \<noteq> 0} \<inter> {x. s x (f x)}"
by (auto simp: filter_pdevs_raw_def)
lift_definition filter_pdevs::"(nat \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a::real_vector pdevs \<Rightarrow> 'a pdevs"
is filter_pdevs_raw
by (simp add: filter_pdevs_raw_nonzeros)
lemma pdevs_apply_filter_pdevs[simp]:
"pdevs_apply (filter_pdevs I x) i = (if I i (pdevs_apply x i) then pdevs_apply x i else 0)"
by transfer (auto simp: filter_pdevs_raw_def)
lemma degree_filter_pdevs_le: "degree (filter_pdevs I x) \<le> degree x"
by (rule degree_leI) (simp split: if_split_asm)
lemma pdevs_val_filter_pdevs:
"pdevs_val e (filter_pdevs I x) =
(\<Sum>i \<in> {..<degree x} \<inter> {i. I i (pdevs_apply x i)}. e i *\<^sub>R pdevs_apply x i)"
by (auto simp: pdevs_val_sum if_distrib sum.inter_restrict degree_filter_pdevs_le degree_gt
intro!: sum.mono_neutral_cong_left split: if_split_asm)
lemma pdevs_val_filter_pdevs_dom:
"pdevs_val e (filter_pdevs I x) =
(\<Sum>i \<in> pdevs_domain x \<inter> {i. I i (pdevs_apply x i)}. e i *\<^sub>R pdevs_apply x i)"
by (auto
simp: pdevs_val_pdevs_domain if_distrib sum.inter_restrict degree_filter_pdevs_le degree_gt
intro!: sum.mono_neutral_cong_left split: if_split_asm)
lemma pdevs_val_filter_pdevs_eval:
"pdevs_val e (filter_pdevs p x) = pdevs_val (\<lambda>i. if p i (pdevs_apply x i) then e i else 0) x"
by (auto split: if_split_asm intro!: pdevs_val_eqI)
definition "pdevs_applys X i = map (\<lambda>x. pdevs_apply x i) X"
definition "pdevs_vals e X = map (pdevs_val e) X"
definition "aform_vals e X = map (aform_val e) X"
definition "filter_pdevs_list I X = map (filter_pdevs (\<lambda>i _. I i (pdevs_applys X i))) X"
lemma pdevs_applys_filter_pdevs_list[simp]:
"pdevs_applys (filter_pdevs_list I X) i = (if I i (pdevs_applys X i) then pdevs_applys X i else
map (\<lambda>_. 0) X)"
by (auto simp: filter_pdevs_list_def o_def pdevs_applys_def)
definition "degrees X = Max (insert 0 (degree ` set X))"
abbreviation "degree_aforms X \<equiv> degrees (map snd X)"
lemma degrees_leI:
assumes "\<And>x. x \<in> set X \<Longrightarrow> degree x \<le> K"
shows "degrees X \<le> K"
using assms
by (auto simp: degrees_def intro!: Max.boundedI)
lemma degrees_leD:
assumes "degrees X \<le> K"
shows "\<And>x. x \<in> set X \<Longrightarrow> degree x \<le> K"
using assms
by (auto simp: degrees_def intro!: Max.boundedI)
lemma degree_filter_pdevs_list_le: "degrees (filter_pdevs_list I x) \<le> degrees x"
by (rule degrees_leI) (auto simp: filter_pdevs_list_def intro!: degree_le dest!: degrees_leD)
definition "dense_list_of_pdevs x = map (\<lambda>i. pdevs_apply x i) [0..<degree x]"
subsubsection \<open>(reverse) ordered coefficients as list\<close>
definition "list_of_pdevs x =
map (\<lambda>i. (i, pdevs_apply x i)) (rev (sorted_list_of_set (pdevs_domain x)))"
lemma list_of_pdevs_zero_pdevs[simp]: "list_of_pdevs zero_pdevs = []"
by (auto simp: list_of_pdevs_def)
lemma sum_list_list_of_pdevs: "sum_list (map snd (list_of_pdevs x)) = sum_list (dense_list_of_pdevs x)"
by (auto intro!: sum.mono_neutral_cong_left
simp add: degree_gt sum_list_distinct_conv_sum_set dense_list_of_pdevs_def list_of_pdevs_def)
lemma sum_list_filter_dense_list_of_pdevs[symmetric]:
"sum_list (map snd (filter (p o snd) (list_of_pdevs x))) =
sum_list (filter p (dense_list_of_pdevs x))"
by (auto intro!: sum.mono_neutral_cong_left
simp add: degree_gt sum_list_distinct_conv_sum_set dense_list_of_pdevs_def list_of_pdevs_def
o_def filter_map)
lemma pdevs_of_list_dense_list_of_pdevs: "pdevs_of_list (dense_list_of_pdevs x) = x"
by (auto simp: pdevs_apply_pdevs_of_list dense_list_of_pdevs_def pdevs_eqI)
lemma pdevs_val_sum_list: "pdevs_val (\<lambda>_. c) X = c *\<^sub>R sum_list (map snd (list_of_pdevs X))"
by (auto simp: pdevs_val_sum sum_list_list_of_pdevs pdevs_val_const_pdevs_of_list[symmetric]
pdevs_of_list_dense_list_of_pdevs)
lemma list_of_pdevs_all_nonzero: "list_all (\<lambda>x. x \<noteq> 0) (map snd (list_of_pdevs xs))"
by (auto simp: list_of_pdevs_def list_all_iff)
lemma list_of_pdevs_nonzero: "x \<in> set (map snd (list_of_pdevs xs)) \<Longrightarrow> x \<noteq> 0"
by (auto simp: list_of_pdevs_def)
lemma pdevs_of_list_scaleR_0[simp]:
fixes xs::"'a::real_vector list"
shows "pdevs_of_list (map ((*\<^sub>R) 0) xs) = zero_pdevs"
by (auto simp: pdevs_apply_pdevs_of_list intro!: pdevs_eqI)
lemma degree_pdevs_of_list_scaleR:
"degree (pdevs_of_list (map ((*\<^sub>R) c) xs)) = (if c \<noteq> 0 then degree (pdevs_of_list xs) else 0)"
by (auto simp: pdevs_apply_pdevs_of_list intro!: degree_cong)
lemma list_of_pdevs_eq:
"rev (list_of_pdevs X) = (filter ((\<noteq>) 0 o snd) (map (\<lambda>i. (i, pdevs_apply X i)) [0..<degree X]))"
(is "_ = filter ?P (map ?f ?xs)")
using map_filter[of ?f ?P ?xs]
by (auto simp: list_of_pdevs_def o_def sorted_list_of_pdevs_domain_eq rev_map)
lemma sum_list_take_pdevs_val_eq:
"sum_list (take d xs) = pdevs_val (\<lambda>i. if i < d then 1 else 0) (pdevs_of_list xs)"
proof -
have "sum_list (take d xs) = 1 *\<^sub>R sum_list (take d xs)" by simp
also note pdevs_val_const_pdevs_of_list[symmetric]
also have "pdevs_val (\<lambda>_. 1) (pdevs_of_list (take d xs)) =
pdevs_val (\<lambda>i. if i < d then 1 else 0) (pdevs_of_list xs)"
by (auto simp: pdevs_apply_pdevs_of_list split: if_split_asm intro!: pdevs_val_eqI)
finally show ?thesis .
qed
lemma zero_in_range_pdevs_apply[intro, simp]:
fixes X::"'a::real_vector pdevs" shows "0 \<in> range (pdevs_apply X)"
by (metis degree_gt less_irrefl rangeI)
lemma dense_list_in_range: "x \<in> set (dense_list_of_pdevs X) \<Longrightarrow> x \<in> range (pdevs_apply X)"
by (auto simp: dense_list_of_pdevs_def)
lemma not_in_dense_list_zeroD:
assumes "pdevs_apply X i \<notin> set (dense_list_of_pdevs X)"
shows "pdevs_apply X i = 0"
proof (rule ccontr)
assume "pdevs_apply X i \<noteq> 0"
hence "i < degree X"
by (rule degree_gt)
thus False using assms
by (auto simp: dense_list_of_pdevs_def)
qed
lemma list_all_list_of_pdevsI:
assumes "\<And>i. i \<in> pdevs_domain X \<Longrightarrow> P (pdevs_apply X i)"
shows "list_all (\<lambda>x. P x) (map snd (list_of_pdevs X))"
using assms by (auto simp: list_all_iff list_of_pdevs_def)
lemma pdevs_of_list_map_scaleR:
"pdevs_of_list (map (scaleR r) xs) = scaleR_pdevs r (pdevs_of_list xs)"
by (auto intro!: pdevs_eqI simp: pdevs_apply_pdevs_of_list)
lemma
map_permI:
assumes "xs <~~> ys"
shows "map f xs <~~> map f ys"
using assms by induct auto
lemma rev_perm: "rev xs <~~> ys \<longleftrightarrow> xs <~~> ys"
by simp
lemma list_of_pdevs_perm_filter_nonzero:
"map snd (list_of_pdevs X) <~~> (filter ((\<noteq>) 0) (dense_list_of_pdevs X))"
proof -
have zip_map:
"zip [0..<degree X] (dense_list_of_pdevs X) = map (\<lambda>i. (i, pdevs_apply X i)) [0..<degree X]"
by (auto simp: dense_list_of_pdevs_def intro!: nth_equalityI)
have "rev (list_of_pdevs X) <~~>
filter ((\<noteq>) 0 o snd) (zip [0..<degree X] (dense_list_of_pdevs X))"
by (auto simp: list_of_pdevs_eq o_def zip_map)
from map_permI[OF this, of snd]
have "map snd (list_of_pdevs X) <~~>
map snd (filter ((\<noteq>) 0 \<circ> snd) (zip [0..<degree X] (dense_list_of_pdevs X)))"
by (simp add: rev_map[symmetric] rev_perm)
also have "map snd (filter ((\<noteq>) 0 \<circ> snd) (zip [0..<degree X] (dense_list_of_pdevs X))) =
filter ((\<noteq>) 0) (dense_list_of_pdevs X)"
using map_filter[of snd "(\<noteq>) 0" "(zip [0..<degree X] (dense_list_of_pdevs X))"]
by (simp add: o_def dense_list_of_pdevs_def)
finally
show ?thesis .
qed
lemma pdevs_val_filter:
assumes mem: "e \<in> UNIV \<rightarrow> I"
assumes "0 \<in> I"
obtains e' where
"pdevs_val e (pdevs_of_list (filter p xs)) = pdevs_val e' (pdevs_of_list xs)"
"e' \<in> UNIV \<rightarrow> I"
unfolding pdevs_val_filter_pdevs_eval
proof -
have "(\<lambda>_::nat. 0) \<in> UNIV \<rightarrow> I" using assms by simp
have "pdevs_val e (pdevs_of_list (filter p xs)) =
pdevs_val e (pdevs_of_list (filter p xs)) +
pdevs_val (\<lambda>_. 0) (pdevs_of_list (filter (Not o p) xs))"
by (simp add: pdevs_val_sum)
also
from pdevs_val_pdevs_of_list_append[OF \<open>e \<in> _\<close> \<open>(\<lambda>_. 0) \<in> _\<close>]
obtain e' where "e' \<in> UNIV \<rightarrow> I"
"\<dots> = pdevs_val e' (pdevs_of_list (filter p xs @ filter (Not o p) xs))"
by metis
note this(2)
also
from pdevs_val_perm[OF partition_permI \<open>e' \<in> _\<close>]
obtain e'' where "\<dots> = pdevs_val e'' (pdevs_of_list xs)" "e'' \<in> UNIV \<rightarrow> I" by metis
note this(1)
finally show ?thesis using \<open>e'' \<in> _\<close> ..
qed
lemma
pdevs_val_of_list_of_pdevs:
assumes "e \<in> UNIV \<rightarrow> I"
assumes "0 \<in> I"
obtains e' where
"pdevs_val e (pdevs_of_list (map snd (list_of_pdevs X))) = pdevs_val e' X"
"e' \<in> UNIV \<rightarrow> I"
proof -
obtain e' where "e' \<in> UNIV \<rightarrow> I"
and "pdevs_val e (pdevs_of_list (map snd (list_of_pdevs X))) =
pdevs_val e' (pdevs_of_list (filter ((\<noteq>) 0) (dense_list_of_pdevs X)))"
by (rule pdevs_val_perm[OF list_of_pdevs_perm_filter_nonzero assms(1)])
note this(2)
also from pdevs_val_filter[OF \<open>e' \<in> _\<close> \<open>0 \<in> I\<close>, of "(\<noteq>) 0" "dense_list_of_pdevs X"]
obtain e'' where "e'' \<in> UNIV \<rightarrow> I"
and "\<dots> = pdevs_val e'' (pdevs_of_list (dense_list_of_pdevs X))"
by metis
note this(2)
also have "\<dots> = pdevs_val e'' X" by (simp add: pdevs_of_list_dense_list_of_pdevs)
finally show ?thesis using \<open>e'' \<in> UNIV \<rightarrow> I\<close> ..
qed
lemma
pdevs_val_of_list_of_pdevs2:
assumes "e \<in> UNIV \<rightarrow> I"
obtains e' where
"pdevs_val e X = pdevs_val e' (pdevs_of_list (map snd (list_of_pdevs X)))"
"e' \<in> UNIV \<rightarrow> I"
proof -
from list_of_pdevs_perm_filter_nonzero[of X]
have perm: "(filter ((\<noteq>) 0) (dense_list_of_pdevs X)) <~~> map snd (list_of_pdevs X)"
by simp
have "pdevs_val e X = pdevs_val e (pdevs_of_list (dense_list_of_pdevs X))"
by (simp add: pdevs_of_list_dense_list_of_pdevs)
also from pdevs_val_partition[OF \<open>e \<in> _\<close>, of "dense_list_of_pdevs X" "(\<noteq>) 0"]
obtain f g where "f \<in> UNIV \<rightarrow> I" "g \<in> UNIV \<rightarrow> I"
"\<dots> = pdevs_val f (pdevs_of_list (filter ((\<noteq>) 0) (dense_list_of_pdevs X))) +
pdevs_val g (pdevs_of_list (filter (Not \<circ> (\<noteq>) 0) (dense_list_of_pdevs X)))"
(is "_ = ?f + ?g")
by metis
note this(3)
also
have "pdevs_of_list [x\<leftarrow>dense_list_of_pdevs X . x = 0] = zero_pdevs"
by (auto intro!: pdevs_eqI simp: pdevs_apply_pdevs_of_list dest!: nth_mem)
hence "?g = 0" by (auto simp: o_def )
also
obtain e' where "e' \<in> UNIV \<rightarrow> I"
and "?f = pdevs_val e' (pdevs_of_list (map snd (list_of_pdevs X)))"
by (rule pdevs_val_perm[OF perm \<open>f \<in> _\<close>])
note this(2)
finally show ?thesis using \<open>e' \<in> UNIV \<rightarrow> I\<close> by (auto intro!: that)
qed
lemma dense_list_of_pdevs_scaleR:
"r \<noteq> 0 \<Longrightarrow> map ((*\<^sub>R) r) (dense_list_of_pdevs x) = dense_list_of_pdevs (scaleR_pdevs r x)"
by (auto simp: dense_list_of_pdevs_def)
lemma degree_pdevs_of_list_eq:
"(\<And>x. x \<in> set xs \<Longrightarrow> x \<noteq> 0) \<Longrightarrow> degree (pdevs_of_list xs) = length xs"
by (cases xs) (auto simp add: pdevs_apply_pdevs_of_list nth_Cons
intro!: degree_eqI
split: nat.split)
lemma dense_list_of_pdevs_pdevs_of_list:
"(\<And>x. x \<in> set xs \<Longrightarrow> x \<noteq> 0) \<Longrightarrow> dense_list_of_pdevs (pdevs_of_list xs) = xs"
by (auto simp: dense_list_of_pdevs_def degree_pdevs_of_list_eq pdevs_apply_pdevs_of_list
intro!: nth_equalityI)
lemma pdevs_of_list_sum:
assumes "distinct xs"
assumes "e \<in> UNIV \<rightarrow> I"
obtains f where "f \<in> UNIV \<rightarrow> I" "pdevs_val e (pdevs_of_list xs) = (\<Sum>P\<in>set xs. f P *\<^sub>R P)"
proof -
define f where "f X = e (the (map_of (zip xs [0..<length xs]) X))" for X
from assms have "f \<in> UNIV \<rightarrow> I"
by (auto simp: f_def)
moreover
have "pdevs_val e (pdevs_of_list xs) = (\<Sum>P\<in>set xs. f P *\<^sub>R P)"
by (auto simp add: pdevs_val_zip f_def assms sum_list_distinct_conv_sum_set[symmetric]
in_set_zip map_of_zip_upto2_length_eq_nth
intro!: sum_list_nth_eqI)
ultimately show ?thesis ..
qed
lemma pdevs_domain_eq_pdevs_of_list:
assumes nz: "\<And>x. x \<in> set (xs) \<Longrightarrow> x \<noteq> 0"
shows "pdevs_domain (pdevs_of_list xs) = {0..<length xs}"
using nz
by (auto simp: pdevs_apply_pdevs_of_list split: if_split_asm)
lemma length_list_of_pdevs_pdevs_of_list:
assumes nz: "\<And>x. x \<in> set xs \<Longrightarrow> x \<noteq> 0"
shows "length (list_of_pdevs (pdevs_of_list xs)) = length xs"
using nz by (auto simp: list_of_pdevs_def pdevs_domain_eq_pdevs_of_list)
lemma nth_list_of_pdevs_pdevs_of_list:
assumes nz: "\<And>x. x \<in> set xs \<Longrightarrow> x \<noteq> 0"
assumes l: "n < length xs"
shows "list_of_pdevs (pdevs_of_list xs) ! n = ((length xs - Suc n), xs ! (length xs - Suc n))"
using nz l
by (auto simp: list_of_pdevs_def pdevs_domain_eq_pdevs_of_list rev_nth pdevs_apply_pdevs_of_list)
lemma list_of_pdevs_pdevs_of_list_eq:
"(\<And>x. x \<in> set xs \<Longrightarrow> x \<noteq> 0) \<Longrightarrow>
list_of_pdevs (pdevs_of_list xs) = zip (rev [0..<length xs]) (rev xs)"
by (auto simp: nth_list_of_pdevs_pdevs_of_list length_list_of_pdevs_pdevs_of_list rev_nth
intro!: nth_equalityI)
lemma sum_list_filter_list_of_pdevs_of_list:
fixes xs::"'a::comm_monoid_add list"
assumes "\<And>x. x \<in> set xs \<Longrightarrow> x \<noteq> 0"
shows "sum_list (filter p (map snd (list_of_pdevs (pdevs_of_list xs)))) = sum_list (filter p xs)"
using assms
by (auto simp: list_of_pdevs_pdevs_of_list_eq rev_filter[symmetric])
lemma
sum_list_partition:
fixes xs::"'a::comm_monoid_add list"
shows "sum_list (filter p xs) + sum_list (filter (Not o p) xs) = sum_list xs"
by (induct xs) (auto simp: ac_simps)
subsection \<open>2d zonotopes\<close>
definition "prod_of_pdevs x y = binop_pdevs Pair x y"
lemma apply_pdevs_prod_of_pdevs[simp]:
"pdevs_apply (prod_of_pdevs x y) i = (pdevs_apply x i, pdevs_apply y i)"
unfolding prod_of_pdevs_def
by (simp add: zero_prod_def)
lemma pdevs_domain_prod_of_pdevs[simp]:
"pdevs_domain (prod_of_pdevs x y) = pdevs_domain x \<union> pdevs_domain y"
by (auto simp: zero_prod_def)
lemma pdevs_val_prod_of_pdevs[simp]:
"pdevs_val e (prod_of_pdevs x y) = (pdevs_val e x, pdevs_val e y)"
proof -
have "pdevs_val e x = (\<Sum>i\<in>pdevs_domain x \<union> pdevs_domain y. e i *\<^sub>R pdevs_apply x i)"
(is "_ = ?x")
unfolding pdevs_val_pdevs_domain
by (rule sum.mono_neutral_cong_left) auto
moreover have "pdevs_val e y = (\<Sum>i\<in>pdevs_domain x \<union> pdevs_domain y. e i *\<^sub>R pdevs_apply y i)"
(is "_ = ?y")
unfolding pdevs_val_pdevs_domain
by (rule sum.mono_neutral_cong_left) auto
ultimately have "(pdevs_val e x, pdevs_val e y) = (?x, ?y)"
by auto
also have "\<dots> = pdevs_val e (prod_of_pdevs x y)"
by (simp add: sum_prod pdevs_val_pdevs_domain)
finally show ?thesis by simp
qed
definition prod_of_aforms (infixr "\<times>\<^sub>a" 80)
where "prod_of_aforms x y = ((fst x, fst y), prod_of_pdevs (snd x) (snd y))"
subsection \<open>Intervals\<close>
definition One_pdevs_raw::"nat \<Rightarrow> 'a::executable_euclidean_space"
where "One_pdevs_raw i = (if i < length (Basis_list::'a list) then Basis_list ! i else 0)"
lemma zeros_One_pdevs_raw:
"One_pdevs_raw -` {0::'a::executable_euclidean_space} = {length (Basis_list::'a list)..}"
by (auto simp: One_pdevs_raw_def nonzero_Basis split: if_split_asm dest!: nth_mem)
lemma nonzeros_One_pdevs_raw:
"{i. One_pdevs_raw i \<noteq> (0::'a::executable_euclidean_space)} = - {length (Basis_list::'a list)..}"
using zeros_One_pdevs_raw
by blast
lift_definition One_pdevs::"'a::executable_euclidean_space pdevs" is One_pdevs_raw
by (auto simp: nonzeros_One_pdevs_raw)
lemma pdevs_apply_One_pdevs[simp]: "pdevs_apply One_pdevs i =
(if i < length (Basis_list::'a::executable_euclidean_space list) then Basis_list ! i else 0::'a)"
by transfer (simp add: One_pdevs_raw_def)
lemma Max_Collect_less_nat: "Max {i::nat. i < k} = (if k = 0 then Max {} else k - 1)"
by (auto intro!: Max_eqI)
lemma degree_One_pdevs[simp]: "degree (One_pdevs::'a pdevs) =
length (Basis_list::'a::executable_euclidean_space list)"
by (auto simp: degree_eq_Suc_max Basis_list_nth_nonzero Max_Collect_less_nat
intro!: Max_eqI DIM_positive)
definition inner_scaleR_pdevs::"'a::euclidean_space \<Rightarrow> 'a pdevs \<Rightarrow> 'a pdevs"
where "inner_scaleR_pdevs b x = unop_pdevs (\<lambda>x. (b \<bullet> x) *\<^sub>R x) x"
lemma pdevs_apply_inner_scaleR_pdevs[simp]:
"pdevs_apply (inner_scaleR_pdevs a x) i = (a \<bullet> (pdevs_apply x i)) *\<^sub>R (pdevs_apply x i)"
by (simp add: inner_scaleR_pdevs_def)
lemma degree_inner_scaleR_pdevs_le:
"degree (inner_scaleR_pdevs (l::'a::executable_euclidean_space) One_pdevs) \<le>
degree (One_pdevs::'a pdevs)"
by (rule degree_leI) (auto simp: inner_scaleR_pdevs_def One_pdevs_raw_def)
definition "pdevs_of_ivl l u = scaleR_pdevs (1/2) (inner_scaleR_pdevs (u - l) One_pdevs)"
lemma degree_pdevs_of_ivl_le:
"degree (pdevs_of_ivl l u::'a::executable_euclidean_space pdevs) \<le> DIM('a)"
using degree_inner_scaleR_pdevs_le
by (simp add: pdevs_of_ivl_def)
lemma pdevs_apply_pdevs_of_ivl:
defines "B \<equiv> Basis_list::'a::executable_euclidean_space list"
shows "pdevs_apply (pdevs_of_ivl l u) i = (if i < length B then ((u - l)\<bullet>(B!i)/2)*\<^sub>R(B!i) else 0)"
by (auto simp: pdevs_of_ivl_def B_def)
lemma deg_length_less_imp[simp]:
"k < degree (pdevs_of_ivl l u::'a::executable_euclidean_space pdevs) \<Longrightarrow>
k < length (Basis_list::'a list)"
by (metis (no_types, opaque_lifting) degree_One_pdevs degree_inner_scaleR_pdevs_le degree_scaleR_pdevs
dual_order.strict_trans length_Basis_list_pos nat_neq_iff not_le pdevs_of_ivl_def)
lemma tdev_pdevs_of_ivl: "tdev (pdevs_of_ivl l u) = \<bar>u - l\<bar> /\<^sub>R 2"
proof -
have "tdev (pdevs_of_ivl l u) =
(\<Sum>i <degree (pdevs_of_ivl l u). \<bar>pdevs_apply (pdevs_of_ivl l u) i\<bar>)"
by (auto simp: tdev_def)
also have "\<dots> = (\<Sum>i = 0..<length (Basis_list::'a list). \<bar>pdevs_apply (pdevs_of_ivl l u) i\<bar>)"
using degree_pdevs_of_ivl_le[of l u]
by (intro sum.mono_neutral_cong_left) auto
also have "\<dots> = (\<Sum>i = 0..<length (Basis_list::'a list).
\<bar>((u - l) \<bullet> Basis_list ! i / 2) *\<^sub>R Basis_list ! i\<bar>)"
by (auto simp: pdevs_apply_pdevs_of_ivl)
also have "\<dots> = (\<Sum>b \<leftarrow> Basis_list. \<bar>((u - l) \<bullet> b / 2) *\<^sub>R b\<bar>)"
by (auto simp: sum_list_sum_nth)
also have "\<dots> = (\<Sum>b\<in>Basis. \<bar>((u - l) \<bullet> b / 2) *\<^sub>R b\<bar>)"
by (auto simp: sum_list_distinct_conv_sum_set)
also have "\<dots> = \<bar>u - l\<bar> /\<^sub>R 2"
by (subst euclidean_representation[symmetric, of "\<bar>u - l\<bar> /\<^sub>R 2"])
(simp add: abs_inner abs_scaleR)
finally show ?thesis .
qed
definition "aform_of_ivl l u = ((l + u)/\<^sub>R2, pdevs_of_ivl l u)"
definition "aform_of_point x = aform_of_ivl x x"
lemma Elem_affine_of_ivl_le:
assumes "e \<in> UNIV \<rightarrow> {-1 .. 1}"
assumes "l \<le> u"
shows "l \<le> aform_val e (aform_of_ivl l u)"
proof -
have "l = (1 / 2) *\<^sub>R l + (1 / 2) *\<^sub>R l"
by (simp add: scaleR_left_distrib[symmetric])
also have "\<dots> = (l + u)/\<^sub>R2 - tdev (pdevs_of_ivl l u)"
by (auto simp: assms tdev_pdevs_of_ivl algebra_simps)
also have "\<dots> \<le> aform_val e (aform_of_ivl l u)"
using abs_pdevs_val_le_tdev[OF assms(1), of "pdevs_of_ivl l u"]
by (auto simp: aform_val_def aform_of_ivl_def minus_le_iff dest!: abs_le_D2)
finally show ?thesis .
qed
lemma Elem_affine_of_ivl_ge:
assumes "e \<in> UNIV \<rightarrow> {-1 .. 1}"
assumes "l \<le> u"
shows "aform_val e (aform_of_ivl l u) \<le> u"
proof -
have "aform_val e (aform_of_ivl l u) \<le> (l + u)/\<^sub>R2 + tdev (pdevs_of_ivl l u)"
using abs_pdevs_val_le_tdev[OF assms(1), of "pdevs_of_ivl l u"]
by (auto simp: aform_val_def aform_of_ivl_def minus_le_iff dest!: abs_le_D1)
also have "\<dots> = (1 / 2) *\<^sub>R u + (1 / 2) *\<^sub>R u"
by (auto simp: assms tdev_pdevs_of_ivl algebra_simps)
also have "\<dots> = u"
by (simp add: scaleR_left_distrib[symmetric])
finally show ?thesis .
qed
lemma
map_of_zip_upto_length_eq_nth:
assumes "i < length B"
assumes "d = length B"
shows "(map_of (zip [0..<d] B) i) = Some (B ! i)"
proof -
have "length [0..<length B] = length B"
by simp
from map_of_zip_is_Some[OF this, of i] assms
have "map_of (zip [0..<length B] B) i = Some (B ! i)"
by (auto simp: in_set_zip)
thus ?thesis by (simp add: assms)
qed
lemma in_ivl_affine_of_ivlE:
assumes "k \<in> {l .. u}"
obtains e where "e \<in> UNIV \<rightarrow> {-1 .. 1}" "k = aform_val e (aform_of_ivl l u)"
proof atomize_elim
define e where [abs_def]: "e i = (let b = if i <length (Basis_list::'a list) then
(the (map_of (zip [0..<length (Basis_list::'a list)] (Basis_list::'a list)) i)) else 0 in
((k - (l + u) /\<^sub>R 2) \<bullet> b) / (((u - l) /\<^sub>R 2) \<bullet> b))" for i
let ?B = "Basis_list::'a list"
have "k = (1 / 2) *\<^sub>R (l + u) +
(\<Sum>b \<in> Basis. (if (u - l) \<bullet> b = 0 then 0 else ((k - (1 / 2) *\<^sub>R (l + u)) \<bullet> b)) *\<^sub>R b)"
(is "_ = _ + ?dots")
using assms
by (force simp add: algebra_simps eucl_le[where 'a='a] intro!: euclidean_eqI[where 'a='a])
also have
"?dots = (\<Sum>b \<in> Basis. (if (u - l) \<bullet> b = 0 then 0 else ((k - (1 / 2) *\<^sub>R (l + u)) \<bullet> b) *\<^sub>R b))"
by (auto intro!: sum.cong)
also have "\<dots> = (\<Sum>b \<leftarrow> ?B. (if (u - l) \<bullet> b = 0 then 0 else ((k - (1 / 2) *\<^sub>R (l + u)) \<bullet> b) *\<^sub>R b))"
by (auto simp: sum_list_distinct_conv_sum_set)
also have "\<dots> =
(\<Sum>i = 0..<length ?B.
(if (u - l) \<bullet> ?B ! i = 0 then 0 else ((k - (1 / 2) *\<^sub>R (l + u)) \<bullet> ?B ! i) *\<^sub>R ?B ! i))"
by (auto simp: sum_list_sum_nth)
also have "\<dots> =
(\<Sum>i = 0..<degree (inner_scaleR_pdevs (u - l) One_pdevs).
(if (u - l) \<bullet> Basis_list ! i = 0 then 0
else ((k - (1 / 2) *\<^sub>R (l + u)) \<bullet> Basis_list ! i) *\<^sub>R Basis_list ! i))"
using degree_inner_scaleR_pdevs_le[of "u - l"]
by (intro sum.mono_neutral_cong_right) (auto dest!: degree)
also have "(1 / 2) *\<^sub>R (l + u) +
(\<Sum>i = 0..<degree (inner_scaleR_pdevs (u - l) One_pdevs).
(if (u - l) \<bullet> Basis_list ! i = 0 then 0
else ((k - (1 / 2) *\<^sub>R (l + u)) \<bullet> Basis_list ! i) *\<^sub>R Basis_list ! i)) =
aform_val e (aform_of_ivl l u)"
using degree_inner_scaleR_pdevs_le[of "u - l"]
by (auto simp: aform_val_def aform_of_ivl_def pdevs_of_ivl_def map_of_zip_upto_length_eq_nth
e_def Let_def pdevs_val_sum
intro!: sum.cong)
finally have "k = aform_val e (aform_of_ivl l u)" .
moreover
{
fix k l u::real assume *: "l \<le> k" "k \<le> u"
let ?m = "l / 2 + u / 2"
have "\<bar>k - ?m\<bar> \<le> \<bar>if k \<le> ?m then ?m - l else u - ?m\<bar>"
using * by auto
also have "\<dots> \<le> \<bar>u / 2 - l / 2\<bar>"
by (auto simp: abs_real_def)
finally have "\<bar>k - (l / 2 + u / 2)\<bar> \<le> \<bar>u / 2 - l/2\<bar>" .
} note midpoint_abs = this
have "e \<in> UNIV \<rightarrow> {- 1..1}"
using assms
unfolding e_def Let_def
by (intro Pi_I divide_atLeastAtMost_1_absI)
(auto simp: map_of_zip_upto_length_eq_nth eucl_le[where 'a='a]
divide_le_eq_1 not_less inner_Basis algebra_simps intro!: midpoint_abs
dest!: nth_mem)
ultimately show "\<exists>e. e \<in> UNIV \<rightarrow> {- 1..1} \<and> k = aform_val e (aform_of_ivl l u)"
by blast
qed
lemma Inf_aform_aform_of_ivl:
assumes "l \<le> u"
shows "Inf_aform (aform_of_ivl l u) = l"
using assms
by (auto simp: Inf_aform_def aform_of_ivl_def tdev_pdevs_of_ivl abs_diff_eq1 algebra_simps)
(metis field_sum_of_halves scaleR_add_left scaleR_one)
lemma Sup_aform_aform_of_ivl:
assumes "l \<le> u"
shows "Sup_aform (aform_of_ivl l u) = u"
using assms
by (auto simp: Sup_aform_def aform_of_ivl_def tdev_pdevs_of_ivl abs_diff_eq1 algebra_simps)
(metis field_sum_of_halves scaleR_add_left scaleR_one)
lemma Affine_aform_of_ivl:
"a \<le> b \<Longrightarrow> Affine (aform_of_ivl a b) = {a .. b}"
by (force simp: Affine_def valuate_def intro!: Elem_affine_of_ivl_ge Elem_affine_of_ivl_le
elim!: in_ivl_affine_of_ivlE)
end
|