Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 85,125 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 |
(*
File: Bertrand.thy
Authors: Julian Biendarra, Manuel Eberl <manuel@pruvisto.org>, Larry Paulson
A proof of Bertrand's postulate (based on John Harrison's HOL Light proof).
Uses reflection and the approximation tactic.
*)
theory Bertrand
imports
Complex_Main
"HOL-Number_Theory.Number_Theory"
"HOL-Library.Discrete"
"HOL-Decision_Procs.Approximation_Bounds"
"HOL-Library.Code_Target_Numeral"
Pratt_Certificate.Pratt_Certificate
begin
subsection \<open>Auxiliary facts\<close>
lemma ln_2_le: "ln 2 \<le> 355 / (512 :: real)"
proof -
have "ln 2 \<le> real_of_float (ub_ln2 12)" by (rule ub_ln2)
also have "ub_ln2 12 = Float 5680 (- 13)" by code_simp
finally show ?thesis by simp
qed
lemma ln_2_ge: "ln 2 \<ge> (5677 / 8192 :: real)"
proof -
have "ln 2 \<ge> real_of_float (lb_ln2 12)" by (rule lb_ln2)
also have "lb_ln2 12 = Float 5677 (-13)" by code_simp
finally show ?thesis by simp
qed
lemma ln_2_ge': "ln (2 :: real) \<ge> 2/3" and ln_2_le': "ln (2 :: real) \<le> 16/23"
using ln_2_le ln_2_ge by simp_all
lemma of_nat_ge_1_iff: "(of_nat x :: 'a :: linordered_semidom) \<ge> 1 \<longleftrightarrow> x \<ge> 1"
using of_nat_le_iff[of 1 x] by (subst (asm) of_nat_1)
lemma floor_conv_div_nat:
"of_int (floor (real m / real n)) = real (m div n)"
by (subst floor_divide_of_nat_eq) simp
lemma frac_conv_mod_nat:
"frac (real m / real n) = real (m mod n) / real n"
by (cases "n = 0")
(simp_all add: frac_def floor_conv_div_nat field_simps of_nat_mult
[symmetric] of_nat_add [symmetric] del: of_nat_mult of_nat_add)
lemma of_nat_prod_mset: "prod_mset (image_mset of_nat A) = of_nat (prod_mset A)"
by (induction A) simp_all
lemma prod_mset_pos: "(\<And>x :: 'a :: linordered_semidom. x \<in># A \<Longrightarrow> x > 0) \<Longrightarrow> prod_mset A > 0"
by (induction A) simp_all
lemma ln_msetprod:
assumes "\<And>x. x \<in>#I \<Longrightarrow> x > 0"
shows "(\<Sum>p::nat\<in>#I. ln p) = ln (\<Prod>p\<in>#I. p)"
using assms by (induction I) (simp_all add: of_nat_prod_mset ln_mult prod_mset_pos)
lemma ln_fact: "ln (fact n) = (\<Sum>d=1..n. ln d)"
by (induction n) (simp_all add: ln_mult)
lemma overpower_lemma:
fixes f g :: "real \<Rightarrow> real"
assumes "f a \<le> g a"
assumes "\<And>x. a \<le> x \<Longrightarrow> ((\<lambda>x. g x - f x) has_real_derivative (d x)) (at x)"
assumes "\<And>x. a \<le> x \<Longrightarrow> d x \<ge> 0"
assumes "a \<le> x"
shows "f x \<le> g x"
proof (cases "a < x")
case True
with assms have "\<exists>z. z > a \<and> z < x \<and> g x - f x - (g a - f a) = (x - a) * d z"
by (intro MVT2) auto
then obtain z where z: "z > a" "z < x" "g x - f x - (g a - f a) = (x - a) * d z" by blast
hence "f x = g x + (f a - g a) + (a - x) * d z" by (simp add: algebra_simps)
also from assms have "f a - g a \<le> 0" by (simp add: algebra_simps)
also from assms z have "(a - x) * d z \<le> 0 * d z"
by (intro mult_right_mono) simp_all
finally show ?thesis by simp
qed (insert assms, auto)
subsection \<open>Preliminary definitions\<close>
definition primepow_even :: "nat \<Rightarrow> bool" where
"primepow_even q \<longleftrightarrow> (\<exists> p k. 1 \<le> k \<and> prime p \<and> q = p^(2*k))"
definition primepow_odd :: "nat \<Rightarrow> bool" where
"primepow_odd q \<longleftrightarrow> (\<exists> p k. 1 \<le> k \<and> prime p \<and> q = p^(2*k+1))"
abbreviation (input) isprimedivisor :: "nat \<Rightarrow> nat \<Rightarrow> bool" where
"isprimedivisor q p \<equiv> prime p \<and> p dvd q"
definition pre_mangoldt :: "nat \<Rightarrow> nat" where
"pre_mangoldt d = (if primepow d then aprimedivisor d else 1)"
definition mangoldt_even :: "nat \<Rightarrow> real" where
"mangoldt_even d = (if primepow_even d then ln (real (aprimedivisor d)) else 0)"
definition mangoldt_odd :: "nat \<Rightarrow> real" where
"mangoldt_odd d = (if primepow_odd d then ln (real (aprimedivisor d)) else 0)"
definition mangoldt_1 :: "nat \<Rightarrow> real" where
"mangoldt_1 d = (if prime d then ln d else 0)"
definition psi :: "nat \<Rightarrow> real" where
"psi n = (\<Sum>d=1..n. mangoldt d)"
definition psi_even :: "nat \<Rightarrow> real" where
"psi_even n = (\<Sum>d=1..n. mangoldt_even d)"
definition psi_odd :: "nat \<Rightarrow> real" where
"psi_odd n = (\<Sum>d=1..n. mangoldt_odd d)"
abbreviation (input) psi_even_2 :: "nat \<Rightarrow> real" where
"psi_even_2 n \<equiv> (\<Sum>d=2..n. mangoldt_even d)"
abbreviation (input) psi_odd_2 :: "nat \<Rightarrow> real" where
"psi_odd_2 n \<equiv> (\<Sum>d=2..n. mangoldt_odd d)"
definition theta :: "nat \<Rightarrow> real" where
"theta n = (\<Sum>p=1..n. if prime p then ln (real p) else 0)"
subsection \<open>Properties of prime powers\<close>
lemma primepow_even_imp_primepow:
assumes "primepow_even n"
shows "primepow n"
proof -
from assms obtain p k where "1 \<le> k" "prime p" "n = p ^ (2 * k)"
unfolding primepow_even_def by blast
moreover from \<open>1 \<le> k\<close> have "2 * k > 0"
by simp
ultimately show ?thesis unfolding primepow_def by blast
qed
lemma primepow_odd_imp_primepow:
assumes "primepow_odd n"
shows "primepow n"
proof -
from assms obtain p k where "1 \<le> k" "prime p" "n = p ^ (2 * k + 1)"
unfolding primepow_odd_def by blast
moreover from \<open>1 \<le> k\<close> have "Suc (2 * k) > 0"
by simp
ultimately show ?thesis unfolding primepow_def
by (auto simp del: power_Suc)
qed
lemma primepow_odd_altdef:
"primepow_odd n \<longleftrightarrow>
primepow n \<and> odd (multiplicity (aprimedivisor n) n) \<and> multiplicity (aprimedivisor n) n > 1"
proof (intro iffI conjI; (elim conjE)?)
assume "primepow_odd n"
then obtain p k where n: "k \<ge> 1" "prime p" "n = p ^ (2 * k + 1)"
by (auto simp: primepow_odd_def)
thus "odd (multiplicity (aprimedivisor n) n)" "multiplicity (aprimedivisor n) n > 1"
by (simp_all add: aprimedivisor_primepow prime_elem_multiplicity_mult_distrib)
next
assume A: "primepow n" and B: "odd (multiplicity (aprimedivisor n) n)"
and C: "multiplicity (aprimedivisor n) n > 1"
from A obtain p k where n: "k \<ge> 1" "prime p" "n = p ^ k"
by (auto simp: primepow_def Suc_le_eq)
with B C have "odd k" "k > 1"
by (simp_all add: aprimedivisor_primepow prime_elem_multiplicity_mult_distrib)
then obtain j where j: "k = 2 * j + 1" "j > 0" by (auto elim!: oddE)
with n show "primepow_odd n" by (auto simp: primepow_odd_def intro!: exI[of _ p, OF exI[of _ j]])
qed (auto dest: primepow_odd_imp_primepow)
lemma primepow_even_altdef:
"primepow_even n \<longleftrightarrow> primepow n \<and> even (multiplicity (aprimedivisor n) n)"
proof (intro iffI conjI; (elim conjE)?)
assume "primepow_even n"
then obtain p k where n: "k \<ge> 1" "prime p" "n = p ^ (2 * k)"
by (auto simp: primepow_even_def)
thus "even (multiplicity (aprimedivisor n) n)"
by (simp_all add: aprimedivisor_primepow prime_elem_multiplicity_mult_distrib)
next
assume A: "primepow n" and B: "even (multiplicity (aprimedivisor n) n)"
from A obtain p k where n: "k \<ge> 1" "prime p" "n = p ^ k"
by (auto simp: primepow_def Suc_le_eq)
with B have "even k"
by (simp_all add: aprimedivisor_primepow prime_elem_multiplicity_mult_distrib)
then obtain j where j: "k = 2 * j" by (auto elim!: evenE)
from j n have "j \<noteq> 0" by (intro notI) simp_all
with j n show "primepow_even n"
by (auto simp: primepow_even_def intro!: exI[of _ p, OF exI[of _ j]])
qed (auto dest: primepow_even_imp_primepow)
lemma primepow_odd_mult:
assumes "d > Suc 0"
shows "primepow_odd (aprimedivisor d * d) \<longleftrightarrow> primepow_even d"
using assms
by (auto simp: primepow_odd_altdef primepow_even_altdef primepow_mult_aprimedivisorI
aprimedivisor_primepow prime_aprimedivisor' aprimedivisor_dvd'
prime_elem_multiplicity_mult_distrib prime_elem_aprimedivisor_nat
dest!: primepow_multD)
lemma pre_mangoldt_primepow:
assumes "primepow n" "aprimedivisor n = p"
shows "pre_mangoldt n = p"
using assms by (simp add: pre_mangoldt_def)
lemma pre_mangoldt_notprimepow:
assumes "\<not>primepow n"
shows "pre_mangoldt n = 1"
using assms by (simp add: pre_mangoldt_def)
lemma primepow_cases:
"primepow d \<longleftrightarrow>
( primepow_even d \<and> \<not> primepow_odd d \<and> \<not> prime d) \<or>
(\<not> primepow_even d \<and> primepow_odd d \<and> \<not> prime d) \<or>
(\<not> primepow_even d \<and> \<not> primepow_odd d \<and> prime d)"
by (auto simp: primepow_even_altdef primepow_odd_altdef multiplicity_aprimedivisor_Suc_0_iff
elim!: oddE intro!: Nat.gr0I)
subsection \<open>Deriving a recurrence for the psi function\<close>
lemma ln_fact_bounds:
assumes "n > 0"
shows "abs(ln (fact n) - n * ln n + n) \<le> 1 + ln n"
proof -
have "\<forall>n\<in>{0<..}. \<exists>z>real n. z < real (n + 1) \<and> real (n + 1) * ln (real (n + 1)) -
real n * ln (real n) = (real (n + 1) - real n) * (ln z + 1)"
by (intro ballI MVT2) (auto intro!: derivative_eq_intros)
hence "\<forall>n\<in>{0<..}. \<exists>z>real n. z < real (n + 1) \<and> real (n + 1) * ln (real (n + 1)) -
real n * ln (real n) = (ln z + 1)" by (simp add: algebra_simps)
from bchoice[OF this] obtain k :: "nat \<Rightarrow> real"
where lb: "real n < k n" and ub: "k n < real (n + 1)" and
mvt: "real (n+1) * ln (real (n+1)) - real n * ln (real n) = ln (k n) + 1"
if "n > 0" for n::nat by blast
have *: "(n + 1) * ln (n + 1) = (\<Sum>i=1..n. ln(k i) + 1)" for n::nat
proof (induction n)
case (Suc n)
have "(\<Sum>i = 1..n+1. ln (k i) + 1) = (\<Sum>i = 1..n. ln (k i) + 1) + ln (k (n+1)) + 1"
by simp
also from Suc.IH have "(\<Sum>i = 1..n. ln (k i) + 1) = real (n+1) * ln (real (n+1))" ..
also from mvt[of "n+1"] have "\<dots> = real (n+2) * ln (real (n+2)) - ln (k (n+1)) - 1"
by simp
finally show ?case
by simp
qed simp
have **: "abs((\<Sum>i=1..n+1. ln i) - ((n+1) * ln (n+1) - (n+1))) \<le> 1 + ln(n+1)" for n::nat
proof -
have "(\<Sum>i=1..n+1. ln i) \<le> (\<Sum>i=1..n. ln i) + ln (n+1)"
by simp
also have "(\<Sum>i=1..n. ln i) \<le> (\<Sum>i=1..n. ln (k i))"
by (intro sum_mono, subst ln_le_cancel_iff) (auto simp: Suc_le_eq dest: lb ub)
also have "\<dots> = (\<Sum>i=1..n. ln (k i) + 1) - n"
by (simp add: sum.distrib)
also from * have "\<dots> = (n+1) * ln (n+1) - n"
by simp
finally have a_minus_b: "(\<Sum>i=1..n+1. ln i) - ((n+1) * ln (n+1) - (n+1)) \<le> 1 + ln (n+1)"
by simp
from * have "(n+1) * ln (n+1) - n = (\<Sum>i=1..n. ln (k i) + 1) - n"
by simp
also have "\<dots> = (\<Sum>i=1..n. ln (k i))"
by (simp add: sum.distrib)
also have "\<dots> \<le> (\<Sum>i=1..n. ln (i+1))"
by (intro sum_mono, subst ln_le_cancel_iff) (auto simp: Suc_le_eq dest: lb ub)
also from sum.shift_bounds_cl_nat_ivl[of "ln" 1 1 n] have "\<dots> = (\<Sum>i=1+1..n+1. ln i)" ..
also have "\<dots> = (\<Sum>i=1..n+1. ln i)"
by (rule sum.mono_neutral_left) auto
finally have b_minus_a: "((n+1) * ln (n+1) - (n+1)) - (\<Sum>i=1..n+1. ln i) \<le> 1"
by simp
have "0 \<le> ln (n+1)"
by simp
with b_minus_a have "((n+1) * ln (n+1) - (n+1)) - (\<Sum>i=1..n+1. ln i) \<le> 1 + ln (n+1)"
by linarith
with a_minus_b show ?thesis
by linarith
qed
from \<open>n > 0\<close> have "n \<ge> 1" by simp
thus ?thesis
proof (induction n rule: dec_induct)
case base
then show ?case by simp
next
case (step n)
from ln_fact[of "n+1"] **[of n] show ?case by simp
qed
qed
lemma ln_fact_diff_bounds:
"abs(ln (fact n) - 2 * ln (fact (n div 2)) - n * ln 2) \<le> 4 * ln (if n = 0 then 1 else n) + 3"
proof (cases "n div 2 = 0")
case True
hence "n \<le> 1" by simp
with ln_le_minus_one[of "2::real"] show ?thesis by (cases n) simp_all
next
case False
then have "n > 1" by simp
let ?a = "real n * ln 2"
let ?b = "4 * ln (real n) + 3"
let ?l1 = "ln (fact (n div 2))"
let ?a1 = "real (n div 2) * ln (real (n div 2)) - real (n div 2)"
let ?b1 = "1 + ln (real (n div 2))"
let ?l2 = "ln (fact n)"
let ?a2 = "real n * ln (real n) - real n"
let ?b2 = "1 + ln (real n)"
have abs_a: "abs(?a - (?a2 - 2 * ?a1)) \<le> ?b - 2 * ?b1 - ?b2"
proof (cases "even n")
case True
then have "real (2 * (n div 2)) = real n"
by simp
then have n_div_2: "real (n div 2) = real n / 2"
by simp
from \<open>n > 1\<close> have *: "abs(?a - (?a2 - 2 * ?a1)) = 0"
by (simp add: n_div_2 ln_div algebra_simps)
from \<open>even n\<close> and \<open>n > 1\<close> have "0 \<le> ln (real n) - ln (real (n div 2))"
by (auto elim: evenE)
also have "2 * \<dots> \<le> 3 * ln (real n) - 2 * ln (real (n div 2))"
using \<open>n > 1\<close> by (auto intro!: ln_ge_zero)
also have "\<dots> = ?b - 2 * ?b1 - ?b2" by simp
finally show ?thesis using * by simp
next
case False
then have "real (2 * (n div 2)) = real (n - 1)"
by simp
with \<open>n > 1\<close> have n_div_2: "real (n div 2) = (real n - 1) / 2"
by simp
from \<open>odd n\<close> \<open>n div 2 \<noteq> 0\<close> have "n \<ge> 3"
by presburger
have "?a - (?a2 - 2 * ?a1) = real n * ln 2 - real n * ln (real n) + real n +
2 * real (n div 2) * ln (real (n div 2)) - 2* real (n div 2)"
by (simp add: algebra_simps)
also from n_div_2 have "2 * real (n div 2) = real n - 1"
by simp
also have "real n * ln 2 - real n * ln (real n) + real n +
(real n - 1) * ln (real (n div 2)) - (real n - 1)
= real n * (ln (real n - 1) - ln (real n)) - ln (real (n div 2)) + 1"
using \<open>n > 1\<close> by (simp add: algebra_simps n_div_2 ln_div)
finally have lhs: "abs(?a - (?a2 - 2 * ?a1)) =
abs(real n * (ln (real n - 1) - ln (real n)) - ln (real (n div 2)) + 1)"
by simp
from \<open>n > 1\<close> have "real n * (ln (real n - 1) - ln (real n)) \<le> 0"
by (simp add: algebra_simps mult_left_mono)
moreover from \<open>n > 1\<close> have "ln (real (n div 2)) \<le> ln (real n)" by simp
moreover {
have "exp 1 \<le> (3::real)" by (rule exp_le)
also from \<open>n \<ge> 3\<close> have "\<dots> \<le> exp (ln (real n))" by simp
finally have "ln (real n) \<ge> 1" by simp
}
ultimately have ub: "real n * (ln (real n - 1) - ln (real n)) - ln(real (n div 2)) + 1 \<le>
3 * ln (real n) - 2 * ln(real (n div 2))" by simp
have mon: "real n' * (ln (real n') - ln (real n' - 1)) \<le>
real n * (ln (real n) - ln (real n - 1))"
if "n \<ge> 3" "n' \<ge> n" for n n'::nat
proof (rule DERIV_nonpos_imp_nonincreasing[where f = "\<lambda>x. x * (ln x - ln (x - 1))"])
fix t assume t: "real n \<le> t" "t \<le> real n'"
with that have "1 / (t - 1) \<ge> ln (1 + 1/(t - 1))"
by (intro ln_add_one_self_le_self) simp_all
also from t that have "ln (1 + 1/(t - 1)) = ln t- ln (t - 1)"
by (simp add: ln_div [symmetric] field_simps)
finally have "ln t - ln (t - 1) \<le> 1 / (t - 1)" .
with that t
show "\<exists>y. ((\<lambda>x. x * (ln x - ln (x - 1))) has_field_derivative y) (at t) \<and> y \<le> 0"
by (intro exI[of _ "1 / (1 - t) + ln t - ln (t - 1)"])
(force intro!: derivative_eq_intros simp: field_simps)+
qed (use that in simp_all)
from \<open>n > 1\<close> have "ln 2 = ln (real n) - ln (real n / 2)"
by (simp add: ln_div)
also from \<open>n > 1\<close> have "\<dots> \<le> ln (real n) - ln (real (n div 2))"
by simp
finally have *: "3*ln 2 + ln(real (n div 2)) \<le> 3* ln(real n) - 2* ln(real (n div 2))"
by simp
have "- real n * (ln (real n - 1) - ln (real n)) + ln(real (n div 2)) - 1 =
real n * (ln (real n) - ln (real n - 1)) - 1 + ln(real (n div 2))"
by (simp add: algebra_simps)
also have "real n * (ln (real n) - ln (real n - 1)) \<le> 3 * (ln 3 - ln (3 - 1))"
using mon[OF _ \<open>n \<ge> 3\<close>] by simp
also {
have "Some (Float 3 (-1)) = ub_ln 1 3" by code_simp
from ub_ln(1)[OF this] have "ln 3 \<le> (1.6 :: real)" by simp
also have "1.6 - 1 / 3 \<le> 2 * (2/3 :: real)" by simp
also have "2/3 \<le> ln (2 :: real)" by (rule ln_2_ge')
finally have "ln 3 - 1 / 3 \<le> 2 * ln (2 :: real)" by simp
}
hence "3 * (ln 3 - ln (3 - 1)) - 1 \<le> 3 * ln (2 :: real)" by simp
also note *
finally have "- real n * (ln (real n - 1) - ln (real n)) + ln(real (n div 2)) - 1 \<le>
3 * ln (real n) - 2 * ln (real (n div 2))" by simp
hence lhs': "abs(real n * (ln (real n - 1) - ln (real n)) - ln(real (n div 2)) + 1) \<le>
3 * ln (real n) - 2 * ln (real (n div 2))"
using ub by simp
have rhs: "?b - 2 * ?b1 - ?b2 = 3* ln (real n) - 2 * ln (real (n div 2))"
by simp
from \<open>n > 1\<close> have "ln (real (n div 2)) \<le> 3* ln (real n) - 2* ln (real (n div 2))"
by simp
with rhs lhs lhs' show ?thesis
by simp
qed
then have minus_a: "-?a \<le> ?b - 2 * ?b1 - ?b2 - (?a2 - 2 * ?a1)"
by simp
from abs_a have a: "?a \<le> ?b - 2 * ?b1 - ?b2 + ?a2 - 2 * ?a1"
by (simp)
from ln_fact_bounds[of "n div 2"] False have abs_l1: "abs(?l1 - ?a1) \<le> ?b1"
by (simp add: algebra_simps)
then have minus_l1: "?a1 - ?l1 \<le> ?b1"
by linarith
from abs_l1 have l1: "?l1 - ?a1 \<le> ?b1"
by linarith
from ln_fact_bounds[of n] False have abs_l2: "abs(?l2 - ?a2) \<le> ?b2"
by (simp add: algebra_simps)
then have l2: "?l2 - ?a2 \<le> ?b2"
by simp
from abs_l2 have minus_l2: "?a2 - ?l2 \<le> ?b2"
by simp
from minus_a minus_l1 l2 have "?l2 - 2 * ?l1 - ?a \<le> ?b"
by simp
moreover from a l1 minus_l2 have "- ?l2 + 2 * ?l1 + ?a \<le> ?b"
by simp
ultimately have "abs((?l2 - 2*?l1) - ?a) \<le> ?b"
by simp
then show ?thesis
by simp
qed
lemma ln_primefact:
assumes "n \<noteq> (0::nat)"
shows "ln n = (\<Sum>d=1..n. if primepow d \<and> d dvd n then ln (aprimedivisor d) else 0)"
(is "?lhs = ?rhs")
proof -
have "?rhs = (\<Sum>d\<in>{x \<in> {1..n}. primepow x \<and> x dvd n}. ln (real (aprimedivisor d)))"
unfolding primepow_factors_def by (subst sum.inter_filter [symmetric]) simp_all
also have "{x \<in> {1..n}. primepow x \<and> x dvd n} = primepow_factors n"
using assms by (auto simp: primepow_factors_def dest: dvd_imp_le primepow_gt_Suc_0)
finally have *: "(\<Sum>d\<in>primepow_factors n. ln (real (aprimedivisor d))) = ?rhs" ..
from in_prime_factors_imp_prime prime_gt_0_nat
have pf_pos: "\<And>p. p\<in>#prime_factorization n \<Longrightarrow> p > 0"
by blast
from ln_msetprod[of "prime_factorization n", OF pf_pos] assms
have "ln n = (\<Sum>p\<in>#prime_factorization n. ln p)"
by (simp add: of_nat_prod_mset)
also from * sum_prime_factorization_conv_sum_primepow_factors[of n ln, OF assms(1)]
have "\<dots> = ?rhs" by simp
finally show ?thesis .
qed
context
begin
private lemma divisors:
fixes x d::nat
assumes "x \<in> {1..n}"
assumes "d dvd x"
shows "\<exists>k\<in>{1..n div d}. x = d * k"
proof -
from assms have "x \<le> n"
by simp
then have ub: "x div d \<le> n div d"
by (simp add: div_le_mono \<open>x \<le> n\<close>)
from assms have "1 \<le> x div d" by (auto elim!: dvdE)
with ub have "x div d \<in> {1..n div d}"
by simp
with \<open>d dvd x\<close> show ?thesis by (auto intro!: bexI[of _ "x div d"])
qed
lemma ln_fact_conv_mangoldt: "ln (fact n) = (\<Sum>d=1..n. mangoldt d * floor (n / d))"
proof -
have *: "(\<Sum>da=1..n. if primepow da \<and> da dvd d then ln (aprimedivisor da) else 0) =
(\<Sum>(da::nat)=1..d. if primepow da \<and> da dvd d then ln (aprimedivisor da) else 0)"
if d: "d \<in> {1..n}" for d
by (rule sum.mono_neutral_right, insert d) (auto dest: dvd_imp_le)
have "(\<Sum>d=1..n. \<Sum>da=1..d. if primepow da \<and>
da dvd d then ln (aprimedivisor da) else 0) =
(\<Sum>d=1..n. \<Sum>da=1..n. if primepow da \<and>
da dvd d then ln (aprimedivisor da) else 0)"
by (rule sum.cong) (insert *, simp_all)
also have "\<dots> = (\<Sum>da=1..n. \<Sum>d=1..n. if primepow da \<and>
da dvd d then ln (aprimedivisor da) else 0)"
by (rule sum.swap)
also have "\<dots> = sum (\<lambda>d. mangoldt d * floor (n/d)) {1..n}"
proof (rule sum.cong)
fix d assume d: "d \<in> {1..n}"
have "(\<Sum>da = 1..n. if primepow d \<and> d dvd da then ln (real (aprimedivisor d)) else 0) =
(\<Sum>da = 1..n. if d dvd da then mangoldt d else 0)"
by (intro sum.cong) (simp_all add: mangoldt_def)
also have "\<dots> = mangoldt d * real (card {x. x \<in> {1..n} \<and> d dvd x})"
by (subst sum.inter_filter [symmetric]) (simp_all add: algebra_simps)
also {
have "{x. x \<in> {1..n} \<and> d dvd x} = {x. \<exists>k \<in>{1..n div d}. x=k*d}"
proof safe
fix x assume "x \<in> {1..n}" "d dvd x"
thus "\<exists>k\<in>{1..n div d}. x = k * d" using divisors[of x n d] by auto
next
fix x k assume k: "k \<in> {1..n div d}"
from k have "k * d \<le> n div d * d" by (intro mult_right_mono) simp_all
also have "n div d * d \<le> n div d * d + n mod d" by (rule le_add1)
also have "\<dots> = n" by simp
finally have "k * d \<le> n" .
thus "k * d \<in> {1..n}" using d k by auto
qed auto
also have "\<dots> = (\<lambda>k. k*d) ` {1..n div d}"
by fast
also have "card \<dots> = card {1..n div d}"
by (rule card_image) (simp add: inj_on_def)
also have "\<dots> = n div d"
by simp
also have "... = \<lfloor>n / d\<rfloor>"
by (simp add: floor_divide_of_nat_eq)
finally have "real (card {x. x \<in> {1..n} \<and> d dvd x}) = real_of_int \<lfloor>n / d\<rfloor>"
by force
}
finally show "(\<Sum>da = 1..n. if primepow d \<and> d dvd da then ln (real (aprimedivisor d)) else 0) =
mangoldt d * real_of_int \<lfloor>real n / real d\<rfloor>" .
qed simp_all
finally have "(\<Sum>d=1..n. \<Sum>da=1..d. if primepow da \<and>
da dvd d then ln (aprimedivisor da) else 0) =
sum (\<lambda>d. mangoldt d * floor (n/d)) {1..n}" .
with ln_primefact have "(\<Sum>d=1..n. ln d) =
(\<Sum>d=1..n. mangoldt d * floor (n/d))"
by simp
with ln_fact show ?thesis
by simp
qed
end
context
begin
private lemma div_2_mult_2_bds:
fixes n d :: nat
assumes "d > 0"
shows "0 \<le> \<lfloor>n / d\<rfloor> - 2 * \<lfloor>(n div 2) / d\<rfloor>" "\<lfloor>n / d\<rfloor> - 2 * \<lfloor>(n div 2) / d\<rfloor> \<le> 1"
proof -
have "\<lfloor>2::real\<rfloor> * \<lfloor>(n div 2) / d\<rfloor> \<le> \<lfloor>2 * ((n div 2) / d)\<rfloor>"
by (rule le_mult_floor) simp_all
also from assms have "\<dots> \<le> \<lfloor>n / d\<rfloor>" by (intro floor_mono) (simp_all add: field_simps)
finally show "0 \<le> \<lfloor>n / d\<rfloor> - 2 * \<lfloor>(n div 2) / d\<rfloor>" by (simp add: algebra_simps)
next
have "real (n div d) \<le> real (2 * ((n div 2) div d) + 1)"
by (subst div_mult2_eq [symmetric], simp only: mult.commute, subst div_mult2_eq) simp
thus "\<lfloor>n / d\<rfloor> - 2 * \<lfloor>(n div 2) / d\<rfloor> \<le> 1"
unfolding of_nat_add of_nat_mult floor_conv_div_nat [symmetric] by simp_all
qed
private lemma n_div_d_eq_1: "d \<in> {n div 2 + 1..n} \<Longrightarrow> \<lfloor>real n / real d\<rfloor> = 1"
by (cases "n = d") (auto simp: field_simps intro: floor_eq)
lemma psi_bounds_ln_fact:
shows "ln (fact n) - 2 * ln (fact (n div 2)) \<le> psi n"
"psi n - psi (n div 2) \<le> ln (fact n) - 2 * ln (fact (n div 2))"
proof -
fix n::nat
let ?k = "n div 2" and ?d = "n mod 2"
have *: "\<lfloor>?k / d\<rfloor> = 0" if "d > ?k" for d
proof -
from that div_less have "0 = ?k div d" by simp
also have "\<dots> = \<lfloor>?k / d\<rfloor>" by (rule floor_divide_of_nat_eq [symmetric])
finally show "\<lfloor>?k / d\<rfloor> = 0" by simp
qed
have sum_eq: "(\<Sum>d=1..2*?k+?d. mangoldt d * \<lfloor>?k / d\<rfloor>) = (\<Sum>d=1..?k. mangoldt d * \<lfloor>?k / d\<rfloor>)"
by (intro sum.mono_neutral_right) (auto simp: *)
from ln_fact_conv_mangoldt have "ln (fact n) = (\<Sum>d=1..n. mangoldt d * \<lfloor>n / d\<rfloor>)" .
also have "\<dots> = (\<Sum>d=1..n. mangoldt d * \<lfloor>(2 * (n div 2) + n mod 2) / d\<rfloor>)"
by simp
also have "\<dots> \<le> (\<Sum>d=1..n. mangoldt d * (2 * \<lfloor>?k / d\<rfloor> + 1))"
using div_2_mult_2_bds(2)[of _ n]
by (intro sum_mono mult_left_mono, subst of_int_le_iff)
(auto simp: algebra_simps mangoldt_nonneg)
also have "\<dots> = 2 * (\<Sum>d=1..n. mangoldt d * \<lfloor>(n div 2) / d\<rfloor>) + (\<Sum>d=1..n. mangoldt d)"
by (simp add: algebra_simps sum.distrib sum_distrib_left)
also have "\<dots> = 2 * (\<Sum>d=1..2*?k+?d. mangoldt d * \<lfloor>(n div 2) / d\<rfloor>) + (\<Sum>d=1..n. mangoldt d)"
by presburger
also from sum_eq have "\<dots> = 2 * (\<Sum>d=1..?k. mangoldt d * \<lfloor>(n div 2) / d\<rfloor>) + (\<Sum>d=1..n. mangoldt d)"
by presburger
also from ln_fact_conv_mangoldt psi_def have "\<dots> = 2 * ln (fact ?k) + psi n"
by presburger
finally show "ln (fact n) - 2 * ln (fact (n div 2)) \<le> psi n"
by simp
next
fix n::nat
let ?k = "n div 2" and ?d = "n mod 2"
from psi_def have "psi n - psi ?k = (\<Sum>d=1..2*?k+?d. mangoldt d) - (\<Sum>d=1..?k. mangoldt d)"
by presburger
also have "\<dots> = sum mangoldt ({1..2 * (n div 2) + n mod 2} - {1..n div 2})"
by (subst sum_diff) simp_all
also have "\<dots> = (\<Sum>d\<in>({1..2 * (n div 2) + n mod 2} - {1..n div 2}).
(if d \<le> ?k then 0 else mangoldt d))"
by (intro sum.cong) simp_all
also have "\<dots> = (\<Sum>d=1..2*?k+?d. (if d \<le> ?k then 0 else mangoldt d))"
by (intro sum.mono_neutral_left) auto
also have "\<dots> = (\<Sum>d=1..n. (if d \<le> ?k then 0 else mangoldt d))"
by presburger
also have "\<dots> = (\<Sum>d=1..n. (if d \<le> ?k then mangoldt d * 0 else mangoldt d))"
by (intro sum.cong) simp_all
also from div_2_mult_2_bds(1) have "\<dots> \<le> (\<Sum>d=1..n. (if d \<le> ?k then mangoldt d * (\<lfloor>n/d\<rfloor> - 2 * \<lfloor>?k/d\<rfloor>) else mangoldt d))"
by (intro sum_mono)
(auto simp: algebra_simps mangoldt_nonneg intro!: mult_left_mono simp del: of_int_mult)
also from n_div_d_eq_1 have "\<dots> = (\<Sum>d=1..n. (if d \<le> ?k then mangoldt d * (\<lfloor>n/d\<rfloor> - 2 * \<lfloor>?k/d\<rfloor>) else mangoldt d * \<lfloor>n/d\<rfloor>))"
by (intro sum.cong refl) auto
also have "\<dots> = (\<Sum>d=1..n. mangoldt d * real_of_int (\<lfloor>real n / real d\<rfloor>) -
(if d \<le> ?k then 2 * mangoldt d * real_of_int \<lfloor>real ?k / real d\<rfloor> else 0))"
by (intro sum.cong refl) (auto simp: algebra_simps)
also have "\<dots> = (\<Sum>d=1..n. mangoldt d * real_of_int (\<lfloor>real n / real d\<rfloor>)) -
(\<Sum>d=1..n. (if d \<le> ?k then 2 * mangoldt d * real_of_int \<lfloor>real ?k / real d\<rfloor> else 0))"
by (rule sum_subtractf)
also have "(\<Sum>d=1..n. (if d \<le> ?k then 2 * mangoldt d * real_of_int \<lfloor>real ?k / real d\<rfloor> else 0)) =
(\<Sum>d=1..?k. (if d \<le> ?k then 2 * mangoldt d * real_of_int \<lfloor>real ?k / real d\<rfloor> else 0))"
by (intro sum.mono_neutral_right) auto
also have "\<dots> = (\<Sum>d=1..?k. 2 * mangoldt d * real_of_int \<lfloor>real ?k / real d\<rfloor>)"
by (intro sum.cong) simp_all
also have "\<dots> = 2 * (\<Sum>d=1..?k. mangoldt d * real_of_int \<lfloor>real ?k / real d\<rfloor>)"
by (simp add: sum_distrib_left mult_ac)
also have "(\<Sum>d = 1..n. mangoldt d * real_of_int \<lfloor>real n / real d\<rfloor>) - \<dots> =
ln (fact n) - 2 * ln (fact (n div 2))"
by (simp add: ln_fact_conv_mangoldt)
finally show "psi n - psi (n div 2) \<le> ln (fact n) - 2 * ln (fact (n div 2))" .
qed
end
lemma psi_bounds_induct:
"real n * ln 2 - (4 * ln (real (if n = 0 then 1 else n)) + 3) \<le> psi n"
"psi n - psi (n div 2) \<le> real n * ln 2 + (4 * ln (real (if n = 0 then 1 else n)) + 3)"
proof -
from le_imp_neg_le[OF ln_fact_diff_bounds]
have "n * ln 2 - (4 * ln (if n = 0 then 1 else n) + 3)
\<le> n * ln 2 - abs(ln (fact n) - 2 * ln (fact (n div 2)) - n * ln 2)"
by simp
also have "\<dots> \<le> ln (fact n) - 2 * ln (fact (n div 2))"
by simp
also from psi_bounds_ln_fact (1) have "\<dots> \<le> psi n"
by simp
finally show "real n * ln 2 - (4 * ln (real (if n = 0 then 1 else n)) + 3) \<le> psi n" .
next
from psi_bounds_ln_fact (2) have "psi n - psi (n div 2) \<le> ln (fact n) - 2 * ln (fact (n div 2))" .
also have "\<dots> \<le> n * ln 2 + abs(ln (fact n) - 2 * ln (fact (n div 2)) - n * ln 2)"
by simp
also from ln_fact_diff_bounds [of n]
have "abs(ln (fact n) - 2 * ln (fact (n div 2)) - n * ln 2)
\<le> (4 * ln (real (if n = 0 then 1 else n)) + 3)" by simp
finally show "psi n - psi (n div 2) \<le> real n * ln 2 + (4 * ln (real (if n = 0 then 1 else n)) + 3)"
by simp
qed
subsection \<open>Bounding the psi function\<close>
text \<open>
In this section, we will first prove the relatively tight estimate
@{prop "psi n \<le> 3 / 2 + ln 2 * n"} for @{term "n \<le> 128"} and then use the
recurrence we have just derived to extend it to @{prop "psi n \<le> 551 / 256"} for
@{term "n \<le> 1024"}, at which point applying the recurrence can be used to prove
the same bound for arbitrarily big numbers.
First of all, we will prove the bound for @{term "n <= 128"} using reflection and
approximation.
\<close>
context
begin
private lemma Ball_insertD:
assumes "\<forall>x\<in>insert y A. P x"
shows "P y" "\<forall>x\<in>A. P x"
using assms by auto
private lemma meta_eq_TrueE: "PROP A \<equiv> Trueprop True \<Longrightarrow> PROP A"
by simp
private lemma pre_mangoldt_pos: "pre_mangoldt n > 0"
unfolding pre_mangoldt_def by (auto simp: primepow_gt_Suc_0)
private lemma psi_conv_pre_mangoldt: "psi n = ln (real (prod pre_mangoldt {1..n}))"
by (auto simp: psi_def mangoldt_def pre_mangoldt_def ln_prod primepow_gt_Suc_0 intro!: sum.cong)
private lemma eval_psi_aux1: "psi 0 = ln (real (numeral Num.One))"
by (simp add: psi_def)
private lemma eval_psi_aux2:
assumes "psi m = ln (real (numeral x))" "pre_mangoldt n = y" "m + 1 = n" "numeral x * y = z"
shows "psi n = ln (real z)"
proof -
from assms(2) [symmetric] have [simp]: "y > 0" by (simp add: pre_mangoldt_pos)
have "psi n = psi (Suc m)" by (simp add: assms(3) [symmetric])
also have "\<dots> = ln (real y * (\<Prod>x = Suc 0..m. real (pre_mangoldt x)))"
using assms(2,3) [symmetric] by (simp add: psi_conv_pre_mangoldt prod.nat_ivl_Suc' mult_ac)
also have "\<dots> = ln (real y) + psi m"
by (subst ln_mult) (simp_all add: pre_mangoldt_pos prod_pos psi_conv_pre_mangoldt)
also have "psi m = ln (real (numeral x))" by fact
also have "ln (real y) + \<dots> = ln (real (numeral x * y))" by (simp add: ln_mult)
finally show ?thesis by (simp add: assms(4) [symmetric])
qed
private lemma Ball_atLeast0AtMost_doubleton:
assumes "psi 0 \<le> 3 / 2 * ln 2 * real 0"
assumes "psi 1 \<le> 3 / 2 * ln 2 * real 1"
shows "(\<forall>x\<in>{0..1}. psi x \<le> 3 / 2 * ln 2 * real x)"
using assms unfolding One_nat_def atLeast0_atMost_Suc ball_simps by auto
private lemma Ball_atLeast0AtMost_insert:
assumes "(\<forall>x\<in>{0..m}. psi x \<le> 3 / 2 * ln 2 * real x)"
assumes "psi (numeral n) \<le> 3 / 2 * ln 2 * real (numeral n)" "m = pred_numeral n"
shows "(\<forall>x\<in>{0..numeral n}. psi x \<le> 3 / 2 * ln 2 * real x)"
using assms
by (subst numeral_eq_Suc[of n], subst atLeast0_atMost_Suc,
subst ball_simps, simp only: numeral_eq_Suc [symmetric])
private lemma eval_psi_ineq_aux:
assumes "psi n = x" "x \<le> 3 / 2 * ln 2 * n"
shows "psi n \<le> 3 / 2 * ln 2 * n"
using assms by simp_all
private lemma eval_psi_ineq_aux2:
assumes "numeral m ^ 2 \<le> (2::nat) ^ (3 * n)"
shows "ln (real (numeral m)) \<le> 3 / 2 * ln 2 * real n"
proof -
have "ln (real (numeral m)) \<le> 3 / 2 * ln 2 * real n \<longleftrightarrow>
2 * log 2 (real (numeral m)) \<le> 3 * real n"
by (simp add: field_simps log_def)
also have "2 * log 2 (real (numeral m)) = log 2 (real (numeral m ^ 2))"
by (subst of_nat_power, subst log_nat_power) simp_all
also have "\<dots> \<le> 3 * real n \<longleftrightarrow> real ((numeral m) ^ 2) \<le> 2 powr real (3 * n)"
by (subst Transcendental.log_le_iff) simp_all
also have "2 powr (3 * n) = real (2 ^ (3 * n))"
by (simp add: powr_realpow [symmetric])
also have "real ((numeral m) ^ 2) \<le> \<dots> \<longleftrightarrow> numeral m ^ 2 \<le> (2::nat) ^ (3 * n)"
by (rule of_nat_le_iff)
finally show ?thesis using assms by blast
qed
private lemma eval_psi_ineq_aux_mono:
assumes "psi n = x" "psi m = x" "psi n \<le> 3 / 2 * ln 2 * n" "n \<le> m"
shows "psi m \<le> 3 / 2 * ln 2 * m"
proof -
from assms have "psi m = psi n" by simp
also have "\<dots> \<le> 3 / 2 * ln 2 * n" by fact
also from \<open>n \<le> m\<close> have "\<dots> \<le> 3 / 2 * ln 2 * m" by simp
finally show ?thesis .
qed
lemma not_primepow_1_nat: "\<not>primepow (1 :: nat)" by auto
ML_file \<open>bertrand.ML\<close>
(* This should not take more than 1 minute *)
local_setup \<open>fn lthy =>
let
fun tac ctxt =
let
val psi_cache = Bertrand.prove_psi ctxt 129
fun prove_psi_ineqs ctxt =
let
fun tac goal_ctxt =
HEADGOAL (resolve_tac goal_ctxt @{thms eval_psi_ineq_aux2} THEN'
Simplifier.simp_tac goal_ctxt)
fun prove_by_approx n thm =
let
val thm = thm RS @{thm eval_psi_ineq_aux}
val [prem] = Thm.prems_of thm
val prem = Goal.prove ctxt [] [] prem (tac o #context)
in
prem RS thm
end
fun prove_by_mono last_thm last_thm' thm =
let
val thm = @{thm eval_psi_ineq_aux_mono} OF [last_thm, thm, last_thm']
val [prem] = Thm.prems_of thm
val prem =
Goal.prove ctxt [] [] prem (fn {context = goal_ctxt, ...} =>
HEADGOAL (Simplifier.simp_tac goal_ctxt))
in
prem RS thm
end
fun go _ acc [] = acc
| go last acc ((n, x, thm) :: xs) =
let
val thm' =
case last of
NONE => prove_by_approx n thm
| SOME (last_x, last_thm, last_thm') =>
if last_x = x then
prove_by_mono last_thm last_thm' thm
else
prove_by_approx n thm
in
go (SOME (x, thm, thm')) (thm' :: acc) xs
end
in
rev o go NONE []
end
val psi_ineqs = prove_psi_ineqs ctxt psi_cache
fun prove_ball ctxt (thm1 :: thm2 :: thms) =
let
val thm = @{thm Ball_atLeast0AtMost_doubleton} OF [thm1, thm2]
fun solve_prem thm =
let
val thm' =
Goal.prove ctxt [] [] (Thm.cprem_of thm 1 |> Thm.term_of)
(fn {context = goal_ctxt, ...} =>
HEADGOAL (Simplifier.simp_tac goal_ctxt))
in
thm' RS thm
end
fun go thm thm' = (@{thm Ball_atLeast0AtMost_insert} OF [thm', thm]) |> solve_prem
in
fold go thms thm
end
| prove_ball _ _ = raise Match
in
HEADGOAL (resolve_tac ctxt [prove_ball ctxt psi_ineqs])
end
val thm = Goal.prove lthy [] [] @{prop "\<forall>n\<in>{0..128}. psi n \<le> 3 / 2 * ln 2 * n"} (tac o #context)
in
Local_Theory.note ((@{binding psi_ubound_log_128}, []), [thm]) lthy |> snd
end
\<close>
end
context
begin
private lemma psi_ubound_aux:
defines "f \<equiv> \<lambda>x::real. (4 * ln x + 3) / (ln 2 * x)"
assumes "x \<ge> 2" "x \<le> y"
shows "f x \<ge> f y"
using assms(3)
proof (rule DERIV_nonpos_imp_nonincreasing, goal_cases)
case (1 t)
define f' where "f' = (\<lambda>x. (1 - 4 * ln x) / x^2 / ln 2 :: real)"
from 1 assms(2) have "(f has_real_derivative f' t) (at t)" unfolding f_def f'_def
by (auto intro!: derivative_eq_intros simp: field_simps power2_eq_square)
moreover {
from ln_2_ge have "1/4 \<le> ln (2::real)" by simp
also from assms(2) 1 have "\<dots> \<le> ln t" by simp
finally have "ln t \<ge> 1/4" .
}
with 1 assms(2) have "f' t \<le> 0" by (simp add: f'_def field_simps)
ultimately show ?case by (intro exI[of _ "f' t"]) simp_all
qed
text \<open>
These next rules are used in combination with @{thm psi_bounds_induct} and
@{thm psi_ubound_log_128} to extend the upper bound for @{term "psi"} from values no greater
than 128 to values no greater than 1024. The constant factor of the upper bound changes every
time, but once we have reached 1024, the recurrence is self-sustaining in the sense that we do
not have to adjust the constant factor anymore in order to double the range.
\<close>
lemma psi_ubound_log_double_cases':
assumes "\<And>n. n \<le> m \<Longrightarrow> psi n \<le> c * ln 2 * real n" "n \<le> m'" "m' = 2*m"
"c \<le> c'" "c \<ge> 0" "m \<ge> 1" "c' \<ge> 1 + c/2 + (4 * ln (m+1) + 3) / (ln 2 * (m+1))"
shows "psi n \<le> c' * ln 2 * real n"
proof (cases "n > m")
case False
hence "psi n \<le> c * ln 2 * real n" by (intro assms) simp_all
also have "c \<le> c'" by fact
finally show ?thesis by - (simp_all add: mult_right_mono)
next
case True
hence n: "n \<ge> m+1" by simp
from psi_bounds_induct(2)[of n] True
have "psi n \<le> real n * ln 2 + 4 * ln (real n) + 3 + psi (n div 2)" by simp
also from assms have "psi (n div 2) \<le> c * ln 2 * real (n div 2)"
by (intro assms) simp_all
also have "real (n div 2) \<le> real n / 2" by simp
also have "c * ln 2 * \<dots> = c / 2 * ln 2 * real n" by simp
also have "real n * ln 2 + 4 * ln (real n) + 3 + \<dots> =
(1 + c/2) * ln 2 * real n + (4 * ln (real n) + 3)" by (simp add: field_simps)
also {
have "(4 * ln (real n) + 3) / (ln 2 * (real n)) \<le> (4 * ln (m+1) + 3) / (ln 2 * (m+1))"
using n assms by (intro psi_ubound_aux) simp_all
also from assms have "(4 * ln (m+1) + 3) / (ln 2 * (m+1)) \<le> c' - 1 - c/2"
by (simp add: algebra_simps)
finally have "4 * ln (real n) + 3 \<le> (c' - 1 - c/2) * ln 2 * real n"
using n by (simp add: field_simps)
}
also have "(1 + c / 2) * ln 2 * real n + (c' - 1 - c / 2) * ln 2 * real n = c' * ln 2 * real n"
by (simp add: field_simps)
finally show ?thesis using \<open>c \<ge> 0\<close> by (simp_all add: mult_left_mono)
qed
end
lemma psi_ubound_log_double_cases:
assumes "\<forall>n\<le>m. psi n \<le> c * ln 2 * real n"
"c' \<ge> 1 + c/2 + (4 * ln (m+1) + 3) / (ln 2 * (m+1))"
"m' = 2*m" "c \<le> c'" "c \<ge> 0" "m \<ge> 1"
shows "\<forall>n\<le>m'. psi n \<le> c' * ln 2 * real n"
using assms(1) by (intro allI impI assms psi_ubound_log_double_cases'[of m c _ m' c']) auto
lemma psi_ubound_log_1024:
"\<forall>n\<le>1024. psi n \<le> 551 / 256 * ln 2 * real n"
proof -
from psi_ubound_log_128 have "\<forall>n\<le>128. psi n \<le> 3 / 2 * ln 2 * real n" by simp
hence "\<forall>n\<le>256. psi n \<le> 1025 / 512 * ln 2 * real n"
proof (rule psi_ubound_log_double_cases, goal_cases)
case 1
have "Some (Float 624 (- 7)) = ub_ln 9 129" by code_simp
from ub_ln(1)[OF this] and ln_2_ge show ?case by (simp add: field_simps)
qed simp_all
hence "\<forall>n\<le>512. psi n \<le> 549 / 256 * ln 2 * real n"
proof (rule psi_ubound_log_double_cases, goal_cases)
case 1
have "Some (Float 180 (- 5)) = ub_ln 7 257" by code_simp
from ub_ln(1)[OF this] and ln_2_ge show ?case by (simp add: field_simps)
qed simp_all
thus "\<forall>n\<le>1024. psi n \<le> 551 / 256 * ln 2 * real n"
proof (rule psi_ubound_log_double_cases, goal_cases)
case 1
have "Some (Float 203 (- 5)) = ub_ln 7 513" by code_simp
from ub_ln(1)[OF this] and ln_2_ge show ?case by (simp add: field_simps)
qed simp_all
qed
lemma psi_bounds_sustained_induct:
assumes "4 * ln (1 + 2 ^ j) + 3 \<le> d * ln 2 * (1 + 2^j)"
assumes "4 / (1 + 2^j) \<le> d * ln 2"
assumes "0 \<le> c"
assumes "c / 2 + d + 1 \<le> c"
assumes "j \<le> k"
assumes "\<And>n. n \<le> 2^k \<Longrightarrow> psi n \<le> c * ln 2 * n"
assumes "n \<le> 2^(Suc k)"
shows "psi n \<le> c * ln 2 * n"
proof (cases "n \<le> 2^k")
case True
with assms(6) show ?thesis .
next
case False
from psi_bounds_induct(2)
have "psi n - psi (n div 2) \<le> real n * ln 2 + (4 * ln (real (if n = 0 then 1 else n)) + 3)" .
also from False have "(if n = 0 then 1 else n) = n"
by simp
finally have "psi n \<le> real n * ln 2 + (4 * ln (real n) + 3) + psi (n div 2)"
by simp
also from assms(6,7) have "psi (n div 2) \<le> c * ln 2 * (n div 2)"
by simp
also have "real (n div 2) \<le> real n / 2"
by simp
also have "real n * ln 2 + (4 * ln (real n) + 3) + c * ln 2 * (n / 2) \<le> c * ln 2 * real n"
proof (rule overpower_lemma[of
"\<lambda>x. x * ln 2 + (4 * ln x + 3) + c * ln 2 * (x / 2)" "1+2^j"
"\<lambda>x. c * ln 2 * x" "\<lambda>x. c * ln 2 - ln 2 - 4 / x - c / 2 * ln 2"
"real n"])
from assms(1) have "4 * ln (1 + 2^j) + 3 \<le> d * ln 2 * (1 + 2^j)" .
also from assms(4) have "d \<le> c - c/2 - 1"
by simp
also have "(\<dots>) * ln 2 * (1 + 2 ^ j) = c * ln 2 * (1 + 2 ^ j) - c / 2 * ln 2 * (1 + 2 ^ j)
- (1 + 2 ^ j) * ln 2"
by (simp add: left_diff_distrib)
finally have "4 * ln (1 + 2^j) + 3 \<le> c * ln 2 * (1 + 2 ^ j) - c / 2 * ln 2 * (1 + 2 ^ j)
- (1 + 2 ^ j) * ln 2"
by (simp add: add_pos_pos)
then show "(1 + 2 ^ j) * ln 2 + (4 * ln (1 + 2 ^ j) + 3)
+ c * ln 2 * ((1 + 2 ^ j) / 2) \<le> c * ln 2 * (1 + 2 ^ j)"
by simp
next
fix x::real
assume x: "1 + 2^j \<le> x"
moreover have "1 + 2 ^ j > (0::real)" by (simp add: add_pos_pos)
ultimately have x_pos: "x > 0" by linarith
show "((\<lambda>x. c * ln 2 * x - (x * ln 2 + (4 * ln x + 3) + c * ln 2 * (x / 2)))
has_real_derivative c * ln 2 - ln 2 - 4 / x - c / 2 * ln 2) (at x)"
by (rule derivative_eq_intros refl | simp add: \<open>0 < x\<close>)+
from \<open>0 < x\<close> \<open>0 < 1 + 2^j\<close> have "0 < x * (1 + 2^j)"
by (rule mult_pos_pos)
have "4 / x \<le> 4 / (1 + 2^j)"
by (intro divide_left_mono mult_pos_pos add_pos_pos x x_pos) simp_all
also from assms(2) have "4 / (1 + 2^j) \<le> d * ln 2" .
also from assms(4) have "d \<le> c - c/2 - 1" by simp
also have "\<dots> * ln 2 = c * ln 2 - c/2 * ln 2 - ln 2" by (simp add: algebra_simps)
finally show "0 \<le> c * ln 2 - ln 2 - 4 / x - c / 2 * ln 2" by simp
next
have "1 + 2^j = real (1 + 2^j)" by simp
also from assms(5) have "\<dots> \<le> real (1 + 2^k)" by simp
also from False have "2^k \<le> n - 1" by simp
finally show "1 + 2^j \<le> real n" using False by simp
qed
finally show ?thesis using assms by - (simp_all add: mult_left_mono)
qed
lemma psi_bounds_sustained:
assumes "\<And>n. n \<le> 2^k \<Longrightarrow> psi n \<le> c * ln 2 * n"
assumes "4 * ln (1 + 2^k) + 3 \<le> (c/2 - 1) * ln 2 * (1 + 2^k)"
assumes "4 / (1 + 2^k) \<le> (c/2 - 1) * ln 2"
assumes "c \<ge> 0"
shows "psi n \<le> c * ln 2 * n"
proof -
have "psi n \<le> c * ln 2 * n" if "n \<le> 2^j" for j n
using that
proof (induction j arbitrary: n)
case 0
with assms(4) 0 show ?case unfolding psi_def mangoldt_def by (cases n) auto
next
case (Suc j)
show ?case
proof (cases "k \<le> j")
case True
from assms(4) have c_div_2: "c/2 + (c/2 - 1) + 1 \<le> c"
by simp
from psi_bounds_sustained_induct[of k "c/2 -1" c j,
OF assms(2) assms(3) assms(4) c_div_2 True Suc.IH Suc.prems]
show ?thesis by simp
next
case False
then have j_lt_k: "Suc j \<le> k" by simp
from Suc.prems have "n \<le> 2 ^ Suc j" .
also have "(2::nat) ^ Suc j \<le> 2 ^ k"
using power_increasing[of "Suc j" k "2::nat", OF j_lt_k]
by simp
finally show ?thesis using assms(1) by simp
qed
qed
from less_exp this [of n n] show ?thesis by simp
qed
lemma psi_ubound_log: "psi n \<le> 551 / 256 * ln 2 * n"
proof (rule psi_bounds_sustained)
show "0 \<le> 551 / (256 :: real)" by simp
next
fix n :: nat assume "n \<le> 2 ^ 10"
with psi_ubound_log_1024 show "psi n \<le> 551 / 256 * ln 2 * real n" by auto
next
have "4 / (1 + 2 ^ 10) \<le> (551 / 256 / 2 - 1) * (2/3 :: real)"
by simp
also have "\<dots> \<le> (551 / 256 / 2 - 1) * ln 2"
by (intro mult_left_mono ln_2_ge') simp_all
finally show "4 / (1 + 2 ^ 10) \<le> (551 / 256 / 2 - 1) * ln (2 :: real)" .
next
have "Some (Float 16 (-1)) = ub_ln 3 1025" by code_simp
from ub_ln(1)[OF this] and ln_2_ge
have "2048 * ln 1025 + 1536 \<le> 39975 * (ln 2::real)" by simp
thus "4 * ln (1 + 2 ^ 10) + 3 \<le> (551 / 256 / 2 - 1) * ln 2 * (1 + 2 ^ 10 :: real)"
by simp
qed
lemma psi_ubound_3_2: "psi n \<le> 3/2 * n"
proof -
have "(551 / 256) * ln 2 \<le> (551 / 256) * (16/23 :: real)"
by (intro mult_left_mono ln_2_le') auto
also have "\<dots> \<le> 3 / 2" by simp
finally have "551 / 256 * ln 2 \<le> 3/(2::real)" .
with of_nat_0_le_iff mult_right_mono have "551 / 256 * ln 2 * n \<le> 3/2 * n"
by blast
with psi_ubound_log[of "n"] show ?thesis
by linarith
qed
subsection \<open>Doubling psi and theta\<close>
lemma psi_residues_compare_2:
"psi_odd_2 n \<le> psi_even_2 n"
proof -
have "psi_odd_2 n = (\<Sum>d\<in>{d. d \<in> {2..n} \<and> primepow_odd d}. mangoldt_odd d)"
unfolding mangoldt_odd_def by (rule sum.mono_neutral_right) auto
also have "\<dots> = (\<Sum>d\<in>{d. d \<in> {2..n} \<and> primepow_odd d}. ln (real (aprimedivisor d)))"
by (intro sum.cong refl) (simp add: mangoldt_odd_def)
also have "\<dots> \<le> (\<Sum>d\<in>{d. d \<in> {2..n} \<and> primepow_even d}. ln (real (aprimedivisor d)))"
proof (rule sum_le_included [where i = "\<lambda>y. y * aprimedivisor y"]; clarify?)
fix d :: nat assume "d \<in> {2..n}" "primepow_odd d"
note d = this
then obtain p k where d': "k \<ge> 1" "prime p" "d = p ^ (2*k+1)"
by (auto simp: primepow_odd_def)
from d' have "p ^ (2 * k) \<le> p ^ (2 * k + 1)"
by (subst power_increasing_iff) (auto simp: prime_gt_Suc_0_nat)
also from d d' have "\<dots> \<le> n" by simp
finally have "p ^ (2 * k) \<le> n" .
moreover from d' have "p ^ (2 * k) > 1"
by (intro one_less_power) (simp_all add: prime_gt_Suc_0_nat)
ultimately have "p ^ (2 * k) \<in> {2..n}" by simp
moreover from d' have "primepow_even (p ^ (2 * k))"
by (auto simp: primepow_even_def)
ultimately show "\<exists>y\<in>{d \<in> {2..n}. primepow_even d}. y * aprimedivisor y = d \<and>
ln (real (aprimedivisor d)) \<le> ln (real (aprimedivisor y))" using d'
by (intro bexI[of _ "p ^ (2 * k)"])
(auto simp: aprimedivisor_prime_power aprimedivisor_primepow)
qed (simp_all add: of_nat_ge_1_iff Suc_le_eq)
also have "\<dots> = (\<Sum>d\<in>{d. d \<in> {2..n} \<and> primepow_even d}. mangoldt_even d)"
by (intro sum.cong refl) (simp add: mangoldt_even_def)
also have "\<dots> = psi_even_2 n"
unfolding mangoldt_even_def by (rule sum.mono_neutral_left) auto
finally show ?thesis .
qed
lemma psi_residues_compare:
"psi_odd n \<le> psi_even n"
proof -
have "\<not> primepow_odd 1" by (simp add: primepow_odd_def)
hence *: "mangoldt_odd 1 = 0" by (simp add: mangoldt_odd_def)
have "\<not> primepow_even 1"
using primepow_gt_Suc_0[OF primepow_even_imp_primepow, of 1] by auto
with mangoldt_even_def have **: "mangoldt_even 1 = 0"
by simp
from psi_odd_def have "psi_odd n = (\<Sum>d=1..n. mangoldt_odd d)"
by simp
also from * have "\<dots> = psi_odd_2 n"
by (cases "n \<ge> 1") (simp_all add: eval_nat_numeral sum.atLeast_Suc_atMost)
also from psi_residues_compare_2 have "\<dots> \<le> psi_even_2 n" .
also from ** have "\<dots> = psi_even n"
by (cases "n \<ge> 1") (simp_all add: eval_nat_numeral sum.atLeast_Suc_atMost psi_even_def)
finally show ?thesis .
qed
lemma primepow_iff_even_sqr:
"primepow n \<longleftrightarrow> primepow_even (n^2)"
by (cases "n = 0")
(auto simp: primepow_even_altdef aprimedivisor_primepow_power primepow_power_iff_nat
prime_elem_multiplicity_power_distrib prime_aprimedivisor' prime_imp_prime_elem
unit_factor_nat_def primepow_gt_0_nat dest: primepow_gt_Suc_0)
lemma psi_sqrt: "psi (Discrete.sqrt n) = psi_even n"
proof (induction n)
case 0
with psi_def psi_even_def show ?case by simp
next
case (Suc n)
then show ?case
proof cases
assume asm: "\<exists> m. Suc n = m^2"
with sqrt_Suc have sqrt_seq: "Discrete.sqrt(Suc n) = Suc(Discrete.sqrt n)"
by simp
from asm obtain "m" where " Suc n = m^2"
by blast
with sqrt_seq have "Suc(Discrete.sqrt n) = m"
by simp
with \<open>Suc n = m^2\<close> have suc_sqrt_n_sqrt: "(Suc(Discrete.sqrt n))^2 = Suc n"
by simp
from sqrt_seq have "psi (Discrete.sqrt (Suc n)) = psi (Suc (Discrete.sqrt n))"
by simp
also from psi_def have "\<dots> = psi (Discrete.sqrt n) + mangoldt (Suc (Discrete.sqrt n))"
by simp
also from Suc.IH have "psi (Discrete.sqrt n) = psi_even n" .
also have "mangoldt (Suc (Discrete.sqrt n)) = mangoldt_even (Suc n)"
proof (cases "primepow (Suc(Discrete.sqrt n))")
case True
with primepow_iff_even_sqr have True2: "primepow_even ((Suc(Discrete.sqrt n))^2)"
by simp
from suc_sqrt_n_sqrt have "mangoldt_even (Suc n) = mangoldt_even ((Suc(Discrete.sqrt n))^2)"
by simp
also from mangoldt_even_def True2
have "\<dots> = ln (aprimedivisor ((Suc (Discrete.sqrt n))^2))"
by simp
also from True have "aprimedivisor ((Suc (Discrete.sqrt n))^2) = aprimedivisor (Suc (Discrete.sqrt n))"
by (simp add: aprimedivisor_primepow_power)
also from True have "ln (\<dots>) = mangoldt (Suc (Discrete.sqrt n))"
by (simp add: mangoldt_def)
finally show ?thesis ..
next
case False
with primepow_iff_even_sqr
have False2: "\<not> primepow_even ((Suc(Discrete.sqrt n))^2)"
by simp
from suc_sqrt_n_sqrt have "mangoldt_even (Suc n) = mangoldt_even ((Suc(Discrete.sqrt n))^2)"
by simp
also from mangoldt_even_def False2
have "\<dots> = 0"
by simp
also from False have "\<dots> = mangoldt (Suc (Discrete.sqrt n))"
by (simp add: mangoldt_def)
finally show ?thesis ..
qed
also from psi_even_def have "psi_even n + mangoldt_even (Suc n) = psi_even (Suc n)"
by simp
finally show ?case .
next
assume asm: "\<not>(\<exists>m. Suc n = m^2)"
with sqrt_Suc have sqrt_eq: "Discrete.sqrt (Suc n) = Discrete.sqrt n"
by simp
then have lhs: "psi (Discrete.sqrt (Suc n)) = psi (Discrete.sqrt n)"
by simp
have "\<not> primepow_even (Suc n)"
proof
assume "primepow_even (Suc n)"
with primepow_even_def obtain "p" "k"
where "1 \<le> k \<and> prime p \<and> Suc n = p ^ (2 * k)"
by blast
with power_even_eq have "Suc n = (p ^ k)^2"
by simp
with asm show False by blast
qed
with psi_even_def mangoldt_even_def
have rhs: "psi_even (Suc n) = psi_even n"
by simp
from Suc.IH lhs rhs show ?case
by simp
qed
qed
lemma mangoldt_split:
"mangoldt d = mangoldt_1 d + mangoldt_even d + mangoldt_odd d"
proof (cases "primepow d")
case False
thus ?thesis
by (auto simp: mangoldt_def mangoldt_1_def mangoldt_even_def mangoldt_odd_def
dest: primepow_even_imp_primepow primepow_odd_imp_primepow)
next
case True
thus ?thesis
by (auto simp: mangoldt_def mangoldt_1_def mangoldt_even_def mangoldt_odd_def primepow_cases)
qed
lemma psi_split: "psi n = theta n + psi_even n + psi_odd n"
by (induction n)
(simp_all add: psi_def theta_def psi_even_def psi_odd_def mangoldt_1_def mangoldt_split)
lemma psi_mono: "m \<le> n \<Longrightarrow> psi m \<le> psi n" unfolding psi_def
by (intro sum_mono2 mangoldt_nonneg) auto
lemma psi_pos: "0 \<le> psi n"
by (auto simp: psi_def intro!: sum_nonneg mangoldt_nonneg)
lemma mangoldt_odd_pos: "0 \<le> mangoldt_odd d"
using aprimedivisor_gt_Suc_0[of d]
by (auto simp: mangoldt_odd_def of_nat_le_iff[of 1, unfolded of_nat_1] Suc_le_eq
intro!: ln_ge_zero dest!: primepow_odd_imp_primepow primepow_gt_Suc_0)
lemma psi_odd_mono: "m \<le> n \<Longrightarrow> psi_odd m \<le> psi_odd n"
using mangoldt_odd_pos sum_mono2[of "{1..n}" "{1..m}" "mangoldt_odd"]
by (simp add: psi_odd_def)
lemma psi_odd_pos: "0 \<le> psi_odd n"
by (auto simp: psi_odd_def intro!: sum_nonneg mangoldt_odd_pos)
lemma psi_theta:
"theta n + psi (Discrete.sqrt n) \<le> psi n" "psi n \<le> theta n + 2 * psi (Discrete.sqrt n)"
using psi_odd_pos[of n] psi_residues_compare[of n] psi_sqrt[of n] psi_split[of n]
by simp_all
context
begin
private lemma sum_minus_one:
"(\<Sum>x \<in> {1..y}. (- 1 :: real) ^ (x + 1)) = (if odd y then 1 else 0)"
by (induction y) simp_all
private lemma div_invert:
fixes x y n :: nat
assumes "x > 0" "y > 0" "y \<le> n div x"
shows "x \<le> n div y"
proof -
from assms(1,3) have "y * x \<le> (n div x) * x"
by simp
also have "\<dots> \<le> n"
by (simp add: minus_mod_eq_div_mult[symmetric])
finally have "y * x \<le> n" .
with assms(2) show ?thesis
using div_le_mono[of "y*x" n y] by simp
qed
lemma sum_expand_lemma:
"(\<Sum>d=1..n. (-1) ^ (d + 1) * psi (n div d)) =
(\<Sum>d = 1..n. (if odd (n div d) then 1 else 0) * mangoldt d)"
proof -
have **: "x \<le> n" if "x \<le> n div y" for x y
using div_le_dividend order_trans that by blast
have "(\<Sum>d=1..n. (-1)^(d+1) * psi (n div d)) =
(\<Sum>d=1..n. (-1)^(d+1) * (\<Sum>e=1..n div d. mangoldt e))"
by (simp add: psi_def)
also have "\<dots> = (\<Sum>d = 1..n. \<Sum>e = 1..n div d. (-1)^(d+1) * mangoldt e)"
by (simp add: sum_distrib_left)
also from ** have "\<dots> = (\<Sum>d = 1..n. \<Sum>e\<in>{y\<in>{1..n}. y \<le> n div d}. (-1)^(d+1) * mangoldt e)"
by (intro sum.cong) auto
also have "\<dots> = (\<Sum>y = 1..n. \<Sum>x | x \<in> {1..n} \<and> y \<le> n div x. (- 1) ^ (x + 1) * mangoldt y)"
by (rule sum.swap_restrict) simp_all
also have "\<dots> = (\<Sum>y = 1..n. \<Sum>x | x \<in> {1..n} \<and> x \<le> n div y. (- 1) ^ (x + 1) * mangoldt y)"
by (intro sum.cong) (auto intro: div_invert)
also from ** have "\<dots> = (\<Sum>y = 1..n. \<Sum>x \<in> {1..n div y}. (- 1) ^ (x + 1) * mangoldt y)"
by (intro sum.cong) auto
also have "\<dots> = (\<Sum>y = 1..n. (\<Sum>x \<in> {1..n div y}. (- 1) ^ (x + 1)) * mangoldt y)"
by (intro sum.cong) (simp_all add: sum_distrib_right)
also have "\<dots> = (\<Sum>y = 1..n. (if odd (n div y) then 1 else 0) * mangoldt y)"
by (intro sum.cong refl) (simp_all only: sum_minus_one)
finally show ?thesis .
qed
private lemma floor_half_interval:
fixes n d :: nat
assumes "d \<noteq> 0"
shows "real (n div d) - real (2 * ((n div 2) div d)) = (if odd (n div d) then 1 else 0)"
proof -
have "((n div 2) div d) = (n div (2 * d))"
by (rule div_mult2_eq[symmetric])
also have "\<dots> = ((n div d) div 2)"
by (simp add: mult_ac div_mult2_eq)
also have "real (n div d) - real (2 * \<dots>) = (if odd (n div d) then 1 else 0)"
by (cases "odd (n div d)", cases "n div d = 0 ", simp_all)
finally show ?thesis by simp
qed
lemma fact_expand_psi:
"ln (fact n) - 2 * ln (fact (n div 2)) = (\<Sum>d=1..n. (-1)^(d+1) * psi (n div d))"
proof -
have "ln (fact n) - 2 * ln (fact (n div 2)) =
(\<Sum>d=1..n. mangoldt d * \<lfloor>n / d\<rfloor>) - 2 * (\<Sum>d=1..n div 2. mangoldt d * \<lfloor>(n div 2) / d\<rfloor>)"
by (simp add: ln_fact_conv_mangoldt)
also have "(\<Sum>d=1..n div 2. mangoldt d * \<lfloor>real (n div 2) / d\<rfloor>) =
(\<Sum>d=1..n. mangoldt d * \<lfloor>real (n div 2) / d\<rfloor>)"
by (rule sum.mono_neutral_left) (auto simp: floor_unique[of 0])
also have "2 * \<dots> = (\<Sum>d=1..n. mangoldt d * 2 * \<lfloor>real (n div 2) / d\<rfloor>)"
by (simp add: sum_distrib_left mult_ac)
also have "(\<Sum>d=1..n. mangoldt d * \<lfloor>n / d\<rfloor>) - \<dots> =
(\<Sum>d=1..n. (mangoldt d * \<lfloor>n / d\<rfloor> - mangoldt d * 2 * \<lfloor>real (n div 2) / d\<rfloor>))"
by (simp add: sum_subtractf)
also have "\<dots> = (\<Sum>d=1..n. mangoldt d * (\<lfloor>n / d\<rfloor> - 2 * \<lfloor>real (n div 2) / d\<rfloor>))"
by (simp add: algebra_simps)
also have "\<dots> = (\<Sum>d=1..n. mangoldt d * (if odd(n div d) then 1 else 0))"
by (intro sum.cong refl)
(simp_all add: floor_conv_div_nat [symmetric] floor_half_interval [symmetric])
also have "\<dots> = (\<Sum>d=1..n. (if odd(n div d) then 1 else 0) * mangoldt d)"
by (simp add: mult_ac)
also from sum_expand_lemma[symmetric] have "\<dots> = (\<Sum>d=1..n. (-1)^(d+1) * psi (n div d))" .
finally show ?thesis .
qed
end
lemma psi_expansion_cutoff:
assumes "m \<le> p"
shows "(\<Sum>d=1..2*m. (-1)^(d+1) * psi (n div d)) \<le> (\<Sum>d=1..2*p. (-1)^(d+1) * psi (n div d))"
"(\<Sum>d=1..2*p+1. (-1)^(d+1) * psi (n div d)) \<le> (\<Sum>d=1..2*m+1. (-1)^(d+1) * psi (n div d))"
using assms
proof (induction m rule: inc_induct)
case (step k)
have "(\<Sum>d = 1..2 * k. (-1)^(d + 1) * psi (n div d)) \<le>
(\<Sum>d = 1..2 * Suc k. (-1)^(d + 1) * psi (n div d))"
by (simp add: psi_mono div_le_mono2)
with step.IH(1)
show "(\<Sum>d = 1..2 * k. (-1)^(d + 1) * psi (n div d))
\<le> (\<Sum>d = 1..2 * p. (-1)^(d + 1) * psi (n div d))"
by simp
from step.IH(2)
have "(\<Sum>d = 1..2 * p + 1. (-1)^(d + 1) * psi (n div d))
\<le> (\<Sum>d = 1..2 * Suc k + 1. (-1)^(d + 1) * psi (n div d))" .
also have "\<dots> \<le> (\<Sum>d = 1..2 * k + 1. (-1)^(d + 1) * psi (n div d))"
by (simp add: psi_mono div_le_mono2)
finally show "(\<Sum>d = 1..2 * p + 1. (-1)^(d + 1) * psi (n div d))
\<le> (\<Sum>d = 1..2 * k + 1. (-1)^(d + 1) * psi (n div d))" .
qed simp_all
lemma fact_psi_bound_even:
assumes "even k"
shows "(\<Sum>d=1..k. (-1)^(d+1) * psi (n div d)) \<le> ln (fact n) - 2 * ln (fact (n div 2))"
proof -
have "(\<Sum>d=1..k. (-1)^(d+1) * psi (n div d)) \<le> (\<Sum>d = 1..n. (- 1) ^ (d + 1) * psi (n div d))"
proof (cases "k \<le> n")
case True
with psi_expansion_cutoff(1)[of "k div 2" "n div 2" n]
have "(\<Sum>d=1..2*(k div 2). (-1)^(d+1) * psi (n div d))
\<le> (\<Sum>d = 1..2*(n div 2). (- 1) ^ (d + 1) * psi (n div d))"
by simp
also from assms have "2*(k div 2) = k"
by simp
also have "(\<Sum>d = 1..2*(n div 2). (- 1) ^ (d + 1) * psi (n div d))
\<le> (\<Sum>d = 1..n. (- 1) ^ (d + 1) * psi (n div d))"
proof (cases "even n")
case True
then show ?thesis
by simp
next
case False
from psi_pos have "(\<Sum>d = 1..2*(n div 2). (- 1) ^ (d + 1) * psi (n div d))
\<le> (\<Sum>d = 1..2*(n div 2) + 1. (- 1) ^ (d + 1) * psi (n div d))"
by simp
with False show ?thesis
by simp
qed
finally show ?thesis .
next
case False
hence *: "n div 2 \<le> (k-1) div 2"
by simp
have "(\<Sum>d=1..k. (-1)^(d+1) * psi (n div d)) \<le>
(\<Sum>d=1..2*((k-1) div 2) + 1. (-1)^(d+1) * psi (n div d))"
proof (cases "k = 0")
case True
with psi_pos show ?thesis by simp
next
case False
with sum.cl_ivl_Suc[of "\<lambda>d. (-1)^(d+1) * psi (n div d)" 1 "k-1"]
have "(\<Sum>d=1..k. (-1)^(d+1) * psi (n div d)) = (\<Sum>d=1..k-1. (-1)^(d+1) * psi (n div d))
+ (-1)^(k+1) * psi (n div k)"
by simp
also from assms psi_pos have "(-1)^(k+1) * psi (n div k) \<le> 0"
by simp
also from assms False have "k-1 = 2*((k-1) div 2) + 1"
by presburger
finally show ?thesis by simp
qed
also from * psi_expansion_cutoff(2)[of "n div 2" "(k-1) div 2" n]
have "\<dots> \<le> (\<Sum>d=1..2*(n div 2) + 1. (-1)^(d+1) * psi (n div d))" by blast
also have "\<dots> \<le> (\<Sum>d = 1..n. (- 1) ^ (d + 1) * psi (n div d))"
by (cases "even n") (simp_all add: psi_def)
finally show ?thesis .
qed
also from fact_expand_psi have "\<dots> = ln (fact n) - 2 * ln (fact (n div 2))" ..
finally show ?thesis .
qed
lemma fact_psi_bound_odd:
assumes "odd k"
shows "ln (fact n) - 2 * ln (fact (n div 2)) \<le> (\<Sum>d=1..k. (-1)^(d+1) * psi (n div d))"
proof -
from fact_expand_psi
have "ln (fact n) - 2 * ln (fact (n div 2)) = (\<Sum>d = 1..n. (- 1) ^ (d + 1) * psi (n div d))" .
also have "\<dots> \<le> (\<Sum>d=1..k. (-1)^(d+1) * psi (n div d))"
proof (cases "k \<le> n")
case True
have "(\<Sum>d=1..n. (-1)^(d+1) * psi (n div d)) \<le> (
\<Sum>d=1..2*(n div 2)+1. (-1)^(d+1) * psi (n div d))"
by (cases "even n") (simp_all add: psi_pos)
also from True assms psi_expansion_cutoff(2)[of "k div 2" "n div 2" n]
have "\<dots> \<le> (\<Sum>d=1..k. (-1)^(d+1) * psi (n div d))"
by simp
finally show ?thesis .
next
case False
have "(\<Sum>d=1..n. (-1)^(d+1) * psi (n div d)) \<le> (\<Sum>d=1..2*((n+1) div 2). (-1)^(d+1) * psi (n div d))"
by (cases "even n") (simp_all add: psi_def)
also from False assms psi_expansion_cutoff(1)[of "(n+1) div 2" "k div 2" n]
have "(\<Sum>d=1..2*((n+1) div 2). (-1)^(d+1) * psi (n div d)) \<le> (\<Sum>d=1..2*(k div 2). (-1)^(d+1) * psi (n div d))"
by simp
also from assms have "\<dots> \<le> (\<Sum>d=1..k. (-1)^(d+1) * psi (n div d))"
by (auto elim: oddE simp: psi_pos)
finally show ?thesis .
qed
finally show ?thesis .
qed
lemma fact_psi_bound_2_3:
"psi n - psi (n div 2) \<le> ln (fact n) - 2 * ln (fact (n div 2))"
"ln (fact n) - 2 * ln (fact (n div 2)) \<le> psi n - psi (n div 2) + psi (n div 3)"
proof -
show "psi n - psi (n div 2) \<le> ln (fact n) - 2 * ln (fact (n div 2))"
by (rule psi_bounds_ln_fact (2))
next
from fact_psi_bound_odd[of 3 n] have "ln (fact n) - 2 * ln (fact (n div 2))
\<le> (\<Sum>d = 1..3. (- 1) ^ (d + 1) * psi (n div d))"
by simp
also have "\<dots> = psi n - psi (n div 2) + psi (n div 3)"
by (simp add: sum.atLeast_Suc_atMost numeral_2_eq_2)
finally show "ln (fact n) - 2 * ln (fact (n div 2)) \<le> psi n - psi (n div 2) + psi (n div 3)" .
qed
lemma ub_ln_1200: "ln 1200 \<le> 57 / (8 :: real)"
proof -
have "Some (Float 57 (-3)) = ub_ln 8 1200" by code_simp
from ub_ln(1)[OF this] show ?thesis by simp
qed
lemma psi_double_lemma:
assumes "n \<ge> 1200"
shows "real n / 6 \<le> psi n - psi (n div 2)"
proof -
from ln_fact_diff_bounds
have "\<bar>ln (fact n) - 2 * ln (fact (n div 2)) - real n * ln 2\<bar>
\<le> 4 * ln (real (if n = 0 then 1 else n)) + 3" .
with assms have "ln (fact n) - 2 * ln (fact (n div 2))
\<ge> real n * ln 2 - 4 * ln (real n) - 3"
by simp
moreover have "real n * ln 2 - 4 * ln (real n) - 3 \<ge> 2 / 3 * n"
proof (rule overpower_lemma[of "\<lambda>n. 2/3 * n" 1200])
show "2 / 3 * 1200 \<le> 1200 * ln 2 - 4 * ln 1200 - (3::real)"
using ub_ln_1200 ln_2_ge by linarith
next
fix x::real
assume "1200 \<le> x"
then have "0 < x"
by simp
show "((\<lambda>x. x * ln 2 - 4 * ln x - 3 - 2 / 3 * x)
has_real_derivative ln 2 - 4 / x - 2 / 3) (at x)"
by (rule derivative_eq_intros refl | simp add: \<open>0 < x\<close>)+
next
fix x::real
assume "1200 \<le> x"
then have "12 / x \<le> 12 / 1200" by simp
then have "0 \<le> 0.67 - 4 / x - 2 / 3" by simp
also have "0.67 \<le> ln (2::real)" using ln_2_ge by simp
finally show "0 \<le> ln 2 - 4 / x - 2 / 3" by simp
next
from assms show "1200 \<le> real n"
by simp
qed
ultimately have "2 / 3 * real n \<le> ln (fact n) - 2 * ln (fact (n div 2))"
by simp
with psi_ubound_3_2[of "n div 3"]
have "n/6 + psi (n div 3) \<le> ln (fact n) - 2 * ln (fact (n div 2))"
by simp
with fact_psi_bound_2_3[of "n"] show ?thesis
by simp
qed
lemma theta_double_lemma:
assumes "n \<ge> 1200"
shows "theta (n div 2) < theta n"
proof -
from psi_theta[of "n div 2"] psi_pos[of "Discrete.sqrt (n div 2)"]
have theta_le_psi_n_2: "theta (n div 2) \<le> psi (n div 2)"
by simp
have "(Discrete.sqrt n * 18)^2 \<le> 324 * n"
by simp
from mult_less_cancel2[of "324" "n" "n"] assms have "324 * n < n^2"
by (simp add: power2_eq_square)
with \<open>(Discrete.sqrt n * 18)^2 \<le> 324 * n\<close> have "(Discrete.sqrt n*18)^2 < n^2"
by presburger
with power2_less_imp_less assms have "Discrete.sqrt n * 18 < n"
by blast
with psi_ubound_3_2[of "Discrete.sqrt n"] have "2 * psi (Discrete.sqrt n) < n / 6"
by simp
with psi_theta[of "n"] have psi_lt_theta_n: "psi n - n / 6 < theta n"
by simp
from psi_double_lemma[OF assms(1)] have "psi (n div 2) \<le> psi n - n / 6"
by simp
with theta_le_psi_n_2 psi_lt_theta_n show ?thesis
by simp
qed
subsection \<open>Proof of the main result\<close>
lemma theta_mono: "mono theta"
by (auto simp: theta_def [abs_def] intro!: monoI sum_mono2)
lemma theta_lessE:
assumes "theta m < theta n" "m \<ge> 1"
obtains p where "p \<in> {m<..n}" "prime p"
proof -
from mono_invE[OF theta_mono assms(1)] have "m \<le> n" by blast
hence "theta n = theta m + (\<Sum>p\<in>{m<..n}. if prime p then ln (real p) else 0)"
unfolding theta_def using assms(2)
by (subst sum.union_disjoint [symmetric]) (auto simp: ivl_disj_un)
also note assms(1)
finally have "(\<Sum>p\<in>{m<..n}. if prime p then ln (real p) else 0) \<noteq> 0" by simp
then obtain p where "p \<in> {m<..n}" "(if prime p then ln (real p) else 0) \<noteq> 0"
by (rule sum.not_neutral_contains_not_neutral)
thus ?thesis using that[of p] by (auto intro!: exI[of _ p] split: if_splits)
qed
theorem bertrand:
fixes n :: nat
assumes "n > 1"
shows "\<exists>p\<in>{n<..<2*n}. prime p"
proof cases
assume n_less: "n < 600"
define prime_constants
where "prime_constants = {2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631::nat}"
from \<open>n > 1\<close> n_less have "\<exists>p \<in> prime_constants. n < p \<and> p < 2 * n"
unfolding bex_simps greaterThanLessThan_iff prime_constants_def by presburger
moreover have "\<forall>p\<in>prime_constants. prime p"
unfolding prime_constants_def ball_simps HOL.simp_thms
by (intro conjI; pratt (silent))
ultimately show ?thesis
unfolding greaterThanLessThan_def greaterThan_def lessThan_def by blast
next
assume n: "\<not>(n < 600)"
from n have "theta n < theta (2 * n)" using theta_double_lemma[of "2 * n"] by simp
with assms obtain p where "p \<in> {n<..2*n}" "prime p" by (auto elim!: theta_lessE)
moreover from assms have "\<not>prime (2*n)" by (auto dest!: prime_product)
with \<open>prime p\<close> have "p \<noteq> 2 * n" by auto
ultimately show ?thesis
by auto
qed
subsection \<open>Proof of Mertens' first theorem\<close>
text \<open>
The following proof of Mertens' first theorem was ported from John Harrison's HOL Light
proof by Larry Paulson:
\<close>
lemma sum_integral_ubound_decreasing':
fixes f :: "real \<Rightarrow> real"
assumes "m \<le> n"
and der: "\<And>x. x \<in> {of_nat m - 1..of_nat n} \<Longrightarrow> (g has_field_derivative f x) (at x)"
and le: "\<And>x y. \<lbrakk>real m - 1 \<le> x; x \<le> y; y \<le> real n\<rbrakk> \<Longrightarrow> f y \<le> f x"
shows "(\<Sum>k = m..n. f (of_nat k)) \<le> g (of_nat n) - g (of_nat m - 1)"
proof -
have "(\<Sum>k = m..n. f (of_nat k)) \<le> (\<Sum>k = m..n. g (of_nat(Suc k) - 1) - g (of_nat k - 1))"
proof (rule sum_mono, clarsimp)
fix r
assume r: "m \<le> r" "r \<le> n"
hence "\<exists>z>real r - 1. z < real r \<and> g (real r) - g (real r - 1) = (real r - (real r - 1)) * f z"
using assms by (intro MVT2) auto
hence "\<exists>z\<in>{of_nat r - 1..of_nat r}. g (real r) - g (real r - 1) = f z" by auto
then obtain u::real where u: "u \<in> {of_nat r - 1..of_nat r}"
and eq: "g r - g (of_nat r - 1) = f u" by blast
have "real m \<le> u + 1"
using r u by auto
then have "f (of_nat r) \<le> f u"
using r(2) and u by (intro le) auto
then show "f (of_nat r) \<le> g r - g (of_nat r - 1)"
by (simp add: eq)
qed
also have "\<dots> \<le> g (of_nat n) - g (of_nat m - 1)"
using \<open>m \<le> n\<close> by (subst sum_Suc_diff) auto
finally show ?thesis .
qed
lemma Mertens_lemma:
assumes "n \<noteq> 0"
shows "\<bar>(\<Sum>d = 1..n. mangoldt d / real d) - ln n\<bar> \<le> 4"
proof -
have *: "\<lbrakk>abs(s' - nl + n) \<le> a; abs(s' - s) \<le> (k - 1) * n - a\<rbrakk>
\<Longrightarrow> abs(s - nl) \<le> n * k" for s' s k nl a::real
by (auto simp: algebra_simps abs_if split: if_split_asm)
have le: "\<bar>(\<Sum>d=1..n. mangoldt d * floor (n / d)) - n * ln n + n\<bar> \<le> 1 + ln n"
using ln_fact_bounds ln_fact_conv_mangoldt assms by simp
have "\<bar>real n * ((\<Sum>d = 1..n. mangoldt d / real d) - ln n)\<bar> =
\<bar>((\<Sum>d = 1..n. real n * mangoldt d / real d) - n * ln n)\<bar>"
by (simp add: algebra_simps sum_distrib_left)
also have "\<dots> \<le> real n * 4"
proof (rule * [OF le])
have "\<bar>(\<Sum>d = 1..n. mangoldt d * \<lfloor>n / d\<rfloor>) - (\<Sum>d = 1..n. n * mangoldt d / d)\<bar>
= \<bar>\<Sum>d = 1..n. mangoldt d * (\<lfloor>n / d\<rfloor> - n / d)\<bar>"
by (simp add: sum_subtractf algebra_simps)
also have "\<dots> \<le> psi n" (is "\<bar>?sm\<bar> \<le> ?rhs")
proof -
have "-?sm = (\<Sum>d = 1..n. mangoldt d * (n/d - \<lfloor>n/d\<rfloor>))"
by (simp add: sum_subtractf algebra_simps)
also have "\<dots> \<le> (\<Sum>d = 1..n. mangoldt d * 1)"
by (intro sum_mono mult_left_mono mangoldt_nonneg) linarith+
finally have "-?sm \<le> ?rhs" by (simp add: psi_def)
moreover
have "?sm \<le> 0"
using mangoldt_nonneg by (simp add: mult_le_0_iff sum_nonpos)
ultimately show ?thesis by (simp add: abs_if)
qed
also have "\<dots> \<le> 3/2 * real n"
by (rule psi_ubound_3_2)
also have "\<dots>\<le> (4 - 1) * real n - (1 + ln n)"
using ln_le_minus_one [of n] assms by (simp add: divide_simps)
finally
show "\<bar>(\<Sum>d = 1..n. mangoldt d * real_of_int \<lfloor>real n / real d\<rfloor>) -
(\<Sum>d = 1..n. real n * mangoldt d / real d)\<bar>
\<le> (4 - 1) * real n - (1 + ln n)" .
qed
finally have "\<bar>real n * ((\<Sum>d = 1..n. mangoldt d / real d) - ln n)\<bar> \<le> real n * 4" .
then show ?thesis
using assms mult_le_cancel_left_pos by (simp add: abs_mult)
qed
lemma Mertens_mangoldt_versus_ln:
assumes "I \<subseteq> {1..n}"
shows "\<bar>(\<Sum>i\<in>I. mangoldt i / i) - (\<Sum>p | prime p \<and> p \<in> I. ln p / p)\<bar> \<le> 3"
(is "\<bar>?lhs\<bar> \<le> 3")
proof (cases "n = 0")
case True
with assms show ?thesis by simp
next
case False
have "finite I"
using assms finite_subset by blast
have "0 \<le> (\<Sum>i\<in>I. mangoldt i / i - (if prime i then ln i / i else 0))"
using mangoldt_nonneg by (intro sum_nonneg) simp_all
moreover have "\<dots> \<le> (\<Sum>i = 1..n. mangoldt i / i - (if prime i then ln i / i else 0))"
using assms by (intro sum_mono2) (auto simp: mangoldt_nonneg)
ultimately have *: "\<bar>\<Sum>i\<in>I. mangoldt i / i - (if prime i then ln i / i else 0)\<bar>
\<le> \<bar>\<Sum>i = 1..n. mangoldt i / i - (if prime i then ln i / i else 0)\<bar>"
by linarith
moreover have "?lhs = (\<Sum>i\<in>I. mangoldt i / i - (if prime i then ln i / i else 0))"
"(\<Sum>i = 1..n. mangoldt i / i - (if prime i then ln i / i else 0))
= (\<Sum>d = 1..n. mangoldt d / d) - (\<Sum>p | prime p \<and> p \<in> {1..n}. ln p / p)"
using sum.inter_restrict [of _ "\<lambda>i. ln (real i) / i" "Collect prime", symmetric]
by (force simp: sum_subtractf \<open>finite I\<close> intro: sum.cong)+
ultimately have "\<bar>?lhs\<bar> \<le> \<bar>(\<Sum>d = 1..n. mangoldt d / d) -
(\<Sum>p | prime p \<and> p \<in> {1..n}. ln p / p)\<bar>" by linarith
also have "\<dots> \<le> 3"
proof -
have eq_sm: "(\<Sum>i = 1..n. mangoldt i / i) =
(\<Sum>i \<in> {p^k |p k. prime p \<and> p^k \<le> n \<and> k \<ge> 1}. mangoldt i / i)"
proof (intro sum.mono_neutral_right ballI, goal_cases)
case (3 i)
hence "\<not>primepow i" by (auto simp: primepow_def Suc_le_eq)
thus ?case by (simp add: mangoldt_def)
qed (auto simp: Suc_le_eq prime_gt_0_nat)
have "(\<Sum>i = 1..n. mangoldt i / i) - (\<Sum>p | prime p \<and> p \<in> {1..n}. ln p / p) =
(\<Sum>i \<in> {p^k |p k. prime p \<and> p^k \<le> n \<and> k \<ge> 2}. mangoldt i / i)"
proof -
have eq: "{p ^ k |p k. prime p \<and> p ^ k \<le> n \<and> 1 \<le> k} =
{p ^ k |p k. prime p \<and> p ^ k \<le> n \<and> 2 \<le> k} \<union> {p. prime p \<and> p \<in> {1..n}}"
(is "?A = ?B \<union> ?C")
proof (intro equalityI subsetI; (elim UnE)?)
fix x assume "x \<in> ?A"
then obtain p k where "x = p ^ k" "prime p" "p ^ k \<le> n" "k \<ge> 1" by auto
thus "x \<in> ?B \<union> ?C"
by (cases "k \<ge> 2") (auto simp: prime_power_iff Suc_le_eq)
next
fix x assume "x \<in> ?B"
then obtain p k where "x = p ^ k" "prime p" "p ^ k \<le> n" "k \<ge> 1" by auto
thus "x \<in> ?A" by (auto simp: prime_power_iff Suc_le_eq)
next
fix x assume "x \<in> ?C"
then obtain p where "x = p ^ 1" "1 \<ge> (1::nat)" "prime p" "p ^ 1 \<le> n" by auto
thus "x \<in> ?A" by blast
qed
have eqln: "(\<Sum>p | prime p \<and> p \<in> {1..n}. ln p / p) =
(\<Sum>p | prime p \<and> p \<in> {1..n}. mangoldt p / p)"
by (rule sum.cong) auto
have "(\<Sum>i \<in> {p^k |p k. prime p \<and> p^k \<le> n \<and> k \<ge> 1}. mangoldt i / i) =
(\<Sum>i \<in> {p ^ k |p k. prime p \<and> p ^ k \<le> n \<and> 2 \<le> k} \<union>
{p. prime p \<and> p \<in> {1..n}}. mangoldt i / i)" by (subst eq) simp_all
also have "\<dots> = (\<Sum>i \<in> {p^k |p k. prime p \<and> p^k \<le> n \<and> k \<ge> 2}. mangoldt i / i)
+ (\<Sum>p | prime p \<and> p \<in> {1..n}. mangoldt p / p)"
by (intro sum.union_disjoint) (auto simp: prime_power_iff finite_nat_set_iff_bounded_le)
also have "\<dots> = (\<Sum>i \<in> {p^k |p k. prime p \<and> p^k \<le> n \<and> k \<ge> 2}. mangoldt i / i)
+ (\<Sum>p | prime p \<and> p \<in> {1..n}. ln p / p)" by (simp only: eqln)
finally show ?thesis
using eq_sm by auto
qed
have "(\<Sum>p | prime p \<and> p \<in> {1..n}. ln p / p) \<le> (\<Sum>p | prime p \<and> p \<in> {1..n}. mangoldt p / p)"
using mangoldt_nonneg by (auto intro: sum_mono)
also have "\<dots> \<le> (\<Sum>i = Suc 0..n. mangoldt i / i)"
by (intro sum_mono2) (auto simp: mangoldt_nonneg)
finally have "0 \<le> (\<Sum>i = 1..n. mangoldt i / i) - (\<Sum>p | prime p \<and> p \<in> {1..n}. ln p / p)"
by simp
moreover have "(\<Sum>i = 1..n. mangoldt i / i) - (\<Sum>p | prime p \<and> p \<in> {1..n}. ln p / p) \<le> 3"
(is "?M - ?L \<le> 3")
proof -
have *: "\<exists>q. \<exists>j\<in>{1..n}. prime q \<and> 1 \<le> q \<and> q \<le> n \<and>
(q ^ j = p ^ k \<and> mangoldt (p ^ k) / real p ^ k \<le> ln (real q) / real q ^ j)"
if "prime p" "p ^ k \<le> n" "1 \<le> k" for p k
proof -
have "mangoldt (p ^ k) / real p ^ k \<le> ln p / p ^ k"
using that by (simp add: divide_simps)
moreover have "p \<le> n"
using that self_le_power[of p k] by (simp add: prime_ge_Suc_0_nat)
moreover have "k \<le> n"
proof -
have "k < 2^k"
using of_nat_less_two_power of_nat_less_numeral_power_cancel_iff by blast
also have "\<dots> \<le> p^k"
by (simp add: power_mono prime_ge_2_nat that)
also have "\<dots> \<le> n"
by (simp add: that)
finally show ?thesis by (simp add: that)
qed
ultimately show ?thesis
using prime_ge_1_nat that by auto (use atLeastAtMost_iff in blast)
qed
have finite: "finite {p ^ k |p k. prime p \<and> p ^ k \<le> n \<and> 1 \<le> k}"
by (rule finite_subset[of _ "{..n}"]) auto
have "?M \<le> (\<Sum>(x, k)\<in>{p. prime p \<and> p \<in> {1..n}} \<times> {1..n}. ln (real x) / real x ^ k)"
by (subst eq_sm, intro sum_le_included [where i = "\<lambda>(p,k). p^k"])
(insert * finite, auto)
also have "\<dots> = (\<Sum>p | prime p \<and> p \<in> {1..n}. (\<Sum>k = 1..n. ln p / p^k))"
by (subst sum.Sigma) auto
also have "\<dots> = ?L + (\<Sum>p | prime p \<and> p \<in> {1..n}. (\<Sum>k = 2..n. ln p / p^k))"
by (simp add: comm_monoid_add_class.sum.distrib sum.atLeast_Suc_atMost numeral_2_eq_2)
finally have "?M - ?L \<le> (\<Sum>p | prime p \<and> p \<in> {1..n}. (\<Sum>k = 2..n. ln p / p^k))"
by (simp add: algebra_simps)
also have "\<dots> = (\<Sum>p | prime p \<and> p \<in> {1..n}. ln p * (\<Sum>k = 2..n. inverse p ^ k))"
by (simp add: field_simps sum_distrib_left)
also have "\<dots> = (\<Sum>p | prime p \<and> p \<in> {1..n}.
ln p * (((inverse p)\<^sup>2 - inverse p ^ Suc n) / (1 - inverse p)))"
by (intro sum.cong refl) (simp add: sum_gp)
also have "\<dots> \<le> (\<Sum>p | prime p \<and> p \<in> {1..n}. ln p * inverse (real (p * (p - 1))))"
by (intro sum_mono mult_left_mono)
(auto simp: divide_simps power2_eq_square of_nat_diff mult_less_0_iff)
also have "\<dots> \<le> (\<Sum>p = 2..n. ln p * inverse (real (p * (p - 1))))"
by (rule sum_mono2) (use prime_ge_2_nat in auto)
also have "\<dots> \<le> (\<Sum>i = 2..n. ln i / (i - 1)\<^sup>2)"
unfolding divide_inverse power2_eq_square mult.assoc
by (auto intro: sum_mono mult_left_mono mult_right_mono)
also have "\<dots> \<le> 3"
proof (cases "n \<ge> 3")
case False then show ?thesis
proof (cases "n \<ge> 2")
case False then show ?thesis by simp
next
case True
then have "n = 2" using False by linarith
with ln_le_minus_one [of 2] show ?thesis by simp
qed
next
case True
have "(\<Sum>i = 3..n. ln (real i) / (real (i - Suc 0))\<^sup>2)
\<le> (ln (of_nat n - 1)) - (ln (of_nat n)) - (ln (of_nat n) / (of_nat n - 1)) + 2 * ln 2"
proof -
have 1: "((\<lambda>z. ln (z - 1) - ln z - ln z / (z - 1)) has_field_derivative ln x / (x - 1)\<^sup>2) (at x)"
if x: "x \<in> {2..real n}" for x
by (rule derivative_eq_intros | rule refl |
(use x in \<open>force simp: power2_eq_square divide_simps\<close>))+
have 2: "ln y / (y - 1)\<^sup>2 \<le> ln x / (x - 1)\<^sup>2" if xy: "2 \<le> x" "x \<le> y" "y \<le> real n" for x y
proof (cases "x = y")
case False
define f' :: "real \<Rightarrow> real"
where "f' = (\<lambda>u. ((u - 1)\<^sup>2 / u - ln u * (2 * u - 2)) / (u - 1) ^ 4)"
have f'_altdef: "f' u = inverse u * inverse ((u - 1)\<^sup>2) - 2 * ln u / (u - 1) ^ 3"
if u: "u \<in> {x..y}" for u::real unfolding f'_def using u (* TODO ugly *)
by (simp add: eval_nat_numeral divide_simps) (simp add: algebra_simps)?
have deriv: "((\<lambda>z. ln z / (z - 1)\<^sup>2) has_field_derivative f' u) (at u)"
if u: "u \<in> {x..y}" for u::real unfolding f'_def
by (rule derivative_eq_intros refl | (use u xy in \<open>force simp: divide_simps\<close>))+
hence "\<exists>z>x. z < y \<and> ln y / (y - 1)\<^sup>2 - ln x / (x - 1)\<^sup>2 = (y - x) * f' z"
using xy and \<open>x \<noteq> y\<close> by (intro MVT2) auto
then obtain \<xi>::real where "x < \<xi>" "\<xi> < y"
and \<xi>: "ln y / (y - 1)\<^sup>2 - ln x / (x - 1)\<^sup>2 = (y - x) * f' \<xi>" by blast
have "f' \<xi> \<le> 0"
proof -
have "2/3 \<le> ln (2::real)" by (fact ln_2_ge')
also have "\<dots> \<le> ln \<xi>"
using \<open>x < \<xi>\<close> xy by auto
finally have "1 \<le> 2 * ln \<xi>" by simp
then have *: "\<xi> \<le> \<xi> * (2 * ln \<xi>)"
using \<open>x < \<xi>\<close> xy by auto
hence "\<xi> - 1 \<le> ln \<xi> * 2 * \<xi>" by (simp add: algebra_simps)
hence "1 / (\<xi> * (\<xi> - 1)\<^sup>2) \<le> ln \<xi> * 2 / (\<xi> - 1) ^ 3"
using xy \<open>x < \<xi>\<close> by (simp add: divide_simps power_eq_if)
thus ?thesis using xy \<open>x < \<xi>\<close> \<open>\<xi> < y\<close> by (subst f'_altdef) (auto simp: divide_simps)
qed
then have "(ln y / (y - 1)\<^sup>2 - ln x / (x - 1)\<^sup>2) \<le> 0"
using \<open>x \<le> y\<close> by (simp add: mult_le_0_iff \<xi>)
then show ?thesis by simp
qed simp_all
show ?thesis
using sum_integral_ubound_decreasing'
[OF \<open>3 \<le> n\<close>, of "\<lambda>z. ln(z-1) - ln z - ln z / (z - 1)" "\<lambda>z. ln z / (z-1)\<^sup>2"]
1 2 \<open>3 \<le> n\<close>
by (auto simp: in_Reals_norm of_nat_diff)
qed
also have "\<dots> \<le> 2"
proof -
have "ln (real n - 1) - ln n \<le> 0" "0 \<le> ln n / (real n - 1)"
using \<open>3 \<le> n\<close> by auto
then have "ln (real n - 1) - ln n - ln n / (real n - 1) \<le> 0"
by linarith
with ln_2_less_1 show ?thesis by linarith
qed
also have "\<dots> \<le> 3 - ln 2"
using ln_2_less_1 by (simp add: algebra_simps)
finally show ?thesis
using True by (simp add: algebra_simps sum.atLeast_Suc_atMost [of 2 n])
qed
finally show ?thesis .
qed
ultimately show ?thesis
by linarith
qed
finally show ?thesis .
qed
proposition Mertens:
assumes "n \<noteq> 0"
shows "\<bar>(\<Sum>p | prime p \<and> p \<le> n. ln p / of_nat p) - ln n\<bar> \<le> 7"
proof -
have "\<bar>(\<Sum>d = 1..n. mangoldt d / real d) - (\<Sum>p | prime p \<and> p \<in> {1..n}. ln (real p) / real p)\<bar>
\<le> 7 - 4" using Mertens_mangoldt_versus_ln [of "{1..n}" n] by simp_all
also have "{p. prime p \<and> p \<in> {1..n}} = {p. prime p \<and> p \<le> n}"
using atLeastAtMost_iff prime_ge_1_nat by blast
finally have "\<bar>(\<Sum>d = 1..n. mangoldt d / real d) - (\<Sum>p\<in>\<dots>. ln (real p) / real p)\<bar> \<le> 7 - 4" .
moreover from assms have "\<bar>(\<Sum>d = 1..n. mangoldt d / real d) - ln n\<bar> \<le> 4"
by (rule Mertens_lemma)
ultimately show ?thesis by linarith
qed
end
|