Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 11,051 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import Lbar.functor
import combinatorial_lemma.finite
import algebra.module.linear_map
import pseudo_normed_group.bounded_limits
import for_mathlib.Profinite.disjoint_union

import category_theory.limits.shapes.products
import topology.category.Compactum

noncomputable theory

open_locale nnreal big_operators

universe u

section
variables (r : ℝ≥0) [fact (0 < r)] (Λ : Type u) [polyhedral_lattice Λ]

open category_theory
open category_theory.limits

lemma polyhedral_exhaustive
  (M : Type*) [pseudo_normed_group M]
  (e : ∀ x : M,c, x ∈ pseudo_normed_group.filtration M c)
  (x : Λ →+ M) :
  ∃ c : ℝ≥0, x ∈ pseudo_normed_group.filtration (Λ →+ M) c :=
begin
  obtain ⟨ι,,l,hl,h⟩ := polyhedral_lattice.polyhedral Λ,
  resetI,
  let cs : ι → ℝ≥0 := λ i, (e (x (l i))).some,
  let c := finset.univ.sup (λ i, cs i / ∥l i∥₊),
  -- This should be easy, using the fact that (l i) ≠ 0.
  have hc : ∀ i, cs i ≤ c * ∥l i∥₊,
  { intro i, rw ← mul_inv_le_iff₀,
    { exact finset.le_sup (finset.mem_univ i), },
    { rw [ne.def, nnnorm_eq_zero], exact h i }, },
  use c,
  rw generates_norm.add_monoid_hom_mem_filtration_iff hl x,
  intros i,
  apply pseudo_normed_group.filtration_mono (hc i),
  apply (e (x (l i))).some_spec,
end

@[simps]
def polyhedral_postcompose {M N : ProFiltPseuNormGrpWithTinv₁ r} (f : M ⟶ N) :
  comphaus_filtered_pseudo_normed_group_with_Tinv_hom r
  (Λ →+ M) (Λ →+ N) :=
{ to_fun := λ x, f.to_add_monoid_hom.comp x,
  map_zero' := by simp only [add_monoid_hom.comp_zero],
  map_add' := by { intros, ext, dsimp, erw [f.to_add_monoid_hom.map_add], refl, },
  strict' := begin
      obtain ⟨ι,,l,hl,h⟩ := polyhedral_lattice.polyhedral Λ,
      resetI,
      intros c x hx,
      erw generates_norm.add_monoid_hom_mem_filtration_iff hl at hx ⊢,
      intros i,
      apply f.strict,
      exact hx i,
    end,
  continuous' := λ c, begin
    rw polyhedral_lattice.add_monoid_hom.continuous_iff,
    intro l,
    simp only,
    have aux1 := polyhedral_lattice.add_monoid_hom.incl_continuous Λ r M c,
    have aux2 := f.level_continuous (c * ∥l∥₊),
    exact (aux2.comp (continuous_apply l)).comp aux1,
  end,
  map_Tinv' := λ x, by { ext l, dsimp, erw f.map_Tinv, refl, } }

/-- the functor `M ↦ Hom(Λ, M), where both are considered as objects in
  `ProFiltPseuNormGrpWithTinv₁.{u} r` -/
@[simps]
def hom_functor : ProFiltPseuNormGrpWithTinv₁.{u} r ⥤ ProFiltPseuNormGrpWithTinv₁.{u} r :=
{ obj := λ M,
  { M := Λ →+ M,
    str := infer_instance,
    exhaustive' := by { apply polyhedral_exhaustive, apply M.exhaustive r } },
  map := λ M N f, polyhedral_postcompose _ _ f,
  map_id' := λ M, begin
    ext,
    dsimp [polyhedral_postcompose],
    simp,
  end,
  map_comp' := λ M N L f g, begin
    ext,
    dsimp [polyhedral_postcompose],
    simp,
  end } .

@[simps]
def polyhedral_postcompose' {M N : PseuNormGrp₁} (f : M ⟶ N) :
  strict_pseudo_normed_group_hom (Λ →+ M) (Λ →+ N) :=
{ to_fun := λ x, f.to_add_monoid_hom.comp x,
  map_zero' := by simp only [add_monoid_hom.comp_zero],
  map_add' := by { intros, ext, dsimp, erw [f.to_add_monoid_hom.map_add], refl, },
  strict' := begin
      obtain ⟨ι,,l,hl,h⟩ := polyhedral_lattice.polyhedral Λ,
      resetI,
      intros c x hx,
      erw generates_norm.add_monoid_hom_mem_filtration_iff hl at hx ⊢,
      intros i,
      apply f.strict,
      exact hx i,
    end }

@[simps]
def hom_functor' : PseuNormGrp₁.{u} ⥤ PseuNormGrp₁.{u} :=
{ obj := λ M,
  { carrier := Λ →+ M ,
    exhaustive' := by { apply polyhedral_exhaustive, apply M.exhaustive } },
  map := λ M N f, polyhedral_postcompose' _ f,
  map_id' := λ X, by { ext, refl },
  map_comp' := λ X Y Z f g, by { ext, refl } }

open category_theory.limits PseuNormGrp₁

variables {J : Type u} [small_category J] (K : J ⥤ PseuNormGrp₁.{u})

def Ab.limit_cone' {J : Type u} [small_category J] (K : J ⥤ Ab.{u}) :
  limit_cone K :=
⟨Ab.explicit_limit_cone.{u u} _, Ab.explicit_limit_cone_is_limit.{u u} _⟩

attribute [simps] to_Ab Ab.limit_cone'

abbreviation hom_functor'_cone_iso_hom_to_fun_aux_to_fun_aux_val_aux (Λ : Type u) {J : Type u}
  [polyhedral_lattice Λ]
  [small_category J]
  (K : J ⥤ PseuNormGrp₁)
  (f : ↥(bounded_cone_point
            (Ab.limit_cone' ((K ⋙ hom_functor' Λ) ⋙ to_Ab))))
  (q : Λ) :
  ↥((Ab.limit_cone' (K ⋙ to_Ab)).cone.X) :=
{ val := λ j, (f.1.1 j).1 q,
  property := begin
    intros a b g,
    have := f.1.2 g,
    dsimp at this ⊢,
    rw ← this, refl,
  end }

abbreviation hom_functor'_cone_iso_hom_to_fun_aux_to_fun_aux (Λ : Type u) {J : Type u}
  [polyhedral_lattice Λ]
  [small_category J]
  (K : J ⥤ PseuNormGrp₁)
  (f : ↥(bounded_cone_point
            (Ab.limit_cone' ((K ⋙ hom_functor' Λ) ⋙ to_Ab)))) :
  Λ → ↥(bounded_cone_point (Ab.limit_cone' (K ⋙ to_Ab))) := λ q,
{ val := hom_functor'_cone_iso_hom_to_fun_aux_to_fun_aux_val_aux Λ _ f q,
  property := begin
    obtain ⟨c,hc⟩ := f.2,
    use c * ∥q∥₊,
    intros j,
    apply hc,
    simp,
  end }

abbreviation hom_functor'_cone_iso_hom_to_fun_aux
  (Λ : Type u) {J : Type u}
  [polyhedral_lattice Λ]
  [small_category J]
  (K : J ⥤ PseuNormGrp₁) :
  ↥(bounded_cone_point
       (Ab.limit_cone' ((K ⋙ hom_functor' Λ) ⋙ to_Ab))) →
  ↥((hom_functor' Λ).obj
       (bounded_cone_point (Ab.limit_cone' (K ⋙ to_Ab)))) := λ f,
{ to_fun := hom_functor'_cone_iso_hom_to_fun_aux_to_fun_aux _ _ f,
  map_zero' := by { ext, simpa },
  map_add' := λ x y, by { ext, simpa } }

def hom_functor'_cone_iso_hom :
  bounded_cone_point (Ab.limit_cone' ((K ⋙ hom_functor' Λ) ⋙ _)) ⟶
  (hom_functor' Λ).obj (bounded_cone_point (Ab.limit_cone' (K ⋙ _))) :=
{ to_fun := hom_functor'_cone_iso_hom_to_fun_aux _ _,
  map_zero' := by { ext, simpa },
  map_add' := λ x y, by { ext, simpa },
  strict' := begin
    intros c x hx,
    obtain ⟨⟨d,hc⟩,rfl⟩ := hx,
    intros e q hq,
    dsimp [bounded_elements.filt_incl],
    delta hom_functor'_cone_iso_hom_to_fun_aux_to_fun_aux,
    delta hom_functor'_cone_iso_hom_to_fun_aux_to_fun_aux_val_aux,
    refine ⟨⟨_,_⟩,rfl⟩,
    intros j,
    apply hc _ hq,
  end }

abbreviation hom_functor'_cone_iso_inv_to_fun_aux_val_aux_val_aux
  (Λ : Type u) {J : Type u}
  [polyhedral_lattice Λ]
  [small_category J]
  (K : J ⥤ PseuNormGrp₁)
  (f : ↥((hom_functor' Λ).obj
            (bounded_cone_point (Ab.limit_cone' (K ⋙ to_Ab))))) :
  Π (j : J), (((K ⋙ hom_functor' Λ) ⋙ to_Ab) ⋙ forget Ab).obj j := λ j,
{ to_fun := λ q, (f.1 q).1.1 j,
  map_zero' := by simpa,
  map_add' := λ x y, by simpa }

abbreviation hom_functor'_cone_iso_inv_to_fun_aux_val_aux
  (Λ : Type u) {J : Type u}
  [polyhedral_lattice Λ]
  [small_category J]
  (K : J ⥤ PseuNormGrp₁)
  (f : ↥((hom_functor' Λ).obj
            (bounded_cone_point (Ab.limit_cone' (K ⋙ to_Ab))))) :
  ↥((Ab.limit_cone' ((K ⋙ hom_functor' Λ) ⋙ to_Ab)).cone.X) :=
{ val := hom_functor'_cone_iso_inv_to_fun_aux_val_aux_val_aux _ _ f,
  property := begin
    intros i j g,
    ext q,
    change Λ →+ _ at f,
    exact (f q).1.2 g,
  end }

abbreviation hom_functor'_cone_iso_inv_to_fun_aux (Λ : Type u) {J : Type u}
  [polyhedral_lattice Λ]
  [small_category J]
  (K : J ⥤ PseuNormGrp₁) :
  ↥((hom_functor' Λ).obj
       (bounded_cone_point (Ab.limit_cone' (K ⋙ to_Ab)))) →
  ↥(bounded_cone_point
       (Ab.limit_cone' ((K ⋙ hom_functor' Λ) ⋙ to_Ab))) := λ f,
{ val := hom_functor'_cone_iso_inv_to_fun_aux_val_aux _ _ f,
  property := begin
    obtain ⟨c,hc⟩ :=
      ((hom_functor' Λ).obj (bounded_cone_point
      (Ab.limit_cone' (K ⋙ to_Ab)))).exhaustive f,
    use c,
    intros j d q hq,
    dsimp [Ab.explicit_limit_cone],
    specialize hc hq,
    obtain ⟨t,ht⟩ := hc,
    rw ← ht,
    apply t.2,
  end }

def hom_functor'_cone_iso_inv :
  (hom_functor' Λ).obj (bounded_cone_point (Ab.limit_cone' (K ⋙ _))) ⟶
  bounded_cone_point (Ab.limit_cone' ((K ⋙ hom_functor' Λ) ⋙ _)) :=
{ to_fun := hom_functor'_cone_iso_inv_to_fun_aux _ _,
  map_zero' := by { ext, simpa },
  map_add' := λ x y, by { ext, simpa },
  strict' := begin
    intros c x hx,
    dsimp,
    refine ⟨⟨_,_⟩,rfl⟩,
    intros j d q hq,
    dsimp [Ab.explicit_limit_cone],
    specialize hx hq,
    obtain ⟨t,ht⟩ := hx,
    rw ← ht,
    apply t.2,
  end }

def hom_functor'_cone_iso_aux :
  bounded_cone_point (Ab.limit_cone' ((K ⋙ hom_functor' Λ) ⋙ _)) ≅
  (hom_functor' Λ).obj (bounded_cone_point (Ab.limit_cone' (K ⋙ _))) :=
{ hom := hom_functor'_cone_iso_hom _ _,
  inv := hom_functor'_cone_iso_inv _ _,
  hom_inv_id' := by { ext, refl },
  inv_hom_id' := by { ext, refl } }

def hom_functor_cone_iso :
  bounded_cone (Ab.limit_cone' ((K ⋙ hom_functor' Λ) ⋙ _)) ≅
  (hom_functor' Λ).map_cone (bounded_cone (Ab.limit_cone' (K ⋙ _))) :=
cones.ext
(hom_functor'_cone_iso_aux _ _) $ λ j, by { ext, refl }

instance : preserves_limits (hom_functor' Λ) :=
begin
  constructor, introsI J hJ, constructor, intros K,
  apply preserves_limit_of_preserves_limit_cone
    (PseuNormGrp₁.bounded_cone_is_limit ⟨_, Ab.explicit_limit_cone_is_limit.{u u} _⟩),
  refine is_limit.of_iso_limit (PseuNormGrp₁.bounded_cone_is_limit
    ⟨_,Ab.explicit_limit_cone_is_limit.{u u} _⟩) _,
  apply hom_functor_cone_iso,
end

instance (c) : preserves_limits (hom_functor'.{u} Λ ⋙ PseuNormGrp₁.level.obj c) :=
@limits.comp_preserves_limits _ _ _ _ _ _ _ _ _ $
show preserves_limits _, from PseuNormGrp₁.preserves_limits_level_obj.{u u} _

def ProFiltPseuNormGrpWithTinv₁.to_PNG₁ :
  ProFiltPseuNormGrpWithTinv₁ r ⥤ PseuNormGrp₁ :=
{ obj := λ M,
  { carrier := M,
    exhaustive' := M.exhaustive r },
  map := λ X Y f, { strict' := λ c x h, f.strict h .. f.to_add_monoid_hom } }

def drop_Profinite_drop_Tinv :
  PFPNGT₁_to_PFPNG₁ₑₗ r ⋙ ProFiltPseuNormGrp₁.to_PNG₁ ≅
  ProFiltPseuNormGrpWithTinv₁.to_PNG₁ r :=
nat_iso.of_components (λ X, iso.refl _) $ by tidy

instance : preserves_limits (ProFiltPseuNormGrpWithTinv₁.to_PNG₁ r) :=
preserves_limits_of_nat_iso (drop_Profinite_drop_Tinv r)

def hom_functor'_forget_iso (c) :
  ProFiltPseuNormGrpWithTinv₁.to_PNG₁ r ⋙ hom_functor' Λ ⋙
  PseuNormGrp₁.level.obj c ≅
  hom_functor _ Λ ⋙ PFPNGT₁_to_PFPNG₁ₑₗ r ⋙
    ProFiltPseuNormGrp₁.level.obj c ⋙ forget _ :=
nat_iso.of_components (λ X, eq_to_iso rfl) $ by tidy

instance hom_functor_level_preserves_limits (c) : preserves_limits (
  hom_functor r Λ ⋙
  PFPNGT₁_to_PFPNG₁ₑₗ r ⋙
  ProFiltPseuNormGrp₁.level.obj c ) :=
begin
  apply preserves_limits_of_reflects_of_preserves _ (forget Profinite),
  apply preserves_limits_of_nat_iso (hom_functor'_forget_iso _ _ _),
  change preserves_limits (ProFiltPseuNormGrpWithTinv₁.to_PNG₁ r ⋙
    (hom_functor' Λ ⋙ PseuNormGrp₁.level.obj c)),
  apply limits.comp_preserves_limits,
end

end