Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 11,051 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import Lbar.functor
import combinatorial_lemma.finite
import algebra.module.linear_map
import pseudo_normed_group.bounded_limits
import for_mathlib.Profinite.disjoint_union
import category_theory.limits.shapes.products
import topology.category.Compactum
noncomputable theory
open_locale nnreal big_operators
universe u
section
variables (r : ℝ≥0) [fact (0 < r)] (Λ : Type u) [polyhedral_lattice Λ]
open category_theory
open category_theory.limits
lemma polyhedral_exhaustive
(M : Type*) [pseudo_normed_group M]
(e : ∀ x : M, ∃ c, x ∈ pseudo_normed_group.filtration M c)
(x : Λ →+ M) :
∃ c : ℝ≥0, x ∈ pseudo_normed_group.filtration (Λ →+ M) c :=
begin
obtain ⟨ι,hι,l,hl,h⟩ := polyhedral_lattice.polyhedral Λ,
resetI,
let cs : ι → ℝ≥0 := λ i, (e (x (l i))).some,
let c := finset.univ.sup (λ i, cs i / ∥l i∥₊),
-- This should be easy, using the fact that (l i) ≠ 0.
have hc : ∀ i, cs i ≤ c * ∥l i∥₊,
{ intro i, rw ← mul_inv_le_iff₀,
{ exact finset.le_sup (finset.mem_univ i), },
{ rw [ne.def, nnnorm_eq_zero], exact h i }, },
use c,
rw generates_norm.add_monoid_hom_mem_filtration_iff hl x,
intros i,
apply pseudo_normed_group.filtration_mono (hc i),
apply (e (x (l i))).some_spec,
end
@[simps]
def polyhedral_postcompose {M N : ProFiltPseuNormGrpWithTinv₁ r} (f : M ⟶ N) :
comphaus_filtered_pseudo_normed_group_with_Tinv_hom r
(Λ →+ M) (Λ →+ N) :=
{ to_fun := λ x, f.to_add_monoid_hom.comp x,
map_zero' := by simp only [add_monoid_hom.comp_zero],
map_add' := by { intros, ext, dsimp, erw [f.to_add_monoid_hom.map_add], refl, },
strict' := begin
obtain ⟨ι,hι,l,hl,h⟩ := polyhedral_lattice.polyhedral Λ,
resetI,
intros c x hx,
erw generates_norm.add_monoid_hom_mem_filtration_iff hl at hx ⊢,
intros i,
apply f.strict,
exact hx i,
end,
continuous' := λ c, begin
rw polyhedral_lattice.add_monoid_hom.continuous_iff,
intro l,
simp only,
have aux1 := polyhedral_lattice.add_monoid_hom.incl_continuous Λ r M c,
have aux2 := f.level_continuous (c * ∥l∥₊),
exact (aux2.comp (continuous_apply l)).comp aux1,
end,
map_Tinv' := λ x, by { ext l, dsimp, erw f.map_Tinv, refl, } }
/-- the functor `M ↦ Hom(Λ, M), where both are considered as objects in
`ProFiltPseuNormGrpWithTinv₁.{u} r` -/
@[simps]
def hom_functor : ProFiltPseuNormGrpWithTinv₁.{u} r ⥤ ProFiltPseuNormGrpWithTinv₁.{u} r :=
{ obj := λ M,
{ M := Λ →+ M,
str := infer_instance,
exhaustive' := by { apply polyhedral_exhaustive, apply M.exhaustive r } },
map := λ M N f, polyhedral_postcompose _ _ f,
map_id' := λ M, begin
ext,
dsimp [polyhedral_postcompose],
simp,
end,
map_comp' := λ M N L f g, begin
ext,
dsimp [polyhedral_postcompose],
simp,
end } .
@[simps]
def polyhedral_postcompose' {M N : PseuNormGrp₁} (f : M ⟶ N) :
strict_pseudo_normed_group_hom (Λ →+ M) (Λ →+ N) :=
{ to_fun := λ x, f.to_add_monoid_hom.comp x,
map_zero' := by simp only [add_monoid_hom.comp_zero],
map_add' := by { intros, ext, dsimp, erw [f.to_add_monoid_hom.map_add], refl, },
strict' := begin
obtain ⟨ι,hι,l,hl,h⟩ := polyhedral_lattice.polyhedral Λ,
resetI,
intros c x hx,
erw generates_norm.add_monoid_hom_mem_filtration_iff hl at hx ⊢,
intros i,
apply f.strict,
exact hx i,
end }
@[simps]
def hom_functor' : PseuNormGrp₁.{u} ⥤ PseuNormGrp₁.{u} :=
{ obj := λ M,
{ carrier := Λ →+ M ,
exhaustive' := by { apply polyhedral_exhaustive, apply M.exhaustive } },
map := λ M N f, polyhedral_postcompose' _ f,
map_id' := λ X, by { ext, refl },
map_comp' := λ X Y Z f g, by { ext, refl } }
open category_theory.limits PseuNormGrp₁
variables {J : Type u} [small_category J] (K : J ⥤ PseuNormGrp₁.{u})
def Ab.limit_cone' {J : Type u} [small_category J] (K : J ⥤ Ab.{u}) :
limit_cone K :=
⟨Ab.explicit_limit_cone.{u u} _, Ab.explicit_limit_cone_is_limit.{u u} _⟩
attribute [simps] to_Ab Ab.limit_cone'
abbreviation hom_functor'_cone_iso_hom_to_fun_aux_to_fun_aux_val_aux (Λ : Type u) {J : Type u}
[polyhedral_lattice Λ]
[small_category J]
(K : J ⥤ PseuNormGrp₁)
(f : ↥(bounded_cone_point
(Ab.limit_cone' ((K ⋙ hom_functor' Λ) ⋙ to_Ab))))
(q : Λ) :
↥((Ab.limit_cone' (K ⋙ to_Ab)).cone.X) :=
{ val := λ j, (f.1.1 j).1 q,
property := begin
intros a b g,
have := f.1.2 g,
dsimp at this ⊢,
rw ← this, refl,
end }
abbreviation hom_functor'_cone_iso_hom_to_fun_aux_to_fun_aux (Λ : Type u) {J : Type u}
[polyhedral_lattice Λ]
[small_category J]
(K : J ⥤ PseuNormGrp₁)
(f : ↥(bounded_cone_point
(Ab.limit_cone' ((K ⋙ hom_functor' Λ) ⋙ to_Ab)))) :
Λ → ↥(bounded_cone_point (Ab.limit_cone' (K ⋙ to_Ab))) := λ q,
{ val := hom_functor'_cone_iso_hom_to_fun_aux_to_fun_aux_val_aux Λ _ f q,
property := begin
obtain ⟨c,hc⟩ := f.2,
use c * ∥q∥₊,
intros j,
apply hc,
simp,
end }
abbreviation hom_functor'_cone_iso_hom_to_fun_aux
(Λ : Type u) {J : Type u}
[polyhedral_lattice Λ]
[small_category J]
(K : J ⥤ PseuNormGrp₁) :
↥(bounded_cone_point
(Ab.limit_cone' ((K ⋙ hom_functor' Λ) ⋙ to_Ab))) →
↥((hom_functor' Λ).obj
(bounded_cone_point (Ab.limit_cone' (K ⋙ to_Ab)))) := λ f,
{ to_fun := hom_functor'_cone_iso_hom_to_fun_aux_to_fun_aux _ _ f,
map_zero' := by { ext, simpa },
map_add' := λ x y, by { ext, simpa } }
def hom_functor'_cone_iso_hom :
bounded_cone_point (Ab.limit_cone' ((K ⋙ hom_functor' Λ) ⋙ _)) ⟶
(hom_functor' Λ).obj (bounded_cone_point (Ab.limit_cone' (K ⋙ _))) :=
{ to_fun := hom_functor'_cone_iso_hom_to_fun_aux _ _,
map_zero' := by { ext, simpa },
map_add' := λ x y, by { ext, simpa },
strict' := begin
intros c x hx,
obtain ⟨⟨d,hc⟩,rfl⟩ := hx,
intros e q hq,
dsimp [bounded_elements.filt_incl],
delta hom_functor'_cone_iso_hom_to_fun_aux_to_fun_aux,
delta hom_functor'_cone_iso_hom_to_fun_aux_to_fun_aux_val_aux,
refine ⟨⟨_,_⟩,rfl⟩,
intros j,
apply hc _ hq,
end }
abbreviation hom_functor'_cone_iso_inv_to_fun_aux_val_aux_val_aux
(Λ : Type u) {J : Type u}
[polyhedral_lattice Λ]
[small_category J]
(K : J ⥤ PseuNormGrp₁)
(f : ↥((hom_functor' Λ).obj
(bounded_cone_point (Ab.limit_cone' (K ⋙ to_Ab))))) :
Π (j : J), (((K ⋙ hom_functor' Λ) ⋙ to_Ab) ⋙ forget Ab).obj j := λ j,
{ to_fun := λ q, (f.1 q).1.1 j,
map_zero' := by simpa,
map_add' := λ x y, by simpa }
abbreviation hom_functor'_cone_iso_inv_to_fun_aux_val_aux
(Λ : Type u) {J : Type u}
[polyhedral_lattice Λ]
[small_category J]
(K : J ⥤ PseuNormGrp₁)
(f : ↥((hom_functor' Λ).obj
(bounded_cone_point (Ab.limit_cone' (K ⋙ to_Ab))))) :
↥((Ab.limit_cone' ((K ⋙ hom_functor' Λ) ⋙ to_Ab)).cone.X) :=
{ val := hom_functor'_cone_iso_inv_to_fun_aux_val_aux_val_aux _ _ f,
property := begin
intros i j g,
ext q,
change Λ →+ _ at f,
exact (f q).1.2 g,
end }
abbreviation hom_functor'_cone_iso_inv_to_fun_aux (Λ : Type u) {J : Type u}
[polyhedral_lattice Λ]
[small_category J]
(K : J ⥤ PseuNormGrp₁) :
↥((hom_functor' Λ).obj
(bounded_cone_point (Ab.limit_cone' (K ⋙ to_Ab)))) →
↥(bounded_cone_point
(Ab.limit_cone' ((K ⋙ hom_functor' Λ) ⋙ to_Ab))) := λ f,
{ val := hom_functor'_cone_iso_inv_to_fun_aux_val_aux _ _ f,
property := begin
obtain ⟨c,hc⟩ :=
((hom_functor' Λ).obj (bounded_cone_point
(Ab.limit_cone' (K ⋙ to_Ab)))).exhaustive f,
use c,
intros j d q hq,
dsimp [Ab.explicit_limit_cone],
specialize hc hq,
obtain ⟨t,ht⟩ := hc,
rw ← ht,
apply t.2,
end }
def hom_functor'_cone_iso_inv :
(hom_functor' Λ).obj (bounded_cone_point (Ab.limit_cone' (K ⋙ _))) ⟶
bounded_cone_point (Ab.limit_cone' ((K ⋙ hom_functor' Λ) ⋙ _)) :=
{ to_fun := hom_functor'_cone_iso_inv_to_fun_aux _ _,
map_zero' := by { ext, simpa },
map_add' := λ x y, by { ext, simpa },
strict' := begin
intros c x hx,
dsimp,
refine ⟨⟨_,_⟩,rfl⟩,
intros j d q hq,
dsimp [Ab.explicit_limit_cone],
specialize hx hq,
obtain ⟨t,ht⟩ := hx,
rw ← ht,
apply t.2,
end }
def hom_functor'_cone_iso_aux :
bounded_cone_point (Ab.limit_cone' ((K ⋙ hom_functor' Λ) ⋙ _)) ≅
(hom_functor' Λ).obj (bounded_cone_point (Ab.limit_cone' (K ⋙ _))) :=
{ hom := hom_functor'_cone_iso_hom _ _,
inv := hom_functor'_cone_iso_inv _ _,
hom_inv_id' := by { ext, refl },
inv_hom_id' := by { ext, refl } }
def hom_functor_cone_iso :
bounded_cone (Ab.limit_cone' ((K ⋙ hom_functor' Λ) ⋙ _)) ≅
(hom_functor' Λ).map_cone (bounded_cone (Ab.limit_cone' (K ⋙ _))) :=
cones.ext
(hom_functor'_cone_iso_aux _ _) $ λ j, by { ext, refl }
instance : preserves_limits (hom_functor' Λ) :=
begin
constructor, introsI J hJ, constructor, intros K,
apply preserves_limit_of_preserves_limit_cone
(PseuNormGrp₁.bounded_cone_is_limit ⟨_, Ab.explicit_limit_cone_is_limit.{u u} _⟩),
refine is_limit.of_iso_limit (PseuNormGrp₁.bounded_cone_is_limit
⟨_,Ab.explicit_limit_cone_is_limit.{u u} _⟩) _,
apply hom_functor_cone_iso,
end
instance (c) : preserves_limits (hom_functor'.{u} Λ ⋙ PseuNormGrp₁.level.obj c) :=
@limits.comp_preserves_limits _ _ _ _ _ _ _ _ _ $
show preserves_limits _, from PseuNormGrp₁.preserves_limits_level_obj.{u u} _
def ProFiltPseuNormGrpWithTinv₁.to_PNG₁ :
ProFiltPseuNormGrpWithTinv₁ r ⥤ PseuNormGrp₁ :=
{ obj := λ M,
{ carrier := M,
exhaustive' := M.exhaustive r },
map := λ X Y f, { strict' := λ c x h, f.strict h .. f.to_add_monoid_hom } }
def drop_Profinite_drop_Tinv :
PFPNGT₁_to_PFPNG₁ₑₗ r ⋙ ProFiltPseuNormGrp₁.to_PNG₁ ≅
ProFiltPseuNormGrpWithTinv₁.to_PNG₁ r :=
nat_iso.of_components (λ X, iso.refl _) $ by tidy
instance : preserves_limits (ProFiltPseuNormGrpWithTinv₁.to_PNG₁ r) :=
preserves_limits_of_nat_iso (drop_Profinite_drop_Tinv r)
def hom_functor'_forget_iso (c) :
ProFiltPseuNormGrpWithTinv₁.to_PNG₁ r ⋙ hom_functor' Λ ⋙
PseuNormGrp₁.level.obj c ≅
hom_functor _ Λ ⋙ PFPNGT₁_to_PFPNG₁ₑₗ r ⋙
ProFiltPseuNormGrp₁.level.obj c ⋙ forget _ :=
nat_iso.of_components (λ X, eq_to_iso rfl) $ by tidy
instance hom_functor_level_preserves_limits (c) : preserves_limits (
hom_functor r Λ ⋙
PFPNGT₁_to_PFPNG₁ₑₗ r ⋙
ProFiltPseuNormGrp₁.level.obj c ) :=
begin
apply preserves_limits_of_reflects_of_preserves _ (forget Profinite),
apply preserves_limits_of_nat_iso (hom_functor'_forget_iso _ _ _),
change preserves_limits (ProFiltPseuNormGrpWithTinv₁.to_PNG₁ r ⋙
(hom_functor' Λ ⋙ PseuNormGrp₁.level.obj c)),
apply limits.comp_preserves_limits,
end
end
|