Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 5,019 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import data.real.nnreal

open_locale nnreal

namespace nnreal

variables (r r' k c c₁ c₂ c₃ : ℝ≥0)

instance fact_le_of_lt [h : fact (c₁ < c₂)] : fact (c₁ ≤ c₂) := ⟨h.1.le⟩

instance fact_pos_of_one_le [hk : fact (1 ≤ c)] : fact (0 < c) :=
⟨lt_of_lt_of_le zero_lt_one hk.1⟩

instance fact_mul_pos [h1 : fact (0 < c₁)] [h2 : fact (0 < c₂)] : fact (0 < c₁ * c₂) :=
⟨mul_pos h1.out h2.out⟩

instance fact_le_mul_of_one_le_left [hk : fact (1 ≤ k)] [hc : fact (c₁ ≤ c₂)] :
  fact (c₁ ≤ k * c₂) :=
⟨calc c₁ = 1 * c₁ : (one_mul _).symm ... ≤ k * c₂ : mul_le_mul' hk.1 hc.1⟩

instance fact_le_mul_of_one_le_right [hc : fact (c₁ ≤ c₂)] [hk : fact (1 ≤ k)] :
  fact (c₁ ≤ c₂ * k) :=
⟨calc c₁ = c₁ * 1 : (mul_one _).symm ... ≤ c₂ * k : mul_le_mul' hc.1 hk.1⟩

instance fact_mul_le_of_le_one_left [hk : fact (k ≤ 1)] [hc : fact (c₁ ≤ c₂)] :
  fact (k * c₁ ≤ c₂) :=
⟨calc k * c₁ ≤ 1 * c₂ : mul_le_mul' hk.1 hc.1 ... = c₂     : one_mul _⟩

instance fact_mul_le_of_le_one_right [hk : fact (k ≤ 1)] [hc : fact (c₁ ≤ c₂)] :
  fact (c₁ * k ≤ c₂) :=
⟨calc c₁ * k ≤ c₂ * 1 : mul_le_mul' hc.1 hk.1 ... = c₂ : mul_one _⟩

instance fact_one_le_add_one : fact (1 ≤ k + 1) :=
⟨self_le_add_left 1 k⟩

instance fact_le_refl : fact (c ≤ c) := ⟨le_rfl⟩

instance fact_le_subst_right [fact (c₁ ≤ c₂)] [h : fact (c₂ = c₃)]: fact (c₁ ≤ c₃) :=
by rwa ← h.1

instance fact_le_subst_right' [fact (c₁ ≤ c₂)] [h : fact (c₃ = c₂)]: fact (c₁ ≤ c₃) :=
by rwa ← h.1.symm

instance fact_le_subst_left [fact (c₁ ≤ c₂)] [h : fact (c₁ = c₃)]: fact (c₃ ≤ c₂) :=
by rwa ← h.1

instance fact_le_subst_left' [fact (c₁ ≤ c₂)] [h : fact (c₃ = c₁)]: fact (c₃ ≤ c₂) :=
by rwa ← h.1.symm

instance fact_inv_mul_le [h : fact (0 < r')] : fact (r'⁻¹ * (r' * c) ≤ c) :=
⟨le_of_eq $ inv_mul_cancel_left₀ (ne_of_gt h.1) _⟩

instance fact_mul_le_mul_left [h : fact (c₁ ≤ c₂)] : fact (r' * c₁ ≤ r' * c₂) :=
⟨mul_le_mul' le_rfl h.1⟩

instance fact_mul_le_mul_right [h : fact (c₁ ≤ c₂)] : fact (c₁ * r' ≤ c₂ * r') :=
⟨mul_le_mul' h.1 le_rfl⟩

instance fact_le_inv_mul_self [h1 : fact (0 < r')] [h2 : fact (r' ≤ 1)] : fact (c ≤ r'⁻¹ * c) :=
begin
  constructor,
  rw mul_comm,
  apply le_mul_inv_of_mul_le (ne_of_gt h1.1),
  nth_rewrite 1 ← mul_one c,
  exact mul_le_mul (le_of_eq rfl) h2.1 (le_of_lt h1.1) zero_le',
end

instance fact_le_max_left (a b c : ℝ≥0) [h : fact (a ≤ b)] : fact (a ≤ max b c) :=
⟨h.1.trans $ le_max_left _ _⟩

instance fact_one_le_mul_self (a : ℝ≥0) [h : fact (1 ≤ a)] : fact (1 ≤ a * a) :=
⟨calc (1 : ℝ≥0) = 1 * 1 : (mul_one 1).symm
           ... ≤ a * a : mul_le_mul' h.1 h.1⟩

instance one_le_add {a b : ℝ≥0} [ha : fact (1 ≤ a)] : fact (1 ≤ a + b) :=
⟨le_trans ha.1 $ by simp⟩
instance one_le_add' {a b : ℝ≥0} [hb : fact (1 ≤ b)] : fact (1 ≤ a + b) :=
⟨le_trans hb.1 $ by simp⟩

instance fact_one_le_pow {n : ℕ} {a : ℝ≥0} [h : fact (1 ≤ a)] : fact (1 ≤ a^n) :=
begin
  cases n,
  { simpa only [pow_zero] using nnreal.fact_le_refl _ },
  { rwa @one_le_pow_iff _ _ _ nnreal.covariant_mul, apply nat.succ_ne_zero }
end

instance fact_pow_le_one {n : ℕ} {a : ℝ≥0} [h : fact (a ≤ 1)] : fact (a^n ≤ 1) :=
begin
  cases n,
  { simpa only [pow_zero] using nnreal.fact_le_refl _ },
  { rwa @pow_le_one_iff _ _ _ nnreal.covariant_mul, apply nat.succ_ne_zero }
end

lemma fact_le_pow_mul_of_le_pow_succ_mul {n : ℕ} (r : ℝ≥0)
  [fact (r ≤ 1)] [h : fact (c₂ ≤ r ^ (n+1) * c₁)] :
  fact (c₂ ≤ r ^ n * c₁) :=
begin
  refine ⟨h.1.trans _⟩,
  rw [pow_succ, mul_assoc],
  apply fact.out
end

instance fact_le_mul_add : fact (c * c₁ + c * c₂ ≤ c * (c₁ + c₂)) :=
by { rw mul_add, exact nnreal.fact_le_refl _ }

instance fact_nat_cast_pos (N : ℕ) [hN: fact (0 < N)] : fact (0 < (N:ℝ≥0)) :=
⟨nat.cast_pos.mpr hN.1⟩

instance fact_nat_cast_inv_le_one (N : ℕ) : fact ((N:ℝ≥0)⁻¹ ≤ 1) :=
begin
  by_cases hN : N = 0,
  { subst hN, simp only [nat.cast_zero, inv_zero, zero_le'], exact ⟨trivial⟩ },
  { rw [inv_le, mul_one], swap, { exact_mod_cast hN },
    norm_cast,
    rw nat.add_one_le_iff,
    exact ⟨nat.pos_of_ne_zero hN⟩, }
end

instance fact_inv_le_one [H : fact (1 ≤ c)] : fact (c⁻¹ ≤ 1) :=
begin
  by_cases hc : c = 0,
  { rw hc at H, exact (not_le_of_lt zero_lt_one H.1).elim },
  rwa [inv_le hc, mul_one]
end

instance fact_one_le_two : fact ((1:ℝ≥0) ≤ 2) := ⟨one_le_two⟩

instance fact_two_pow_inv_le_two_pow_inv (N : ℕ) : fact ((2 ^ N : ℝ≥0)⁻¹ ≤ (2 ^ N : ℕ)⁻¹) :=
⟨le_of_eq $ by norm_cast⟩

instance fact_two_pow_inv_le_one (N : ℕ) : fact ((2 ^ N : ℝ≥0)⁻¹ ≤ 1) :=
⟨le_trans (nnreal.fact_two_pow_inv_le_two_pow_inv N).1 $ fact.out _⟩

end nnreal

#lint- only unused_arguments def_lemma doc_blame