Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 5,019 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import data.real.nnreal
open_locale nnreal
namespace nnreal
variables (r r' k c c₁ c₂ c₃ : ℝ≥0)
instance fact_le_of_lt [h : fact (c₁ < c₂)] : fact (c₁ ≤ c₂) := ⟨h.1.le⟩
instance fact_pos_of_one_le [hk : fact (1 ≤ c)] : fact (0 < c) :=
⟨lt_of_lt_of_le zero_lt_one hk.1⟩
instance fact_mul_pos [h1 : fact (0 < c₁)] [h2 : fact (0 < c₂)] : fact (0 < c₁ * c₂) :=
⟨mul_pos h1.out h2.out⟩
instance fact_le_mul_of_one_le_left [hk : fact (1 ≤ k)] [hc : fact (c₁ ≤ c₂)] :
fact (c₁ ≤ k * c₂) :=
⟨calc c₁ = 1 * c₁ : (one_mul _).symm ... ≤ k * c₂ : mul_le_mul' hk.1 hc.1⟩
instance fact_le_mul_of_one_le_right [hc : fact (c₁ ≤ c₂)] [hk : fact (1 ≤ k)] :
fact (c₁ ≤ c₂ * k) :=
⟨calc c₁ = c₁ * 1 : (mul_one _).symm ... ≤ c₂ * k : mul_le_mul' hc.1 hk.1⟩
instance fact_mul_le_of_le_one_left [hk : fact (k ≤ 1)] [hc : fact (c₁ ≤ c₂)] :
fact (k * c₁ ≤ c₂) :=
⟨calc k * c₁ ≤ 1 * c₂ : mul_le_mul' hk.1 hc.1 ... = c₂ : one_mul _⟩
instance fact_mul_le_of_le_one_right [hk : fact (k ≤ 1)] [hc : fact (c₁ ≤ c₂)] :
fact (c₁ * k ≤ c₂) :=
⟨calc c₁ * k ≤ c₂ * 1 : mul_le_mul' hc.1 hk.1 ... = c₂ : mul_one _⟩
instance fact_one_le_add_one : fact (1 ≤ k + 1) :=
⟨self_le_add_left 1 k⟩
instance fact_le_refl : fact (c ≤ c) := ⟨le_rfl⟩
instance fact_le_subst_right [fact (c₁ ≤ c₂)] [h : fact (c₂ = c₃)]: fact (c₁ ≤ c₃) :=
by rwa ← h.1
instance fact_le_subst_right' [fact (c₁ ≤ c₂)] [h : fact (c₃ = c₂)]: fact (c₁ ≤ c₃) :=
by rwa ← h.1.symm
instance fact_le_subst_left [fact (c₁ ≤ c₂)] [h : fact (c₁ = c₃)]: fact (c₃ ≤ c₂) :=
by rwa ← h.1
instance fact_le_subst_left' [fact (c₁ ≤ c₂)] [h : fact (c₃ = c₁)]: fact (c₃ ≤ c₂) :=
by rwa ← h.1.symm
instance fact_inv_mul_le [h : fact (0 < r')] : fact (r'⁻¹ * (r' * c) ≤ c) :=
⟨le_of_eq $ inv_mul_cancel_left₀ (ne_of_gt h.1) _⟩
instance fact_mul_le_mul_left [h : fact (c₁ ≤ c₂)] : fact (r' * c₁ ≤ r' * c₂) :=
⟨mul_le_mul' le_rfl h.1⟩
instance fact_mul_le_mul_right [h : fact (c₁ ≤ c₂)] : fact (c₁ * r' ≤ c₂ * r') :=
⟨mul_le_mul' h.1 le_rfl⟩
instance fact_le_inv_mul_self [h1 : fact (0 < r')] [h2 : fact (r' ≤ 1)] : fact (c ≤ r'⁻¹ * c) :=
begin
constructor,
rw mul_comm,
apply le_mul_inv_of_mul_le (ne_of_gt h1.1),
nth_rewrite 1 ← mul_one c,
exact mul_le_mul (le_of_eq rfl) h2.1 (le_of_lt h1.1) zero_le',
end
instance fact_le_max_left (a b c : ℝ≥0) [h : fact (a ≤ b)] : fact (a ≤ max b c) :=
⟨h.1.trans $ le_max_left _ _⟩
instance fact_one_le_mul_self (a : ℝ≥0) [h : fact (1 ≤ a)] : fact (1 ≤ a * a) :=
⟨calc (1 : ℝ≥0) = 1 * 1 : (mul_one 1).symm
... ≤ a * a : mul_le_mul' h.1 h.1⟩
instance one_le_add {a b : ℝ≥0} [ha : fact (1 ≤ a)] : fact (1 ≤ a + b) :=
⟨le_trans ha.1 $ by simp⟩
instance one_le_add' {a b : ℝ≥0} [hb : fact (1 ≤ b)] : fact (1 ≤ a + b) :=
⟨le_trans hb.1 $ by simp⟩
instance fact_one_le_pow {n : ℕ} {a : ℝ≥0} [h : fact (1 ≤ a)] : fact (1 ≤ a^n) :=
begin
cases n,
{ simpa only [pow_zero] using nnreal.fact_le_refl _ },
{ rwa @one_le_pow_iff _ _ _ nnreal.covariant_mul, apply nat.succ_ne_zero }
end
instance fact_pow_le_one {n : ℕ} {a : ℝ≥0} [h : fact (a ≤ 1)] : fact (a^n ≤ 1) :=
begin
cases n,
{ simpa only [pow_zero] using nnreal.fact_le_refl _ },
{ rwa @pow_le_one_iff _ _ _ nnreal.covariant_mul, apply nat.succ_ne_zero }
end
lemma fact_le_pow_mul_of_le_pow_succ_mul {n : ℕ} (r : ℝ≥0)
[fact (r ≤ 1)] [h : fact (c₂ ≤ r ^ (n+1) * c₁)] :
fact (c₂ ≤ r ^ n * c₁) :=
begin
refine ⟨h.1.trans _⟩,
rw [pow_succ, mul_assoc],
apply fact.out
end
instance fact_le_mul_add : fact (c * c₁ + c * c₂ ≤ c * (c₁ + c₂)) :=
by { rw mul_add, exact nnreal.fact_le_refl _ }
instance fact_nat_cast_pos (N : ℕ) [hN: fact (0 < N)] : fact (0 < (N:ℝ≥0)) :=
⟨nat.cast_pos.mpr hN.1⟩
instance fact_nat_cast_inv_le_one (N : ℕ) : fact ((N:ℝ≥0)⁻¹ ≤ 1) :=
begin
by_cases hN : N = 0,
{ subst hN, simp only [nat.cast_zero, inv_zero, zero_le'], exact ⟨trivial⟩ },
{ rw [inv_le, mul_one], swap, { exact_mod_cast hN },
norm_cast,
rw nat.add_one_le_iff,
exact ⟨nat.pos_of_ne_zero hN⟩, }
end
instance fact_inv_le_one [H : fact (1 ≤ c)] : fact (c⁻¹ ≤ 1) :=
begin
by_cases hc : c = 0,
{ rw hc at H, exact (not_le_of_lt zero_lt_one H.1).elim },
rwa [inv_le hc, mul_one]
end
instance fact_one_le_two : fact ((1:ℝ≥0) ≤ 2) := ⟨one_le_two⟩
instance fact_two_pow_inv_le_two_pow_inv (N : ℕ) : fact ((2 ^ N : ℝ≥0)⁻¹ ≤ (2 ^ N : ℕ)⁻¹) :=
⟨le_of_eq $ by norm_cast⟩
instance fact_two_pow_inv_le_one (N : ℕ) : fact ((2 ^ N : ℝ≥0)⁻¹ ≤ 1) :=
⟨le_trans (nnreal.fact_two_pow_inv_le_two_pow_inv N).1 $ fact.out _⟩
end nnreal
#lint- only unused_arguments def_lemma doc_blame
|