Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 10,953 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import for_mathlib.exact_seq3
import for_mathlib.bicartesian2
.

open category_theory category_theory.limits

universe u
local notation `𝓐` := Ab.{u}

-- Consider the following diagram
variables {     Kv₁   Kv₂        : 𝓐}
variables {Kh₁  A₁₁   A₁₂  Qh₁   : 𝓐}
variables {Kh₂  A₂₁   A₂₂  Qh₂   : 𝓐}
variables {     Qv₁   Qv₂        : 𝓐}
-- with morphisms
variables                         (fKv : Kv₁ ⟶ Kv₂)
variables                 {ιv₁ : Kv₁ ⟶ A₁₁} {ιv₂ : Kv₂ ⟶ A₁₂}
variables         {ιh₁ : Kh₁ ⟶ A₁₁} {f₁ : A₁₁ ⟶ A₁₂} {πh₁ : A₁₂ ⟶ Qh₁}
variables (gKh : Kh₁ ⟶ Kh₂) {g₁ : A₁₁ ⟶ A₂₁} {g₂ : A₁₂ ⟶ A₂₂} (gQh : Qh₁ ⟶ Qh₂)
variables         {ιh₂ : Kh₂ ⟶ A₂₁} {f₂ : A₂₁ ⟶ A₂₂} {πh₂ : A₂₂ ⟶ Qh₂}
variables                 {πv₁ : A₂₁ ⟶ Qv₁}  {πv₂ : A₂₂ ⟶ Qv₂}
variables                         (fQv : Qv₁ ⟶ Qv₂)
-- with exact rows and columns
variables (H₁ : exact_seq 𝓐 [ιh₁, f₁, πh₁])
variables (H₂ : exact_seq 𝓐 [ιh₂, f₂, πh₂])
variables (V₁ : exact_seq 𝓐 [ιv₁, g₁, πv₁])
variables (V₂ : exact_seq 𝓐 [ιv₂, g₂, πv₂])
-- and such that all the extremal maps are appropriately monos or epis
variables [mono ιv₁] [mono ιv₂] [mono ιh₁] [mono ιh₂]
variables [epi πv₁] [epi πv₂] [epi πh₁] [epi πh₂]
-- of course the diagram should commute
variables (sqᵤ : commsq fKv ιv₁ ιv₂ f₁)
variables (sqₗ : commsq ιh₁ gKh g₁ ιh₂) (sqm : commsq f₁ g₁ g₂ f₂)
variables (sqᵣ : commsq πh₁ g₂ gQh πh₂)
variables (sqₛ : commsq f₂ πv₁ πv₂ fQv)

open_locale zero_object
open category_theory.abelian

def is_limit_of_is_limit_comp {X Y Z : 𝓐} {f : X ⟶ Y} {g : Y ⟶ Z}
  {c : kernel_fork (f ≫ g)} (hc : is_limit c) (h : c.ι ≫ f = 0) :
  is_limit (kernel_fork.of_ι c.ι h) :=
kernel_fork.is_limit.of_ι _ _
  (λ T l hl, hc.lift (kernel_fork.of_ι l (by rw [reassoc_of hl, zero_comp])))
  (λ T l hl, hc.fac _ _)
  (λ T l hl m hm, fork.is_limit.hom_ext hc (by { erw [hm, hc.fac], refl }))

def is_colimit_of_is_colimit_comp {X Y Z : 𝓐} {f : X ⟶ Y} {g : Y ⟶ Z}
  {c : cokernel_cofork (f ≫ g)} (hc : is_colimit c) (h : g ≫ c.π = 0) :
  is_colimit (cokernel_cofork.of_π c.π h) :=
cokernel_cofork.is_colimit.of_π _ _
  (λ T l hl, hc.desc (cokernel_cofork.of_π l (by rw [category.assoc, hl, comp_zero])))
  (λ T l hl, hc.fac _ _)
  (λ T l hl m hm, cofork.is_colimit.hom_ext hc (by { erw [hm, hc.fac], refl }))

section
include sqₗ sqm

lemma is_iso_of_is_limit (H₁ : exact ιh₁ f₁) (H₂ : exact ιh₂ f₂)
  (h : is_limit (pullback_cone.mk f₁ g₁ sqm.w)) : is_iso gKh :=
begin
  haveI : mono gKh,
  { refine preadditive.mono_of_cancel_zero _ (λ P g hg, _),
    apply zero_of_comp_mono ιh₁,
    apply pullback_cone.is_limit.hom_ext h,
    { rw [pullback_cone.mk_fst, category.assoc, zero_comp, H₁.w, comp_zero] },
    { rw [pullback_cone.mk_snd, category.assoc, sqₗ.w, ← category.assoc, hg, zero_comp,
        zero_comp] } },
  obtain ⟨l, hl₁, hl₂ : l ≫ g₁ = _⟩ :=
    pullback_cone.is_limit.lift' h 0 ιh₂ (by simp [H₂.w]),
  let ker := is_limit_of_exact_of_mono _ _ H₁,
  obtain ⟨inv, hinv : inv ≫ ιh₁ = l⟩ := kernel_fork.is_limit.lift' ker l hl₁,
  have hinv' : inv ≫ gKh = 𝟙 _,
   { rw [← cancel_mono ιh₂, category.assoc, ← sqₗ.w, reassoc_of hinv, hl₂, category.id_comp] },
  refine ⟨⟨inv, _, hinv'⟩⟩,
  rw [← cancel_mono gKh, category.assoc, hinv', category.comp_id, category.id_comp]
end

end

section
include sqm sqᵣ

lemma is_iso_of_is_colimit (H₁ : exact f₁ πh₁) (H₂ : exact f₂ πh₂)
  (h : is_colimit (pushout_cocone.mk _ _ sqm.w)) : is_iso gQh :=
begin
  haveI : epi gQh,
  { refine preadditive.epi_of_cancel_zero _ (λ P g hg, _),
    apply zero_of_epi_comp πh₂,
    apply pushout_cocone.is_colimit.hom_ext h,
    { rw [pushout_cocone.mk_inl, ← category.assoc, ← sqᵣ.w, category.assoc, hg, comp_zero,
        comp_zero] },
    { rw [pushout_cocone.mk_inr, ← category.assoc, H₂.w, comp_zero, zero_comp] } },
  obtain ⟨l, hl₁ : g₂ ≫ l = _, hl₂⟩ :=
    pushout_cocone.is_colimit.desc' h πh₁ 0 (by simp [H₁.w]),
  let coker := is_colimit_of_exact_of_epi _ _ H₂,
  obtain ⟨inv, hinv : πh₂ ≫ inv = l⟩ := cokernel_cofork.is_colimit.desc' coker l hl₂,
  have hinv' : gQh ≫ inv = 𝟙 _,
  { rw [← cancel_epi πh₁, ← category.assoc, sqᵣ.w, category.assoc, hinv, hl₁, category.comp_id] },
  refine ⟨⟨inv, hinv', _⟩⟩,
  rw [← cancel_epi gQh, reassoc_of hinv', category.comp_id]
end

end

include H₁ H₂ sqₗ sqm sqᵣ

lemma commsq.bicartesian_iff_isos : sqm.bicartesian ↔ (is_iso gKh ∧ is_iso gQh) :=
begin
  split,
  { intro h, split,
    { exact is_iso_of_is_limit gKh sqₗ sqm ((exact_iff_exact_seq _ _).2 (H₁.extract 0 2))
      ((exact_iff_exact_seq _ _).2 (H₂.extract 0 2)) h.is_limit },
    { exact is_iso_of_is_colimit gQh sqm sqᵣ ((exact_iff_exact_seq _ _).2 (H₁.extract 1 2))
      ((exact_iff_exact_seq _ _).2 (H₂.extract 1 2)) h.is_colimit } },
  { rintros ⟨gKh_iso, gQh_iso⟩,
    resetI,
    apply commsq.bicartesian.of_is_limit_of_is_colimt,
    { apply is_limit.of_point_iso (limit.is_limit _),
      { apply_instance },
      { let r := pullback.lift _ _ sqm.w,
        let x : Kh₁ ⟶ kernel (pullback.fst : pullback g₂ f₂ ⟶ A₁₂),
        { refine kernel.lift _ (ιh₁ ≫ r) _,
          simp only [(H₁.extract 0 2).w, category.assoc, pullback.lift_fst] },
        haveI : is_iso x,
        { let psq := commsq.of_eq (@pullback.condition _ _ _ _ _ g₂ f₂ _),
          let hker := abelian.is_limit_of_exact_of_mono _ _
            ((exact_iff_exact_seq _ _).2 (H₂.extract 0 2)),
          obtain ⟨u : _ ⟶ Kh₂, hu⟩ := kernel_fork.is_limit.lift' hker
            (kernel.ι (pullback.fst : pullback g₂ f₂ ⟶ A₁₂) ≫ pullback.snd) _,
          { rw fork.ι_of_ι at hu,
            let lsq := commsq.of_eq hu.symm,
            haveI : is_iso u := is_iso_of_is_limit u lsq psq _ _ _,
            { have hxu : x ≫ u = gKh,
              { simp only [← cancel_mono ιh₂, category.assoc, hu, x, kernel.lift_ι_assoc, r,
                pullback.lift_snd, sqₗ.w] },
              have hx : x = gKh ≫ inv u,
              { rw [← is_iso.comp_inv_eq, is_iso.inv_inv, hxu] },
              rw hx,
              apply_instance },
            { exact exact_kernel_ι },
            { exact ((exact_iff_exact_seq _ _).2 (H₂.extract 0 2)) },
            { exact pullback_is_pullback _ _ } },
          { rw [category.assoc, ← pullback.condition, kernel.condition_assoc, zero_comp] } },
        refine @abelian.is_iso_of_is_iso_of_is_iso_of_is_iso_of_is_iso _ _ _ 0 _ _ _ 0 _ _ _
         0 ιh₁ f₁ 0 (kernel.ι (pullback.fst : pullback g₂ f₂ ⟶ A₁₂)) pullback.fst 0 x r (𝟙 _)
         _ _ _ _ _ πh₁ πh₁ (𝟙 _) _ _ _ _ _ _ _ _ _ _ _,
        { simp only [eq_iff_true_of_subsingleton] },
        { simp only [kernel.lift_ι] },
        { simp only [pullback.lift_fst, category.comp_id] },
        { simp only [category.id_comp, category.comp_id] },
        { exact exact_zero_mono ιh₁ },
        { exact (exact_iff_exact_seq _ _).2 (H₁.extract 0 2) },
        { exact (exact_iff_exact_seq _ _).2 (H₁.extract 1 2) },
        { exact exact_zero_mono (kernel.ι pullback.fst) },
        { exact exact_kernel_ι },
        { have : (pullback.fst : pullback g₂ f₂ ⟶ A₁₂) ≫ πh₁ = 0,
          { apply zero_of_comp_mono gQh,
            rw [category.assoc, sqᵣ.w, pullback.condition_assoc, (H₂.extract 1 2).w, comp_zero] },
          apply abelian.exact_of_is_cokernel _ _ this,
          have hex := (exact_iff_exact_seq _ _).2 (H₁.extract 1 2),
          rw ← pullback.lift_fst _ _ sqm.w at hex,
          exact is_colimit_of_is_colimit_comp (abelian.is_colimit_of_exact_of_epi _ _ hex) _ } } },
    { apply is_colimit.of_point_iso (colimit.is_colimit _),
      { apply_instance },
      { let r := pushout.desc _ _ sqm.w,
        let x : cokernel (pushout.inr : A₂₁ ⟶ pushout f₁ g₁) ⟶ Qh₂,
        { refine cokernel.desc _ (r ≫ πh₂) _,
          simp only [(H₂.extract 1 2).w, ← category.assoc, pushout.inr_desc] },
        haveI : is_iso x,
        { let psq := commsq.of_eq (@pushout.condition _ _ _ _ _ f₁ g₁ _),
          let hcoker := abelian.is_colimit_of_exact_of_epi _ _
            ((exact_iff_exact_seq _ _).2 (H₁.extract 1 2)),
          obtain ⟨u : Qh₁ ⟶ _, hu⟩ := cokernel_cofork.is_colimit.desc' hcoker
            (pushout.inl ≫ (cokernel.π (pushout.inr : A₂₁ ⟶ pushout f₁ g₁))) _,
          { rw cofork.π_of_π at hu,
            let lsq := commsq.of_eq hu,
            haveI : is_iso u := is_iso_of_is_colimit u psq lsq _ _ _,
            { have hxu : u ≫ x = gQh,
              { simp only [← cancel_epi πh₁, hu, x, cokernel.π_desc, reassoc_of hu, r,
                  pushout.inl_desc_assoc, sqᵣ.w] },
              have hx : x = inv u ≫ gQh,
              { rw [← is_iso.inv_comp_eq, is_iso.inv_inv, hxu] },
              rw hx,
              apply_instance },
            { exact ((exact_iff_exact_seq _ _).2 (H₁.extract 1 2)) },
            { exact exact_cokernel pushout.inr },
            { exact pushout_is_pushout _ _ } },
          { rw [← category.assoc, pushout.condition, category.assoc, cokernel.condition,
              comp_zero] } },
        refine @abelian.is_iso_of_is_iso_of_is_iso_of_is_iso_of_is_iso _ _ _ _ _ _ _ _ _ _ _
          ιh₂ (pushout.inr : A₂₁ ⟶ pushout f₁ g₁) (cokernel.π (pushout.inr : A₂₁ ⟶ pushout f₁ g₁))
          ιh₂ f₂ πh₂ (𝟙 _) (𝟙 _) r x _ _ _ 0 0 0 0 0 _ _ _ _ _ _ _ _ _ _ _,
        { simp only [category.id_comp, category.comp_id] },
        { simp only [category.id_comp, pushout.inr_desc] },
        { simp only [cokernel.π_desc] },
        { simp only [eq_iff_true_of_subsingleton] },
        { have : ιh₂ ≫ (pushout.inr : A₂₁ ⟶ pushout f₁ g₁) = 0,
          { apply zero_of_epi_comp gKh,
            rw [← sqₗ.w_assoc, ← pushout.condition, reassoc_of (H₁.extract 0 2).w, zero_comp] },
          apply abelian.exact_of_is_kernel _ _ this,
          have hex := (exact_iff_exact_seq _ _).2 (H₂.extract 0 2),
          rw ← pushout.inr_desc _ _ sqm.w at hex,
          exact is_limit_of_is_limit_comp (abelian.is_limit_of_exact_of_mono _ _ hex) _ },
        { exact exact_cokernel pushout.inr },
        { exact exact_epi_zero (cokernel.π pushout.inr) },
        { exact ((exact_iff_exact_seq _ _).2 (H₂.extract 0 2)) },
        { exact ((exact_iff_exact_seq _ _).2 (H₂.extract 1 2)) },
        { exact exact_epi_zero πh₂ } } } }
end