Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 10,953 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import for_mathlib.exact_seq3
import for_mathlib.bicartesian2
.
open category_theory category_theory.limits
universe u
local notation `𝓐` := Ab.{u}
-- Consider the following diagram
variables { Kv₁ Kv₂ : 𝓐}
variables {Kh₁ A₁₁ A₁₂ Qh₁ : 𝓐}
variables {Kh₂ A₂₁ A₂₂ Qh₂ : 𝓐}
variables { Qv₁ Qv₂ : 𝓐}
-- with morphisms
variables (fKv : Kv₁ ⟶ Kv₂)
variables {ιv₁ : Kv₁ ⟶ A₁₁} {ιv₂ : Kv₂ ⟶ A₁₂}
variables {ιh₁ : Kh₁ ⟶ A₁₁} {f₁ : A₁₁ ⟶ A₁₂} {πh₁ : A₁₂ ⟶ Qh₁}
variables (gKh : Kh₁ ⟶ Kh₂) {g₁ : A₁₁ ⟶ A₂₁} {g₂ : A₁₂ ⟶ A₂₂} (gQh : Qh₁ ⟶ Qh₂)
variables {ιh₂ : Kh₂ ⟶ A₂₁} {f₂ : A₂₁ ⟶ A₂₂} {πh₂ : A₂₂ ⟶ Qh₂}
variables {πv₁ : A₂₁ ⟶ Qv₁} {πv₂ : A₂₂ ⟶ Qv₂}
variables (fQv : Qv₁ ⟶ Qv₂)
-- with exact rows and columns
variables (H₁ : exact_seq 𝓐 [ιh₁, f₁, πh₁])
variables (H₂ : exact_seq 𝓐 [ιh₂, f₂, πh₂])
variables (V₁ : exact_seq 𝓐 [ιv₁, g₁, πv₁])
variables (V₂ : exact_seq 𝓐 [ιv₂, g₂, πv₂])
-- and such that all the extremal maps are appropriately monos or epis
variables [mono ιv₁] [mono ιv₂] [mono ιh₁] [mono ιh₂]
variables [epi πv₁] [epi πv₂] [epi πh₁] [epi πh₂]
-- of course the diagram should commute
variables (sqᵤ : commsq fKv ιv₁ ιv₂ f₁)
variables (sqₗ : commsq ιh₁ gKh g₁ ιh₂) (sqm : commsq f₁ g₁ g₂ f₂)
variables (sqᵣ : commsq πh₁ g₂ gQh πh₂)
variables (sqₛ : commsq f₂ πv₁ πv₂ fQv)
open_locale zero_object
open category_theory.abelian
def is_limit_of_is_limit_comp {X Y Z : 𝓐} {f : X ⟶ Y} {g : Y ⟶ Z}
{c : kernel_fork (f ≫ g)} (hc : is_limit c) (h : c.ι ≫ f = 0) :
is_limit (kernel_fork.of_ι c.ι h) :=
kernel_fork.is_limit.of_ι _ _
(λ T l hl, hc.lift (kernel_fork.of_ι l (by rw [reassoc_of hl, zero_comp])))
(λ T l hl, hc.fac _ _)
(λ T l hl m hm, fork.is_limit.hom_ext hc (by { erw [hm, hc.fac], refl }))
def is_colimit_of_is_colimit_comp {X Y Z : 𝓐} {f : X ⟶ Y} {g : Y ⟶ Z}
{c : cokernel_cofork (f ≫ g)} (hc : is_colimit c) (h : g ≫ c.π = 0) :
is_colimit (cokernel_cofork.of_π c.π h) :=
cokernel_cofork.is_colimit.of_π _ _
(λ T l hl, hc.desc (cokernel_cofork.of_π l (by rw [category.assoc, hl, comp_zero])))
(λ T l hl, hc.fac _ _)
(λ T l hl m hm, cofork.is_colimit.hom_ext hc (by { erw [hm, hc.fac], refl }))
section
include sqₗ sqm
lemma is_iso_of_is_limit (H₁ : exact ιh₁ f₁) (H₂ : exact ιh₂ f₂)
(h : is_limit (pullback_cone.mk f₁ g₁ sqm.w)) : is_iso gKh :=
begin
haveI : mono gKh,
{ refine preadditive.mono_of_cancel_zero _ (λ P g hg, _),
apply zero_of_comp_mono ιh₁,
apply pullback_cone.is_limit.hom_ext h,
{ rw [pullback_cone.mk_fst, category.assoc, zero_comp, H₁.w, comp_zero] },
{ rw [pullback_cone.mk_snd, category.assoc, sqₗ.w, ← category.assoc, hg, zero_comp,
zero_comp] } },
obtain ⟨l, hl₁, hl₂ : l ≫ g₁ = _⟩ :=
pullback_cone.is_limit.lift' h 0 ιh₂ (by simp [H₂.w]),
let ker := is_limit_of_exact_of_mono _ _ H₁,
obtain ⟨inv, hinv : inv ≫ ιh₁ = l⟩ := kernel_fork.is_limit.lift' ker l hl₁,
have hinv' : inv ≫ gKh = 𝟙 _,
{ rw [← cancel_mono ιh₂, category.assoc, ← sqₗ.w, reassoc_of hinv, hl₂, category.id_comp] },
refine ⟨⟨inv, _, hinv'⟩⟩,
rw [← cancel_mono gKh, category.assoc, hinv', category.comp_id, category.id_comp]
end
end
section
include sqm sqᵣ
lemma is_iso_of_is_colimit (H₁ : exact f₁ πh₁) (H₂ : exact f₂ πh₂)
(h : is_colimit (pushout_cocone.mk _ _ sqm.w)) : is_iso gQh :=
begin
haveI : epi gQh,
{ refine preadditive.epi_of_cancel_zero _ (λ P g hg, _),
apply zero_of_epi_comp πh₂,
apply pushout_cocone.is_colimit.hom_ext h,
{ rw [pushout_cocone.mk_inl, ← category.assoc, ← sqᵣ.w, category.assoc, hg, comp_zero,
comp_zero] },
{ rw [pushout_cocone.mk_inr, ← category.assoc, H₂.w, comp_zero, zero_comp] } },
obtain ⟨l, hl₁ : g₂ ≫ l = _, hl₂⟩ :=
pushout_cocone.is_colimit.desc' h πh₁ 0 (by simp [H₁.w]),
let coker := is_colimit_of_exact_of_epi _ _ H₂,
obtain ⟨inv, hinv : πh₂ ≫ inv = l⟩ := cokernel_cofork.is_colimit.desc' coker l hl₂,
have hinv' : gQh ≫ inv = 𝟙 _,
{ rw [← cancel_epi πh₁, ← category.assoc, sqᵣ.w, category.assoc, hinv, hl₁, category.comp_id] },
refine ⟨⟨inv, hinv', _⟩⟩,
rw [← cancel_epi gQh, reassoc_of hinv', category.comp_id]
end
end
include H₁ H₂ sqₗ sqm sqᵣ
lemma commsq.bicartesian_iff_isos : sqm.bicartesian ↔ (is_iso gKh ∧ is_iso gQh) :=
begin
split,
{ intro h, split,
{ exact is_iso_of_is_limit gKh sqₗ sqm ((exact_iff_exact_seq _ _).2 (H₁.extract 0 2))
((exact_iff_exact_seq _ _).2 (H₂.extract 0 2)) h.is_limit },
{ exact is_iso_of_is_colimit gQh sqm sqᵣ ((exact_iff_exact_seq _ _).2 (H₁.extract 1 2))
((exact_iff_exact_seq _ _).2 (H₂.extract 1 2)) h.is_colimit } },
{ rintros ⟨gKh_iso, gQh_iso⟩,
resetI,
apply commsq.bicartesian.of_is_limit_of_is_colimt,
{ apply is_limit.of_point_iso (limit.is_limit _),
{ apply_instance },
{ let r := pullback.lift _ _ sqm.w,
let x : Kh₁ ⟶ kernel (pullback.fst : pullback g₂ f₂ ⟶ A₁₂),
{ refine kernel.lift _ (ιh₁ ≫ r) _,
simp only [(H₁.extract 0 2).w, category.assoc, pullback.lift_fst] },
haveI : is_iso x,
{ let psq := commsq.of_eq (@pullback.condition _ _ _ _ _ g₂ f₂ _),
let hker := abelian.is_limit_of_exact_of_mono _ _
((exact_iff_exact_seq _ _).2 (H₂.extract 0 2)),
obtain ⟨u : _ ⟶ Kh₂, hu⟩ := kernel_fork.is_limit.lift' hker
(kernel.ι (pullback.fst : pullback g₂ f₂ ⟶ A₁₂) ≫ pullback.snd) _,
{ rw fork.ι_of_ι at hu,
let lsq := commsq.of_eq hu.symm,
haveI : is_iso u := is_iso_of_is_limit u lsq psq _ _ _,
{ have hxu : x ≫ u = gKh,
{ simp only [← cancel_mono ιh₂, category.assoc, hu, x, kernel.lift_ι_assoc, r,
pullback.lift_snd, sqₗ.w] },
have hx : x = gKh ≫ inv u,
{ rw [← is_iso.comp_inv_eq, is_iso.inv_inv, hxu] },
rw hx,
apply_instance },
{ exact exact_kernel_ι },
{ exact ((exact_iff_exact_seq _ _).2 (H₂.extract 0 2)) },
{ exact pullback_is_pullback _ _ } },
{ rw [category.assoc, ← pullback.condition, kernel.condition_assoc, zero_comp] } },
refine @abelian.is_iso_of_is_iso_of_is_iso_of_is_iso_of_is_iso _ _ _ 0 _ _ _ 0 _ _ _
0 ιh₁ f₁ 0 (kernel.ι (pullback.fst : pullback g₂ f₂ ⟶ A₁₂)) pullback.fst 0 x r (𝟙 _)
_ _ _ _ _ πh₁ πh₁ (𝟙 _) _ _ _ _ _ _ _ _ _ _ _,
{ simp only [eq_iff_true_of_subsingleton] },
{ simp only [kernel.lift_ι] },
{ simp only [pullback.lift_fst, category.comp_id] },
{ simp only [category.id_comp, category.comp_id] },
{ exact exact_zero_mono ιh₁ },
{ exact (exact_iff_exact_seq _ _).2 (H₁.extract 0 2) },
{ exact (exact_iff_exact_seq _ _).2 (H₁.extract 1 2) },
{ exact exact_zero_mono (kernel.ι pullback.fst) },
{ exact exact_kernel_ι },
{ have : (pullback.fst : pullback g₂ f₂ ⟶ A₁₂) ≫ πh₁ = 0,
{ apply zero_of_comp_mono gQh,
rw [category.assoc, sqᵣ.w, pullback.condition_assoc, (H₂.extract 1 2).w, comp_zero] },
apply abelian.exact_of_is_cokernel _ _ this,
have hex := (exact_iff_exact_seq _ _).2 (H₁.extract 1 2),
rw ← pullback.lift_fst _ _ sqm.w at hex,
exact is_colimit_of_is_colimit_comp (abelian.is_colimit_of_exact_of_epi _ _ hex) _ } } },
{ apply is_colimit.of_point_iso (colimit.is_colimit _),
{ apply_instance },
{ let r := pushout.desc _ _ sqm.w,
let x : cokernel (pushout.inr : A₂₁ ⟶ pushout f₁ g₁) ⟶ Qh₂,
{ refine cokernel.desc _ (r ≫ πh₂) _,
simp only [(H₂.extract 1 2).w, ← category.assoc, pushout.inr_desc] },
haveI : is_iso x,
{ let psq := commsq.of_eq (@pushout.condition _ _ _ _ _ f₁ g₁ _),
let hcoker := abelian.is_colimit_of_exact_of_epi _ _
((exact_iff_exact_seq _ _).2 (H₁.extract 1 2)),
obtain ⟨u : Qh₁ ⟶ _, hu⟩ := cokernel_cofork.is_colimit.desc' hcoker
(pushout.inl ≫ (cokernel.π (pushout.inr : A₂₁ ⟶ pushout f₁ g₁))) _,
{ rw cofork.π_of_π at hu,
let lsq := commsq.of_eq hu,
haveI : is_iso u := is_iso_of_is_colimit u psq lsq _ _ _,
{ have hxu : u ≫ x = gQh,
{ simp only [← cancel_epi πh₁, hu, x, cokernel.π_desc, reassoc_of hu, r,
pushout.inl_desc_assoc, sqᵣ.w] },
have hx : x = inv u ≫ gQh,
{ rw [← is_iso.inv_comp_eq, is_iso.inv_inv, hxu] },
rw hx,
apply_instance },
{ exact ((exact_iff_exact_seq _ _).2 (H₁.extract 1 2)) },
{ exact exact_cokernel pushout.inr },
{ exact pushout_is_pushout _ _ } },
{ rw [← category.assoc, pushout.condition, category.assoc, cokernel.condition,
comp_zero] } },
refine @abelian.is_iso_of_is_iso_of_is_iso_of_is_iso_of_is_iso _ _ _ _ _ _ _ _ _ _ _
ιh₂ (pushout.inr : A₂₁ ⟶ pushout f₁ g₁) (cokernel.π (pushout.inr : A₂₁ ⟶ pushout f₁ g₁))
ιh₂ f₂ πh₂ (𝟙 _) (𝟙 _) r x _ _ _ 0 0 0 0 0 _ _ _ _ _ _ _ _ _ _ _,
{ simp only [category.id_comp, category.comp_id] },
{ simp only [category.id_comp, pushout.inr_desc] },
{ simp only [cokernel.π_desc] },
{ simp only [eq_iff_true_of_subsingleton] },
{ have : ιh₂ ≫ (pushout.inr : A₂₁ ⟶ pushout f₁ g₁) = 0,
{ apply zero_of_epi_comp gKh,
rw [← sqₗ.w_assoc, ← pushout.condition, reassoc_of (H₁.extract 0 2).w, zero_comp] },
apply abelian.exact_of_is_kernel _ _ this,
have hex := (exact_iff_exact_seq _ _).2 (H₂.extract 0 2),
rw ← pushout.inr_desc _ _ sqm.w at hex,
exact is_limit_of_is_limit_comp (abelian.is_limit_of_exact_of_mono _ _ hex) _ },
{ exact exact_cokernel pushout.inr },
{ exact exact_epi_zero (cokernel.π pushout.inr) },
{ exact ((exact_iff_exact_seq _ _).2 (H₂.extract 0 2)) },
{ exact ((exact_iff_exact_seq _ _).2 (H₂.extract 1 2)) },
{ exact exact_epi_zero πh₂ } } } }
end
|