Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 9,011 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import for_mathlib.bicartesian3
noncomputable theory
universe u
open category_theory category_theory.limits
section part1
-- jmc: feel free to generalize to arbitrary abelian cats
variables {A B C D : Ab.{u}} {f : A βΆ B} {g : B βΆ C} {h : C βΆ D}
variables {Ξ± : A βΆ A} {Ξ² : B βΆ B} {Ξ³ : C βΆ C} {Ξ΄ : D βΆ D}
open_locale zero_object
lemma bicartesian_of_id_of_end_of_end_of_id
(H : exact_seq Ab.{u} [f, g, h])
(sq1 : commsq f Ξ± Ξ² f) (sq2 : commsq g Ξ² Ξ³ g) (sq3 : commsq h Ξ³ Ξ΄ h)
(hΞ± : Ξ± = -π _) (hΞ΄ : Ξ΄ = -π _) :
sq2.bicartesian :=
begin
have aux : _ := _,
rw commsq.bicartesian_iff_isos _ _ aux aux sq2.kernel sq2 sq2.cokernel,
swap,
{ apply exact.cons, { exact exact_kernel_ΞΉ },
apply exact.exact_seq, { apply abelian.exact_cokernel } },
split,
{ let t : A βΆ kernel g := kernel.lift g f ((exact_iff_exact_seq _ _).2 (H.extract 0 2)).w,
haveI : is_iso Ξ±,
{ rw hΞ±,
apply_instance },
refine @abelian.is_iso_of_is_iso_of_is_iso_of_is_iso_of_is_iso _ _ _
(kernel t) A (kernel g) 0
(kernel t) A (kernel g) 0
(kernel.ΞΉ t) t 0
(kernel.ΞΉ t) t 0
(-π _) Ξ± _ 0
_ _ _ 0 0 0 0 0 _ _ _ _ _ _ _ _ _ _ _,
{ simp only [preadditive.neg_comp, category.id_comp, preadditive.comp_neg, category.comp_id,
hΞ±] },
{ simp only [β cancel_mono (kernel.ΞΉ g), sq1.w, category.assoc, kernel.lift_ΞΉ,
kernel.lift_ΞΉ_assoc] },
{ exact subsingleton.elim _ _ },
{ exact subsingleton.elim _ _ },
{ exact exact_kernel_ΞΉ },
{ exact exact_epi_zero t },
{ exact exact_of_zero 0 0 },
{ exact exact_kernel_ΞΉ },
{ exact exact_epi_zero t },
{ exact exact_of_zero 0 0 } },
{ let t : cokernel g βΆ D := cokernel.desc g h ((exact_iff_exact_seq _ _).2 (H.extract 1 2)).w,
haveI : is_iso Ξ΄,
{ rw hΞ΄,
apply_instance },
refine @abelian.is_iso_of_is_iso_of_is_iso_of_is_iso_of_is_iso _ _ _
0 0 (cokernel g) D 0 0 (cokernel g) D
0 0 t 0 0 t
0 0 _ Ξ΄
_ _ _ (cokernel t) (cokernel t) (cokernel.Ο t) (cokernel.Ο t) (-π _) _ _ _ _ _ _ _ _ _ _ _,
{ exact subsingleton.elim _ _ },
{ exact subsingleton.elim _ _ },
{ simp only [β cancel_epi (cokernel.Ο g), sq3.w, cokernel.Ο_desc_assoc, category.assoc,
cokernel.Ο_desc] },
{ simp only [hΞ΄, preadditive.neg_comp, category.id_comp, preadditive.comp_neg,
category.comp_id] },
{ exact exact_of_zero 0 0 },
{ exact exact_zero_mono t },
{ exact abelian.exact_cokernel t },
{ exact exact_of_zero 0 0 },
{ exact exact_zero_mono t },
{ exact abelian.exact_cokernel t } }
end
end part1
section part2
open_locale zero_object
-- jmc: this part does not depend on the first section,
-- it's the same file because two lemmas have the same theme
-- jmc: feel free to generalize to arbitrary abelian cats
variables {Aββ Aββ Aββ Aββ Aββ
: Ab.{u}}
variables {Aββ Aββ Aββ Aββ Aββ
: Ab.{u}}
-- horizontal maps are `f`s and vertical maps are `g`s
variables {fββ : Aββ βΆ Aββ} {fββ : Aββ βΆ Aββ} {fββ : Aββ βΆ Aββ} {fββ : Aββ βΆ Aββ
}
variables {gββ : Aββ βΆ Aββ} {gββ : Aββ βΆ Aββ} {gββ : Aββ βΆ Aββ} {gββ : Aββ βΆ Aββ} {gββ
: Aββ
βΆ Aββ
}
variables {fββ : Aββ βΆ Aββ} {fββ : Aββ βΆ Aββ} {fββ : Aββ βΆ Aββ} {fββ : Aββ βΆ Aββ
}
lemma exact_kernel_cokernel : exact_seq Ab.{u} [kernel.ΞΉ fββ, fββ, cokernel.Ο fββ] :=
begin
apply exact.cons, { exact exact_kernel_ΞΉ },
apply exact.exact_seq, { apply abelian.exact_cokernel }
end
lemma is_iso_kernel_map_of_bicartesian {sq : commsq fββ gββ gββ fββ} (H : sq.bicartesian) :
is_iso (kernel.map fββ fββ _ _ sq.w) :=
begin
rw commsq.bicartesian_iff_isos _ _ _ _ sq.kernel sq sq.cokernel at H,
{ exact H.1 },
{ exact exact_kernel_cokernel },
{ exact exact_kernel_cokernel }
end
lemma is_iso_cokernel_map_of_bicartesian {sq : commsq fββ gββ gββ fββ} (H : sq.bicartesian) :
is_iso (cokernel.map fββ fββ _ _ sq.w) :=
begin
rw commsq.bicartesian_iff_isos _ _ _ _ sq.kernel sq sq.cokernel at H,
{ exact H.2 },
{ exact exact_kernel_cokernel },
{ exact exact_kernel_cokernel }
end
section
variables (fββ)
lemma exact_epi_comp_iff [epi fββ] : exact (fββ β« fββ) fββ β exact fββ fββ :=
begin
refine β¨Ξ» h, _, Ξ» h, exact_epi_comp hβ©,
rw abelian.exact_iff at h,
let hc := is_colimit_of_is_colimit_comp (colimit.is_colimit (parallel_pair (fββ β« fββ) 0))
(by rw [β cancel_epi fββ, β category.assoc, cokernel_cofork.condition, comp_zero]),
refine (abelian.exact_iff' _ _ (limit.is_limit _) hc).2 β¨_, h.2β©,
exact zero_of_epi_comp fββ (by rw [β h.1, category.assoc])
end
end
section
variables (fββ)
lemma exact_comp_mono_iff [mono fββ] : exact fββ (fββ β« fββ) β exact fββ fββ :=
begin
refine β¨Ξ» h, _, Ξ» h, exact_comp_mono hβ©,
rw abelian.exact_iff at h,
let hc := is_limit_of_is_limit_comp (limit.is_limit (parallel_pair (fββ β« fββ) 0))
(by rw [β cancel_mono fββ, category.assoc, kernel_fork.condition, zero_comp]),
refine (abelian.exact_iff' _ _ hc (colimit.is_colimit _)).2 β¨_, h.2β©,
exact zero_of_comp_mono fββ (by rw [β h.1, category.assoc])
end
end
lemma iso_of_bicartesian_of_bicartesian
(h_exβ : exact_seq Ab.{u} [fββ, fββ, fββ, fββ])
(h_exβ : exact_seq Ab.{u} [fββ, fββ, fββ, fββ])
(sq1 : commsq fββ gββ gββ fββ) (sq2 : commsq fββ gββ gββ fββ)
(sq3 : commsq fββ gββ gββ fββ) (sq4 : commsq fββ gββ gββ
fββ)
(H1 : sq1.bicartesian) (H4 : sq4.bicartesian) :
is_iso gββ :=
begin
haveI := is_iso_cokernel_map_of_bicartesian H1,
haveI := is_iso_kernel_map_of_bicartesian H4,
let fββ' := cokernel.desc fββ fββ ((exact_iff_exact_seq _ _).2 (h_exβ.extract 0 2)).w,
let fββ' := kernel.lift fββ fββ ((exact_iff_exact_seq _ _).2 (h_exβ.extract 2 2)).w,
let fββ' := cokernel.desc fββ fββ ((exact_iff_exact_seq _ _).2 (h_exβ.extract 0 2)).w,
let fββ' := kernel.lift fββ fββ ((exact_iff_exact_seq _ _).2 (h_exβ.extract 2 2)).w,
refine @abelian.is_iso_of_is_iso_of_is_iso_of_is_iso_of_is_iso _ _ _
0 (cokernel fββ) Aββ (kernel fββ) 0 (cokernel fββ) Aββ (kernel fββ)
0 fββ' fββ' 0 fββ' fββ'
0 (cokernel.map fββ fββ _ _ sq1.w) gββ (kernel.map fββ fββ _ _ sq4.w)
_ _ _ 0 0 0 0 0 _ _ _ _ _ _ _ _ _ _ _,
{ exact subsingleton.elim _ _ },
{ simp only [β cancel_epi (cokernel.Ο fββ), sq2.w, cokernel.Ο_desc_assoc, category.assoc,
cokernel.Ο_desc] },
{ simp only [β cancel_mono (kernel.ΞΉ fββ), sq3.w, category.assoc, kernel.lift_ΞΉ,
kernel.lift_ΞΉ_assoc] },
{ exact subsingleton.elim _ _ },
{ exact exact_zero_mono fββ' },
{ rw [β exact_epi_comp_iff (cokernel.Ο fββ), cokernel.Ο_desc,
β exact_comp_mono_iff (kernel.ΞΉ fββ), kernel.lift_ΞΉ],
exact (exact_iff_exact_seq _ _).2 (h_exβ.extract 1 2) },
{ exact exact_epi_zero fββ' },
{ exact exact_zero_mono fββ' },
{ rw [β exact_epi_comp_iff (cokernel.Ο fββ), cokernel.Ο_desc,
β exact_comp_mono_iff (kernel.ΞΉ fββ), kernel.lift_ΞΉ],
exact (exact_iff_exact_seq _ _).2 (h_exβ.extract 1 2) },
{ exact exact_epi_zero fββ' }
end
lemma iso_of_zero_of_bicartesian
(h_exβ : exact_seq Ab.{u} [fββ, fββ, fββ])
(h_exβ : exact_seq Ab.{u} [fββ, fββ, fββ])
(hzβ : is_zero Aββ) (hzβ : is_zero Aββ)
(sq2 : commsq fββ gββ gββ fββ) (sq3 : commsq fββ gββ gββ fββ)
(sq4 : commsq fββ gββ gββ
fββ) (H4 : sq4.bicartesian) :
is_iso gββ :=
begin
have auxβ : exact (0 : Aββ βΆ Aββ) fββ,
{ have : mono fββ := β¨Ξ» _ x y h, hzβ.eq_of_tgt _ _β©, rwa (abelian.tfae_mono Aββ fββ).out 2 0 },
have auxβ : exact (0 : Aββ βΆ Aββ) fββ,
{ have : mono fββ := β¨Ξ» _ x y h, hzβ.eq_of_tgt _ _β©, rwa (abelian.tfae_mono Aββ fββ).out 2 0 },
refine iso_of_bicartesian_of_bicartesian (auxβ.cons h_exβ) (auxβ.cons h_exβ) _ sq2 sq3 sq4 _ H4,
{ exact gββ },
{ exact commsq.of_eq (zero_comp.trans comp_zero.symm) },
{ apply commsq.bicartesian.of_is_limit_of_is_colimt,
{ refine pullback_cone.is_limit.mk _ (Ξ» s, 0)
(Ξ» s, hzβ.eq_of_tgt _ _) (Ξ» s, hzβ.eq_of_tgt _ _) _,
intros, apply hzβ.eq_of_tgt, },
{ refine pushout_cocone.is_colimit.mk _ (Ξ» s, 0)
(Ξ» s, hzβ.eq_of_src _ _) (Ξ» s, hzβ.eq_of_src _ _) _,
intros, apply hzβ.eq_of_src, } },
end
end part2
|