Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 4,872 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import topology.algebra.infinite_sum
import topology.instances.ennreal

open_locale ennreal

open_locale nnreal

-- don't need it but maybe useful?
lemma ennreal.summable_of_coe_sum_eq {X : Type*} (f g : X β†’ ℝβ‰₯0)
  (h : βˆ‘' x, (f x : ℝβ‰₯0∞) = βˆ‘' x, (g x : ℝβ‰₯0∞)) :
  summable f ↔ summable g :=
by rw [← ennreal.tsum_coe_ne_top_iff_summable, h, ennreal.tsum_coe_ne_top_iff_summable]

lemma ennreal.has_sum_comm {Ξ± Ξ²: Type*} (F : Ξ± β†’ Ξ² β†’ ℝβ‰₯0∞) (s : ℝβ‰₯0∞)
  : has_sum (Ξ» n, βˆ‘' k, F n k) s ↔ has_sum (Ξ» k, βˆ‘' n, F n k) s :=
by rw [ summable.has_sum_iff ennreal.summable, summable.has_sum_iff ennreal.summable,
    ennreal.tsum_comm ]

-- do we need the `real` version?
-- /-- sum of row sums equals sum of column sums -/
-- lemma real.summable_snd_of_summable_fst {Ξ± Ξ²: Type*} (F : Ξ± β†’ Ξ² β†’ ℝ) (h_nonneg : βˆ€ n k, 0 ≀ F n k)
--   (h_rows : βˆ€ n, summable (Ξ» k, F n k)) (h_cols : βˆ€ k, summable (Ξ» n, F n k))
--   (h_col_row : summable (Ξ» k, βˆ‘' n, F n k)) : summable (Ξ» n, βˆ‘' k, F n k) :=
-- begin

--   -- wrong idea have := summable (Ξ» ab : Ξ± Γ— Ξ², F ab.1 ab.2),
--   admit,
-- end

-- could go in ennreal line 684 or so
lemma ennreal.mul_le_mul_of_right {a b c : ℝβ‰₯0∞} (hab : a ≀ b) : a * c ≀ b * c :=
begin
  rcases eq_or_ne c 0 with (rfl | hc0),
  { simp },
  { rcases eq_or_ne c ⊀ with (rfl | hctop),
    { rw [@ennreal.mul_top b],
      split_ifs with hb,
      { subst hb,
        change a ≀ βŠ₯ at hab,
        rw le_bot_iff at hab,
        simp [hab], },
      { exact le_top, } },
    { rwa ennreal.mul_le_mul_right hc0 hctop }, },
end

-- could go in ennreal line 684 or so
lemma ennreal.mul_le_mul_of_left {a b c : ℝβ‰₯0∞} (hab : a ≀ b) : c * a ≀ c * b :=
begin
  rw [mul_comm, mul_comm c],
  exact ennreal.mul_le_mul_of_right hab,
end

-- might not need this
lemma nnreal.inv_mul_le_iff {a b c : ℝβ‰₯0} (hb0 : b β‰  0) : b⁻¹ * a ≀ c ↔ a ≀ b * c :=
begin
  rw ← nnreal.coe_le_coe,
  rw ← nnreal.coe_le_coe,
  push_cast,
  apply inv_mul_le_iff,
  obtain (hb | (hb : 0 < b)) := eq_zero_or_pos,
  { subst hb, exfalso, apply hb0, refl, },
  { assumption_mod_cast, }
end

lemma ennreal.inv_mul_le_iff {a b c : ℝβ‰₯0∞} (hb0 : b β‰  0) (hb : b β‰  ∞) :
  b⁻¹ * a ≀ c ↔ a ≀ b * c :=
begin
  rw [mul_comm, mul_comm b],
  apply ennreal.div_le_iff_le_mul;
  cc,
end

lemma ennreal.zero_le (a : ℝβ‰₯0∞) : 0 ≀ a := bot_le
lemma ennreal.zero_le' {a : ℝβ‰₯0∞} : 0 ≀ a := bot_le

lemma ennreal.inv_eq_of_mul_eq_one {a b : ℝβ‰₯0∞} (h : a * b = 1) : a⁻¹ = b :=
begin
  induction b using with_top.rec_top_coe,
  { exfalso,
    rw ennreal.mul_top at h,
    split_ifs at h with ha;
    { revert h, norm_num, }, },
  induction a using with_top.rec_top_coe,
  { exfalso,
    rw ennreal.top_mul at h,
    split_ifs at h with ha;
    { revert h, norm_num, }, },
  norm_cast at h,
  have ha : a β‰  0,
  { rintro rfl, rw zero_mul at h, revert h, norm_num, },
  rw ← ennreal.coe_inv ha,
  norm_cast,
  rwa [← inv_mul_eq_oneβ‚€, inv_inv],
  exact inv_ne_zero ha,
end

lemma ennreal.mul_inv_eq_of_eq_mul {a b c : ℝβ‰₯0∞} (hb0 : b β‰  0) (hbtop : b β‰  ⊀) (h : a = c * b) :
  a * b⁻¹ = c :=
by rw [h, mul_assoc, ennreal.mul_inv_cancel hb0 hbtop, mul_one]

lemma ennreal.eq_mul_of_mul_inv_eq {a b c : ℝβ‰₯0∞} (hb0 : b β‰  0) (hbtop : b β‰  ⊀) (h : a * b⁻¹ = c) :
  a = c * b :=
by rw [← h, mul_assoc, ennreal.inv_mul_cancel hb0 hbtop, mul_one]

lemma ennreal.mul_eq_of_mul_inv_eq {a b c : ℝβ‰₯0∞} (hb0 : b β‰  0) (hbtop : b β‰  ⊀) (h : a * b⁻¹ = c) :
  c * b = a :=
(ennreal.eq_mul_of_mul_inv_eq hb0 hbtop h).symm

lemma ennreal.mul_inv_eq_iff_eq_mul {a b c : ℝβ‰₯0∞} (hb0 : b β‰  0) (hbtop : b β‰  ⊀) :
  (a * b⁻¹ = c ↔ a = c * b) :=
⟨ennreal.eq_mul_of_mul_inv_eq hb0 hbtop, ennreal.mul_inv_eq_of_eq_mul hb0 hbtop⟩

lemma ennreal.le_zero_iff {a : ℝβ‰₯0∞} : a ≀ 0 ↔ a = 0 := le_bot_iff

lemma ennreal.sub_pos {a b : ℝβ‰₯0∞} : 0 < a - b ↔ b < a :=
begin
  rw ← not_iff_not,
  push_neg,
  rw ennreal.le_zero_iff,
  apply tsub_eq_zero_iff_le,
end

lemma ennreal.top_zpow_of_pos {n : β„€} (hn : 0 < n) : (⊀ : ℝβ‰₯0∞) ^ n = ⊀ :=
begin
  let m := n.nat_abs,
  have hm : n = m,
  { rw int.nat_abs_of_nonneg hn.le },
  rw hm at hn ⊒,
  apply ennreal.top_pow,
  exact_mod_cast hn,
end

-- can't do!
--lemma ennreal.zpow_neg (a : ℝβ‰₯0∞) : βˆ€ (n : β„€), a ^ -n = (a ^ n)⁻¹ := by admit

-- lemma ennreal.top_zpow_of_neg {n : β„€} (hn : n < 0) : (⊀ : ℝβ‰₯0∞) ^ n = 0 :=
-- begin
--   let m := n.nat_abs,
--   have hm : n = -m,
--   { rw [int.of_nat_nat_abs_of_nonpos hn.le, neg_neg] },
--   rw hm at hn ⊒,
--   rw neg_lt_zero at hn,
--   have hm' : 0 < m, by exact_mod_cast hn,
--   rw [ennreal.zpow_neg, zpow_coe_nat, ennreal.inv_eq_zero, ennreal.top_pow hm'],
-- end