Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 4,872 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import topology.algebra.infinite_sum
import topology.instances.ennreal
open_locale ennreal
open_locale nnreal
-- don't need it but maybe useful?
lemma ennreal.summable_of_coe_sum_eq {X : Type*} (f g : X β ββ₯0)
(h : β' x, (f x : ββ₯0β) = β' x, (g x : ββ₯0β)) :
summable f β summable g :=
by rw [β ennreal.tsum_coe_ne_top_iff_summable, h, ennreal.tsum_coe_ne_top_iff_summable]
lemma ennreal.has_sum_comm {Ξ± Ξ²: Type*} (F : Ξ± β Ξ² β ββ₯0β) (s : ββ₯0β)
: has_sum (Ξ» n, β' k, F n k) s β has_sum (Ξ» k, β' n, F n k) s :=
by rw [ summable.has_sum_iff ennreal.summable, summable.has_sum_iff ennreal.summable,
ennreal.tsum_comm ]
-- do we need the `real` version?
-- /-- sum of row sums equals sum of column sums -/
-- lemma real.summable_snd_of_summable_fst {Ξ± Ξ²: Type*} (F : Ξ± β Ξ² β β) (h_nonneg : β n k, 0 β€ F n k)
-- (h_rows : β n, summable (Ξ» k, F n k)) (h_cols : β k, summable (Ξ» n, F n k))
-- (h_col_row : summable (Ξ» k, β' n, F n k)) : summable (Ξ» n, β' k, F n k) :=
-- begin
-- -- wrong idea have := summable (Ξ» ab : Ξ± Γ Ξ², F ab.1 ab.2),
-- admit,
-- end
-- could go in ennreal line 684 or so
lemma ennreal.mul_le_mul_of_right {a b c : ββ₯0β} (hab : a β€ b) : a * c β€ b * c :=
begin
rcases eq_or_ne c 0 with (rfl | hc0),
{ simp },
{ rcases eq_or_ne c β€ with (rfl | hctop),
{ rw [@ennreal.mul_top b],
split_ifs with hb,
{ subst hb,
change a β€ β₯ at hab,
rw le_bot_iff at hab,
simp [hab], },
{ exact le_top, } },
{ rwa ennreal.mul_le_mul_right hc0 hctop }, },
end
-- could go in ennreal line 684 or so
lemma ennreal.mul_le_mul_of_left {a b c : ββ₯0β} (hab : a β€ b) : c * a β€ c * b :=
begin
rw [mul_comm, mul_comm c],
exact ennreal.mul_le_mul_of_right hab,
end
-- might not need this
lemma nnreal.inv_mul_le_iff {a b c : ββ₯0} (hb0 : b β 0) : bβ»ΒΉ * a β€ c β a β€ b * c :=
begin
rw β nnreal.coe_le_coe,
rw β nnreal.coe_le_coe,
push_cast,
apply inv_mul_le_iff,
obtain (hb | (hb : 0 < b)) := eq_zero_or_pos,
{ subst hb, exfalso, apply hb0, refl, },
{ assumption_mod_cast, }
end
lemma ennreal.inv_mul_le_iff {a b c : ββ₯0β} (hb0 : b β 0) (hb : b β β) :
bβ»ΒΉ * a β€ c β a β€ b * c :=
begin
rw [mul_comm, mul_comm b],
apply ennreal.div_le_iff_le_mul;
cc,
end
lemma ennreal.zero_le (a : ββ₯0β) : 0 β€ a := bot_le
lemma ennreal.zero_le' {a : ββ₯0β} : 0 β€ a := bot_le
lemma ennreal.inv_eq_of_mul_eq_one {a b : ββ₯0β} (h : a * b = 1) : aβ»ΒΉ = b :=
begin
induction b using with_top.rec_top_coe,
{ exfalso,
rw ennreal.mul_top at h,
split_ifs at h with ha;
{ revert h, norm_num, }, },
induction a using with_top.rec_top_coe,
{ exfalso,
rw ennreal.top_mul at h,
split_ifs at h with ha;
{ revert h, norm_num, }, },
norm_cast at h,
have ha : a β 0,
{ rintro rfl, rw zero_mul at h, revert h, norm_num, },
rw β ennreal.coe_inv ha,
norm_cast,
rwa [β inv_mul_eq_oneβ, inv_inv],
exact inv_ne_zero ha,
end
lemma ennreal.mul_inv_eq_of_eq_mul {a b c : ββ₯0β} (hb0 : b β 0) (hbtop : b β β€) (h : a = c * b) :
a * bβ»ΒΉ = c :=
by rw [h, mul_assoc, ennreal.mul_inv_cancel hb0 hbtop, mul_one]
lemma ennreal.eq_mul_of_mul_inv_eq {a b c : ββ₯0β} (hb0 : b β 0) (hbtop : b β β€) (h : a * bβ»ΒΉ = c) :
a = c * b :=
by rw [β h, mul_assoc, ennreal.inv_mul_cancel hb0 hbtop, mul_one]
lemma ennreal.mul_eq_of_mul_inv_eq {a b c : ββ₯0β} (hb0 : b β 0) (hbtop : b β β€) (h : a * bβ»ΒΉ = c) :
c * b = a :=
(ennreal.eq_mul_of_mul_inv_eq hb0 hbtop h).symm
lemma ennreal.mul_inv_eq_iff_eq_mul {a b c : ββ₯0β} (hb0 : b β 0) (hbtop : b β β€) :
(a * bβ»ΒΉ = c β a = c * b) :=
β¨ennreal.eq_mul_of_mul_inv_eq hb0 hbtop, ennreal.mul_inv_eq_of_eq_mul hb0 hbtopβ©
lemma ennreal.le_zero_iff {a : ββ₯0β} : a β€ 0 β a = 0 := le_bot_iff
lemma ennreal.sub_pos {a b : ββ₯0β} : 0 < a - b β b < a :=
begin
rw β not_iff_not,
push_neg,
rw ennreal.le_zero_iff,
apply tsub_eq_zero_iff_le,
end
lemma ennreal.top_zpow_of_pos {n : β€} (hn : 0 < n) : (β€ : ββ₯0β) ^ n = β€ :=
begin
let m := n.nat_abs,
have hm : n = m,
{ rw int.nat_abs_of_nonneg hn.le },
rw hm at hn β’,
apply ennreal.top_pow,
exact_mod_cast hn,
end
-- can't do!
--lemma ennreal.zpow_neg (a : ββ₯0β) : β (n : β€), a ^ -n = (a ^ n)β»ΒΉ := by admit
-- lemma ennreal.top_zpow_of_neg {n : β€} (hn : n < 0) : (β€ : ββ₯0β) ^ n = 0 :=
-- begin
-- let m := n.nat_abs,
-- have hm : n = -m,
-- { rw [int.of_nat_nat_abs_of_nonpos hn.le, neg_neg] },
-- rw hm at hn β’,
-- rw neg_lt_zero at hn,
-- have hm' : 0 < m, by exact_mod_cast hn,
-- rw [ennreal.zpow_neg, zpow_coe_nat, ennreal.inv_eq_zero, ennreal.top_pow hm'],
-- end
|