Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 10,765 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import algebra.homology.exact
import category_theory.abelian.opposite
import category_theory.abelian.exact
import category_theory.limits.constructions.epi_mono
import category_theory.abelian.pseudoelements
noncomputable theory
open category_theory
open category_theory.limits
universes w v u
namespace list
variables {Ξ± : Type*} (a : Ξ±) (L : list Ξ±) (m n : β)
/-- Returns the sublist of `L` starting at index `m` of length `n`
(or shorter, if `L` is too short). -/
def extract := (L.drop m).take n
@[simp] lemma extract_nil : [].extract m n = ([] : list Ξ±) :=
by { cases n, refl, cases m, refl, refl }
@[simp] lemma extract_zero_right : L.extract m 0 = [] := rfl
@[simp] lemma extract_cons_succ_left : (a :: L).extract m.succ n = L.extract m n := rfl
end list
example : [0,1,2,3,4,5,6,7,8,9].extract 4 3 = [4,5,6] := rfl
namespace category_theory
variables (π : Type u) [category.{v} π]
variables [has_zero_morphisms π] [has_images π] [has_kernels π]
variables {π : Type u} [category.{v} π] [abelian π]
namespace exact -- move this
variables {A B C : π} (f : A βΆ B) (g : B βΆ C)
def kernel_op_iso : (kernel f.op).unop β
cokernel f :=
{ hom := (kernel.lift _ (cokernel.Ο f).op begin
simp [β op_comp, limits.cokernel.condition],
end).unop β« eq_to_hom (opposite.unop_op (cokernel f)),
inv := cokernel.desc _ (eq_to_hom (opposite.unop_op B).symm β« (kernel.ΞΉ f.op).unop) begin
dsimp,
rw [category.id_comp, β f.unop_op, β unop_comp, f.unop_op, kernel.condition],
refl,
end,
hom_inv_id' := begin
dsimp,
simp,
rw [β unop_id, β (cokernel.desc f (kernel.ΞΉ f.op).unop _).unop_op, β unop_comp],
congr' 1,
apply limits.equalizer.hom_ext,
dsimp,
simp [β op_comp],
end,
inv_hom_id' := begin
apply limits.coequalizer.hom_ext,
dsimp,
simp [β unop_comp],
end }
def cokernel_op_iso : (cokernel f.op).unop β
kernel f :=
{ hom := kernel.lift _ ((cokernel.Ο f.op).unop β« eq_to_hom (opposite.unop_op _)) begin
simp only [eq_to_hom_refl, category.comp_id],
rw [β f.unop_op, β unop_comp, f.op.op_unop, cokernel.condition],
refl,
end,
inv := eq_to_hom (opposite.unop_op _).symm β« (cokernel.desc _ (kernel.ΞΉ f).op (by simp [β op_comp])).unop,
hom_inv_id' := begin
simp only [category.id_comp, eq_to_hom_refl, category.comp_id, β unop_id, β unop_comp],
rw [β (kernel.lift f (cokernel.Ο f.op).unop _).unop_op, β unop_comp],
congr' 1,
apply limits.coequalizer.hom_ext,
dsimp,
simp [β op_comp],
end,
inv_hom_id' := begin
apply limits.equalizer.hom_ext,
dsimp,
simp [β unop_comp]
end } .
@[simp]
lemma kernel.ΞΉ_op : (kernel.ΞΉ f.op).unop =
eq_to_hom (opposite.unop_op _) β« cokernel.Ο f β« (kernel_op_iso f).inv :=
begin
dsimp [kernel_op_iso],
simp,
end
@[simp]
lemma cokernel.Ο_op : (cokernel.Ο f.op).unop =
(cokernel_op_iso f).hom β« kernel.ΞΉ f β« eq_to_hom (opposite.unop_op _).symm :=
begin
dsimp [cokernel_op_iso],
simp,
end
variables {f g}
lemma op (h : exact f g) : exact g.op f.op :=
begin
rw abelian.exact_iff,
refine β¨_, _β©,
{ simp only [β op_comp, h.w, op_zero], },
apply_fun quiver.hom.unop,
swap, { exact quiver.hom.unop_inj },
simp only [h, unop_comp, cokernel.Ο_op, eq_to_hom_refl, kernel.ΞΉ_op, category.id_comp,
category.assoc, kernel_comp_cokernel_assoc, zero_comp, comp_zero, unop_zero],
end
variables (f g)
def kernel_unop_iso {C B : πα΅α΅} (f : C βΆ B) : opposite.op (kernel f.unop) β
cokernel f :=
{ hom := (kernel.lift _ (cokernel.Ο f).unop (by simp [β unop_comp])).op β«
eq_to_hom (opposite.op_unop (cokernel f)),
inv := cokernel.desc _ (eq_to_hom (opposite.op_unop _).symm β« (kernel.ΞΉ f.unop).op) begin
dsimp,
rw [β f.op_unop, category.id_comp, β op_comp, f.op_unop, kernel.condition],
refl,
end,
hom_inv_id' := begin
dsimp,
simp,
rw [β (cokernel.desc f (kernel.ΞΉ f.unop).op _).op_unop, β op_comp, β op_id],
congr' 1,
apply limits.equalizer.hom_ext,
dsimp,
simp [β unop_comp],
end,
inv_hom_id' := begin
apply limits.coequalizer.hom_ext,
dsimp,
simp [β op_comp],
end }
def cokernel_unop_iso {C B : πα΅α΅} (f : C βΆ B) : opposite.op (cokernel f.unop) β
kernel f :=
{ hom := kernel.lift _ ((cokernel.Ο f.unop).op β« eq_to_hom (opposite.op_unop _)) begin
dsimp,
rw [β f.op_unop, category.comp_id, β op_comp, f.op_unop, cokernel.condition],
refl,
end,
inv := eq_to_hom (opposite.op_unop _).symm β«
(cokernel.desc _ (kernel.ΞΉ f).unop (by simp [β unop_comp])).op,
hom_inv_id' := begin
dsimp,
rw category.id_comp,
rw [β (kernel.lift f ((cokernel.Ο f.unop).op β« π C) _).op_unop, β op_comp, β op_id],
congr' 1,
apply limits.coequalizer.hom_ext,
dsimp,
simp [β unop_comp],
end,
inv_hom_id' := begin
apply limits.equalizer.hom_ext,
dsimp,
simp [β op_comp]
end }
@[simp]
lemma cokernel.Ο_unop {C B : πα΅α΅} (f : C βΆ B) : (cokernel.Ο f.unop).op =
(cokernel_unop_iso f).hom β« kernel.ΞΉ f β« eq_to_hom (opposite.op_unop _).symm :=
begin
dsimp [cokernel_unop_iso],
simp,
end
@[simp]
lemma kernel.ΞΉ_unop {C B : πα΅α΅} (f : C βΆ B) : (kernel.ΞΉ f.unop).op =
eq_to_hom (opposite.op_unop _) β« cokernel.Ο f β« (kernel_unop_iso f).inv :=
begin
dsimp [kernel_unop_iso],
simp,
end
lemma unop {C B A : πα΅α΅} {g : C βΆ B} {f : B βΆ A} (h : exact g f) : exact f.unop g.unop :=
begin
rw abelian.exact_iff,
refine β¨by simp only [β unop_comp, h.w, unop_zero], _β©,
apply_fun quiver.hom.op,
swap, { exact quiver.hom.op_inj },
simp [h],
end
end exact
/-- A sequence `[f, g, ...]` of morphisms is exact if the pair `(f,g)` is exact,
and the sequence `[g, ...]` is exact.
Recall that the pair `(f,g)` is exact if `f β« g = 0`
and the natural map from the image of `f` to the kernel of `g` is an epimorphism
(equivalently, in abelian categories: isomorphism). -/
inductive exact_seq : list (arrow π) β Prop
| nil : exact_seq []
| single : β f, exact_seq [f]
| cons : β {A B C : π} (f : A βΆ B) (g : B βΆ C) (hfg : exact f g) (L) (hgL : exact_seq (g :: L)),
exact_seq (f :: g :: L)
variable {π}
lemma exact_iff_exact_seq {A B C : π} (f : A βΆ B) (g : B βΆ C) :
exact f g β exact_seq π [f, g] :=
begin
split,
{ intro h, exact exact_seq.cons f g h _ (exact_seq.single _), },
{ rintro (_ | _ | β¨A, B, C, f, g, hfg, _, _ | _ | _β©), exact hfg, }
end
namespace exact_seq
lemma extract : β {L : list (arrow π)} (h : exact_seq π L) (m n : β),
exact_seq π (L.extract m n)
| L (nil) m n := by { rw list.extract_nil, exact nil }
| L (single f) m 0 := nil
| L (single f) 0 (n+1) := by { cases n; exact single f }
| L (single f) (m+1) (n+1) := by { cases m; exact nil }
| _ (cons f g hfg L hL) (m+1) n := extract hL m n
| _ (cons f g hfg L hL) 0 0 := nil
| _ (cons f g hfg L hL) 0 1 := single f
| _ (cons f g hfg L hL) 0 (n+2) := cons f g hfg (L.take n) (extract hL 0 (n+1))
inductive arrow_congr : Ξ (L L' : list (arrow π)), Prop
| nil : arrow_congr [] []
| cons : β {A B : π} {f f' : A βΆ B} {L L' : list (arrow π)} (h : f = f') (H : arrow_congr L L'),
arrow_congr (f :: L) (f' :: L')
lemma congr : β {L L' : list (arrow π)}, exact_seq π L β arrow_congr L L' β exact_seq π L'
| _ _ h arrow_congr.nil := exact_seq.nil
| _ _ h (arrow_congr.cons hβ arrow_congr.nil) := exact_seq.single _
| _ _ h (arrow_congr.cons hβ ((arrow_congr.cons hβ H))) :=
begin
substs hβ hβ,
rcases h with _ | _ | β¨A, B, C, f, g, hfg, _, hLβ©,
refine exact_seq.cons _ _ hfg _ (congr hL (arrow_congr.cons rfl H)),
end
lemma append : β {Lβ Lβ Lβ : list (arrow π)}
(hββ : exact_seq π (Lβ ++ Lβ)) (hββ : exact_seq π (Lβ ++ Lβ)) (hβ : Lβ β []),
exact_seq π (Lβ ++ Lβ ++ Lβ)
| Lβ [] Lβ hββ hββ h := (h rfl).elim
| [] Lβ Lβ hββ hββ h := by rwa list.nil_append
| (_::[]) (_::Lβ) Lβ (cons f g hfg L hL) hββ h := cons f g hfg _ hββ
| (_::_::Lβ) Lβ Lβ (cons f g hfg L hL) hββ h :=
suffices exact_seq π ([f] ++ ([g] ++ Lβ ++ Lβ) ++ Lβ), { simpa only [list.append_assoc] },
cons _ _ hfg _ $
suffices exact_seq π ((g :: Lβ) ++ Lβ ++ Lβ), { simpa only [list.append_assoc] },
append (by simpa only using hL) hββ h
end exact_seq
namespace arrow
open _root_.opposite
variables {C : Type*} [category C]
@[simps]
def op (f : arrow C) : arrow Cα΅α΅ :=
{ left := op f.right,
right := op f.left,
hom := f.hom.op }
@[simps]
def unop (f : arrow Cα΅α΅) : arrow C :=
{ left := unop f.right,
right := unop f.left,
hom := f.hom.unop }
@[simp] lemma op_unop (f : arrow C) : f.op.unop = f := by { cases f, dsimp [op, unop], refl }
@[simp] lemma unop_op (f : arrow Cα΅α΅) : f.unop.op = f := by { cases f, dsimp [op, unop], refl }
@[simp] lemma op_comp_unop : (op β unop : arrow Cα΅α΅ β arrow Cα΅α΅) = id := by { ext, exact unop_op _ }
@[simp] lemma unop_comp_op : (unop β op : arrow C β arrow C ) = id := by { ext, exact op_unop _ }
end arrow
namespace exact_seq
lemma op : β {L : list (arrow π)}, exact_seq π L β exact_seq πα΅α΅ (L.reverse.map arrow.op)
| _ nil := nil
| _ (single f) := single f.op
| _ (cons f g hfg L hL) :=
begin
have := op hL,
simp only [list.reverse_cons, list.map_append] at this β’,
refine this.append _ (list.cons_ne_nil _ _),
exact cons _ _ hfg.op _ (single _),
end
lemma unop : β {L : list (arrow πα΅α΅)}, exact_seq πα΅α΅ L β exact_seq π (L.reverse.map arrow.unop)
| _ nil := nil
| _ (single f) := single f.unop
| _ (cons f g hfg L hL) :=
begin
have := unop hL,
simp only [list.reverse_cons, list.map_append] at this β’,
refine this.append _ (list.cons_ne_nil _ _),
exact cons _ _ hfg.unop _ (single _),
end
lemma of_op {L : list (arrow π)} (h : exact_seq πα΅α΅ (L.reverse.map arrow.op)) : exact_seq π L :=
by simpa only [list.map_reverse, list.reverse_reverse, list.map_map,
arrow.unop_comp_op, list.map_id] using h.unop
lemma of_unop {L : list (arrow πα΅α΅)} (h : exact_seq π (L.reverse.map arrow.unop)) :
exact_seq πα΅α΅ L :=
by simpa only [list.map_reverse, list.reverse_reverse, list.map_map,
arrow.op_comp_unop, list.map_id] using h.op
end exact_seq
end category_theory
|