Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 17,971 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
import data.real.nnreal
import topology.algebra.infinite_sum
import analysis.normed_space.basic
import for_mathlib.nnreal
import for_mathlib.nnreal_int_binary -- basic binary expansion for nnreal.
open_locale nnreal
/-
# Two auxiliary lemmas.
In this file we prove two technical lemmas, needed in the proofs of parts (2) and (4)
of Proposition 7.2 of `Analytic.pdf`.
## Lemma 1 (needed in part 2)
Say `f : ℤ → ℝ` and `r : ℝ≥0` with `2⁻¹<r<1`.
Say the support of `f` is bounded below by `d` (i.e. `n < d → f n = 0`),
We think of `f` as a power series `∑ₙf(n)Tⁿ` in `ℤ⟦T⟧[T⁻¹]`.
Here's the set-up. Support that `∑' (n : ℤ), ∥f n∥₊ * r ^ n` converges and is `≤ c`
(so in particular `f(T)` converges for `∥T∥ ≤ c`). Suppose also that
`∑' (n : ℤ), f n * 2⁻¹ ^ n = 0` (so `f` has a zero at `2⁻¹`; note that the sum
converges because `0 ≤ 2⁻¹ < r`).
The conclusion is that `∑(n ≥ d) ∥∑(0≤i≤(n-d)) f(n - 1 - i)*2ⁱ∥ * r^n`
also converges and is bounded above by `c * (2 - r⁻¹)⁻¹`.
The power series `∑(n≥d) (∑(0≤i≤(n-d)) f(n - 1 - i)*2ⁱ) * Tⁱ` is the power
series of `f(T)/(T⁻¹-2)`, and the reason it behaves reasonsbly is the
assumption that T⁻¹-2 has a simple zero at 2⁻¹ and no other zeros in
the disc radius `r`.
### Implementation detail
In Lean the second sum is `∑' (n : ℤ), ∥ite (d ≤ n)`
`((finset.range (n - d).nat_abs.succ).sum (λ (l : ℕ), f (n - 1 - ↑l) * 2 ^ l))`
`0∥₊ * r ^ n`.
### The maths proof
∑(n ≥ d) ∥∑(0≤i≤(n-d)) f(n - 1 - i)*2ⁱ∥ * r^n
= ∑(n ≥ d) ∥∑(i≥0) f(n - 1 - i)2ⁱ∥ * rⁿ (as f(n-1-i) vanishes for i larger than n-d)
= ∑(n ≥ d) ∥(i<0) f(n - 1 - i)2ⁱ∥ * rⁿ (as sum f(x)2⁻ˣ=0)
= ∑(n ≥ d) ∥∑(k≥0) f(n + k) 2^(-1-k)∥ * rⁿ (set k=-1-i)
≤ ∑(n ≥ d) ∑(k≥0)∥ f(n+k)∥ 2^(-1-k) r^n (Cauchy-Schwarz)
= ∑(k≥0) ∑(n≥d) ∥f(n+k)∥2^(-1-k)r^n (turns out you can interchange the sums)
= 2⁻¹∑(k≥0) (∑(n≥d) ∥f(n+k)∥r^(n+k)) * (2r)^{-k} (rearranging)
≤ 2⁻¹∑(k≥0) c (2r)^{-k} (defining property of c)
= 2⁻¹ * c / (1-(2r)⁻¹) (sum of a GP)
= c * (2-r⁻¹)⁻¹ (rearranging)
### Comments on the maths proof
The logic in this proof is completely standard but needs a little thinking about
when formalising. Some of the manipulations we are doing in the earlier lines
of the proof (for example interchanging the sums) are only valid if the sum converges.
However ultimately the proof that the sum converges only happens on the last-but-one
line of the computation, where we prove that it's bounded above by something finite
(the sum of a GP).
There are several ways to fix this.
* One can go through the proof twice. In the first pass one can prove that everything
is `summable`, and then in the second pass one can then prove the results about equality
or boundedness of sums. This has the disadvantage that you have to do everything twice.
* Another approach is to write the proof once, but backwards; start with the sum of a geometric
progression and then go upwards through the maths proof above to deduce convergence and boundedness
of the original sum simultaneously. This has the mild disadvantage that you have to write
the proof backwards.
* A third approach would be to work not with `tsum` and `summable` at all, but to work
with `has_sum`. This has the disadvantage that you need to stop working with
equalities `∑a(n)=∑b(n)` or inequalities `∑a(n) ≤ ∑b(n)` and to start working with more complex
statements such as `has_sum a s ↔ has_sum b s` or `has_sum a s → ∃ t, has_sum b t ∧ t ≤ s`.
* The fourth approach avoids all of this. Instead of working with sums valued in `ℝ≥0` we
can work with sums taking values in `ℝ≥0∞` a.k.a. the interval `[0,∞]`.
## TODO
Switch to ennreal and then prove 6 lemmas for the first result. All the
summability results are in `thm69` so it's simply a case of
refactoring all of them.
-/
lemma real.nnnorm_int (n : ℤ) : ∥(n : ℝ)∥₊ = ∥n∥₊ :=
subtype.ext $ by simp [coe_nnnorm, real.norm_eq_abs, int.norm_eq_abs]
lemma real.neg_nnnorm_of_neg {r : ℝ} (hr : r < 0) : -(∥r∥₊ : ℝ) = r :=
by rw [coe_nnnorm, neg_eq_iff_neg_eq, real.norm_eq_abs, abs_of_neg hr]
namespace psi_aux_lemma
/-
## The first lemma
-/
open_locale ennreal
-- line 7 ≤ line 10
lemma step7 {f : ℤ → ℝ} {d : ℤ} {r : ℝ≥0} (hr2 : 2⁻¹ < r)
(hconv : summable (λ (n : ℤ), ∥f n∥₊ * r ^ n)) : -- do I use hconv??
∑' (b : ℕ),
(∑' (i : ℕ),
(∥f (d + ↑b + ↑i)∥₊ : ℝ≥0∞) * r ^ (d + b + i)) *
(2 * r)⁻¹ ^ b ≤
2 * (↑(2 - r⁻¹)⁻¹ * ∑' (a : ℤ), ∥f a∥₊ * r ^ a) :=
begin
have bound : ∀ (z : ℤ), ∑' (i : ℕ), (∥f (z + ↑i)∥₊ : ℝ≥0∞) * r ^ (z + ↑i) ≤
∑' (a : ℤ), ∥f a∥₊ * r ^ a,
{ intro z,
refine tsum_le_tsum_of_inj (λ i, z + i) _ _ _ ennreal.summable ennreal.summable,
{ intros a b h, simpa using h, },
{ intros, exact ennreal.zero_le', },
{ intros, apply le_refl _ } },
suffices : ∑' (b : ℕ), (∑' (a : ℤ), (∥f a∥₊ : ℝ≥0∞) * r ^ a) * (2 * ↑r)⁻¹ ^ b =
2 * (↑(2 - r⁻¹)⁻¹ * ∑' (a : ℤ), ↑∥f a∥₊ * ↑r ^ a),
{ rw ← this,
apply ennreal.tsum_le_tsum,
intro a,
apply ennreal.mul_le_mul_of_right,
apply bound },
rw [ennreal.tsum_mul_left, mul_comm, ← mul_assoc],
congr,
rw ennreal.tsum_geometric,
apply ennreal.inv_eq_of_mul_eq_one,
rw ← mul_assoc,
have hr : 0 < 2 - r⁻¹,
{ rw nnreal.sub_pos,
exact nnreal.inv_lt_of_inv_lt (by norm_num) hr2, },
rw ennreal.coe_inv hr.ne',
apply ennreal.mul_inv_eq_of_eq_mul (by exact_mod_cast hr.ne') ennreal.coe_ne_top,
rw [ennreal.sub_mul, one_mul, one_mul, ennreal.coe_sub],
{ congr,
refine ennreal.mul_eq_of_mul_inv_eq (by norm_num) (by norm_num) _,
rw [ennreal.mul_inv, mul_comm, ennreal.coe_inv],
{ refine (lt_of_le_of_lt (by norm_num) hr2).ne', },
{ left, norm_num, },
{ left, norm_num, }, },
{ intros, norm_num, }
end
-- line 5 ≤ line 10
lemma step6 {f : ℤ → ℝ} {d : ℤ} {r : ℝ≥0} (hr2 : 2⁻¹ < r) (hdf : ∀ n, n < d → f n = 0)
(hconv : summable (λ n : ℤ, ∥f n∥₊ * r ^ n)) :
(2⁻¹ : ℝ≥0∞) * ∑' (i j : ℕ), ↑∥f (d + ↑i + ↑j) * 2⁻¹ ^ j∥₊ * ↑(r ^ (d + ↑i)) ≤
↑(2 - r⁻¹)⁻¹ * ∑' (a : ℤ), ↑(∥f a∥₊ * r ^ a) :=
begin
rw ennreal.tsum_comm,
-- woohoo, I just interchanged the sums
simp_rw [nnnorm_mul, nnnorm_pow, ennreal.coe_mul,
ennreal.coe_zpow (lt_of_le_of_lt zero_le' hr2).ne'],
push_cast,
simp only [nnnorm_inv, real.nnnorm_two, ennreal.coe_inv, ne.def, bit0_eq_zero, one_ne_zero,
not_false_iff, ennreal.coe_bit0, ennreal.coe_one],
have h2ne0 : (2 : ℝ≥0∞) ≠ 0 := by norm_num,
have h2netop : (2 : ℝ≥0∞) ≠ ⊤ := by norm_num,
have hrne0 : (r : ℝ≥0∞) ≠ 0,
{ norm_cast,
refine (lt_of_le_of_lt _ hr2).ne',
norm_num },
have hrnetop : (r : ℝ≥0∞) ≠ ⊤ := ennreal.coe_ne_top,
rw ennreal.inv_mul_le_iff h2ne0 h2netop,
have : ∀ a b : ℕ, (∥f (d + ↑a + ↑b)∥₊ : ℝ≥0∞) * 2⁻¹ ^ b * ↑r ^ (d + ↑a) =
∥f (d + ↑a + ↑b)∥₊ * r ^ (d + a + b) * (2 * r)⁻¹ ^ b,
{ intros a b,
rw [ennreal.mul_inv (or.inl h2ne0) (or.inl h2netop), mul_pow, ← zpow_coe_nat (↑r)⁻¹],
rw ennreal.zpow_add hrne0 hrnetop _ b,
have : (∥f (d + ↑a + ↑b)∥₊ : ℝ≥0∞) * (↑r ^ (d + ↑a) * ↑r ^ (b : ℤ)) * (2⁻¹ ^ b * (↑r)⁻¹ ^ (b : ℤ)) =
↑∥f (d + ↑a + ↑b)∥₊ * 2⁻¹ ^ b * ↑r ^ (d + ↑a) * (r ^ (b : ℤ) * r⁻¹ ^ (b : ℤ)),
{ ring },
rw this,
convert (mul_one _).symm,
rw ← ennreal.coe_inv (by exact_mod_cast hrne0),
norm_cast,
rw ← mul_pow,
rw mul_inv_cancel (by exact_mod_cast hrne0),
apply one_pow },
simp_rw [this, ennreal.tsum_mul_right, add_right_comm],
exact step7 hr2 hconv,
end
-- auxiliary convergence lemma
lemma step5 {f : ℤ → ℝ} {d : ℤ} {r : ℝ≥0} (hr2 : 2⁻¹ < r) (hdf : ∀ n, n < d → f n = 0)
(hconv : summable (λ n : ℤ, ∥f n∥₊ * r ^ n)) :
summable (λ (x : ℤ), f x * 2⁻¹ ^ x) :=
begin
rw ← summable_subtype_and_compl,
change summable (λ x : {n : ℤ | n < 0}, _) ∧ _,
split,
{ let F : finset ↥{n : ℤ | n < 0} := finset.preimage (finset.Ico d 0 : finset ℤ) coe
(set.inj_on_of_injective subtype.coe_injective _),
apply summable_of_ne_finset_zero,
rintro b (hb : b ∉ F),
convert zero_mul _,
apply hdf,
by_contra hbd, push_neg at hbd,
apply hb,
rw finset.mem_preimage,
rw finset.mem_Ico,
exact ⟨hbd, b.2⟩ },
{ apply summable_of_summable_nnnorm,
have := nnreal.summable_subtype hconv {n : ℤ | n < 0}ᶜ,
refine nnreal.summable_of_le _ this,
rintro ⟨b, hb : ¬ b < 0⟩,
push_neg at hb,
rw nnnorm_mul,
suffices : ∥f b∥₊ * (2 ^ b)⁻¹ ≤ ∥f b∥₊ * r ^ b,
{ simpa },
apply nnreal.mul_le_mul_left,
rw ← inv_zpow,
apply nnreal.zpow_le_zpow' hb hr2.le, },
end
example (r : ℝ≥0) (n : ℕ) : r ^ (n : ℤ) = r ^ n := zpow_coe_nat r n
noncomputable instance xxx : div_inv_monoid ℝ≥0 := infer_instance
-- second line is third line
lemma step4 {f : ℤ → ℝ} {n d : ℤ} {r : ℝ≥0} (hr1 : r < 1) (hr2 : 2⁻¹ < r)
(hdf : ∀ n, n < d → f n = 0)
(hconv : summable (λ n : ℤ, ∥f n∥₊ * r ^ n)) (hzero : ∑' n, f n * 2⁻¹ ^ n = 0) :
∑' (l : ℕ), f (n - 1 - ↑l) * 2 ^ l = 2⁻¹ * -∑' (m : ℕ), f (n + m) * 2⁻¹ ^ m :=
begin
have : ∀ l : ℕ, (2 : ℝ) ^ l = 2⁻¹ ^ (n - 1 - l) * (2⁻¹ * 2 ^ n),
{ intro l,
rw [inv_zpow, ← zpow_neg, ← zpow_neg_one, ← zpow_coe_nat],
push_cast,
rw ← zpow_add₀ (two_ne_zero : (2 : ℝ) ≠ 0),
rw ← zpow_add₀ (two_ne_zero : (2 : ℝ) ≠ 0),
ring_nf, },
conv_lhs begin
congr,
funext,
rw [this, ← mul_assoc],
end, clear this,
rw tsum_mul_right,
have : ∀ m : ℕ, (2⁻¹ : ℝ) ^ m = 2⁻¹ ^ (n + m) * 2 ^ n,
{ intro m,
rw [inv_zpow, ← zpow_neg, ← zpow_coe_nat, ← zpow_add₀ (two_ne_zero : (2 : ℝ) ≠ 0),
inv_zpow, ← zpow_neg],
ring_nf, },
conv_rhs begin
congr, skip,
congr,
congr,
funext,
rw [this, ← mul_assoc],
end, clear this,
rw [mul_comm, mul_assoc, tsum_mul_right, ← neg_mul, mul_comm ((2 : ℝ) ^ n)],
congr,
rw [eq_neg_iff_add_eq_zero, add_comm, ← hzero,
← tsum_add_tsum_compl ((step5 hr2 hdf hconv).comp_injective subtype.coe_injective :
summable ((_ : ℤ → ℝ) ∘ (coe : {z : ℤ | n ≤ z} → ℤ)))
((step5 hr2 hdf hconv).comp_injective subtype.coe_injective)],
{ congr' 1,
{ rw ← ((nat.equiv_le_int n).tsum_eq : _ → (_ : ℝ) = _),
congr', ext b,
rw add_comm n,
refl, },
{ rw ← ((nat.equiv_le_int_compl n).tsum_eq : _ → (_ : ℝ) = _),
congr', ext b,
rw (show n - 1 - b = n - (b + 1), by ring),
refl, } },
end
-- second line ≤ last line
lemma step3 {f : ℤ → ℝ} {r : ℝ≥0} (hr1 : r < 1) (hr2 : 2⁻¹ < r) {d : ℤ}
(hdf : ∀ n, n < d → f n = 0) (hconv : summable (λ n : ℤ, ∥f n∥₊ * r ^ n))
(hzero : ∑' n, f n * 2⁻¹ ^ n = 0) :
∑' (n : ℤ), ((∥ite (d ≤ n) (∑' (l : ℕ), f (n - 1 - ↑l) * 2 ^ l) 0∥₊ * r ^ n : ℝ≥0) : ℝ≥0∞) ≤
((2 - r⁻¹)⁻¹ * ∑' (n : ℤ), ∥f n∥₊ * r ^ n : ℝ≥0) :=
begin
simp_rw step4 hr1 hr2 hdf hconv hzero,
-- n - d = m
rw tsum_eq_tsum_of_ne_zero_bij (λ m : function.support
(λ m : ℕ, ((∥(2⁻¹ : ℝ) * (-∑' (l : ℕ), f (d + m + ↑l) * 2⁻¹ ^ l)∥₊ * r ^ (d + m) : ℝ≥0) : ℝ≥0∞)),
d + m.1),
{ dsimp only,
simp_rw [nnnorm_mul, nnnorm_neg],
push_cast,
simp only [nnnorm_inv, real.nnnorm_two, ennreal.coe_inv, ne.def, bit0_eq_zero, one_ne_zero,
not_false_iff, ennreal.coe_bit0, ennreal.coe_one],
have summable_half : ∀ t : ℤ, summable (λ (x : ℕ), f (t + ↑x) * 2⁻¹ ^ x),
{ intro t,
rw summable_mul_right_iff (show (2 : ℝ)⁻¹ ^ t ≠ 0, from zpow_ne_zero _ (by norm_num)),
simp_rw [mul_assoc, ← zpow_coe_nat],
simp_rw [← zpow_add₀ (show (2 : ℝ)⁻¹ ≠ 0, by norm_num), add_comm _ t],
exact (step5 hr2 hdf hconv).comp_injective (show function.injective (λ x : ℕ, t + x),
by {intros x y hxy, simpa using hxy, }), },
suffices :
∑' (m : ℕ), (2⁻¹ : ℝ≥0∞) * ↑(∑' (l : ℕ), ∥f (d + ↑m + ↑l) * (2⁻¹ ^ l)∥₊ : ℝ≥0) *
↑(r ^ (d + ↑m)) ≤ ↑(2 - r⁻¹)⁻¹ * ↑∑' (n : ℤ), ∥f n∥₊ * r ^ n,
{ refine le_trans _ this,
apply ennreal.tsum_le_tsum,
intro m,
apply ennreal.mul_le_mul_of_right,
apply ennreal.mul_le_mul_of_left,
norm_cast,
apply nnnorm_tsum_le,
rw ← nnreal.summable_iff_summable_nnnorm,
apply summable_half, },
rw ennreal.coe_tsum hconv, dsimp only,
conv_lhs begin
congr,
funext,
rw ennreal.coe_tsum (show summable (λ (l : ℕ), ∥f (d + m + ↑l) * 2⁻¹ ^ l∥₊), begin
rw ← nnreal.summable_iff_summable_nnnorm,
apply summable_half, end),
end,
dsimp only,
simp_rw mul_assoc,
rw ennreal.tsum_mul_left,
simp_rw ← ennreal.tsum_mul_right,
apply step6 hr2 hdf hconv, },
{ rintro ⟨x, _⟩ ⟨y, _⟩ h,
have hxy : x = y,
{ simpa using h },
subst hxy },
{ rintro n hn,
rw function.mem_support at hn,
split_ifs at hn with hdn,
{ rw set.mem_range,
let m := (n - d).nat_abs,
have hm : d + m = n,
{ apply add_eq_of_eq_sub',
rw [int.nat_abs_of_nonneg],
exact sub_nonneg.mpr hdn, },
refine ⟨⟨m, _⟩, hm⟩,
rw function.mem_support,
convert hn,
rw hm, },
{ exfalso,
apply hn,
simp, } },
{ simp, },
end
-- first line equals second line
lemma step2 {f : ℤ → ℝ} {n d : ℤ} (hn : d ≤ n) (hdf : ∀ n, n < d → f n = 0) :
(finset.range (n - d).nat_abs.succ).sum (λ (l : ℕ), f (n - 1 - ↑l) * 2 ^ l) =
∑' (l : ℕ), f (n - 1 - l) * 2 ^ l :=
begin
apply (tsum_eq_sum _ : (_ : ℝ) = _).symm,
intros b hb,
convert zero_mul ((2 : ℝ) ^ b),
apply hdf,
by_contra hbd,
push_neg at hbd,
apply hb,
rw [finset.mem_range, nat.lt_succ_iff],
suffices : (b : ℤ) ≤ ((n - d).nat_abs : ℤ),
{ assumption_mod_cast, },
rw ← int.eq_nat_abs_of_zero_le;
linarith,
end
-- coerce to ℝ≥0∞
lemma step1 {f : ℤ → ℝ} {r : ℝ≥0} (hr1 : r < 1) (hr2 : 2⁻¹ < r) {d : ℤ}
(hdf : ∀ n, n < d → f n = 0) (hconv : summable (λ n : ℤ, ∥f n∥₊ * r ^ n))
(hzero : ∑' n, f n * 2⁻¹ ^ n = 0) :
∑' (n : ℤ),
((∥ite (d ≤ n) ((finset.range (n - d).nat_abs.succ).sum (λ (l : ℕ), f (n - 1 - ↑l) * 2 ^ l)) 0∥₊ *
r ^ n : ℝ≥0) : ℝ≥0∞) ≤
((2 - r⁻¹)⁻¹ * ∑' (n : ℤ), ∥f n∥₊ * r ^ n : ℝ≥0) :=
begin
have : ∀ n,
∥ite (d ≤ n) ((finset.range (n - d).nat_abs.succ).sum (λ (l : ℕ), f (n - 1 - ↑l) * 2 ^ l)) 0∥₊ * r ^ n
=
∥ite (d ≤ n) (∑' (l : ℕ), f (n - 1 - l) * 2 ^ l) 0∥₊ * r ^ n,
{ intro n,
congr' 2,
split_ifs with hn,
{ rw step2 hn hdf },
{ refl } },
simp_rw this,
apply step3 hr1 hr2 hdf hconv hzero,
end
-- first line ≤ last line
lemma key_tsum_lemma (f : ℤ → ℝ) (r : ℝ≥0) (hr1 : r < 1) (hr2 : 2⁻¹ < r) (d : ℤ)
(hdf : ∀ n, n < d → f n = 0) (hconv : summable (λ n : ℤ, ∥f n∥₊ * r ^ n))
(hzero : ∑' n, f n * 2⁻¹ ^ n = 0) :
∑' (n : ℤ), ∥ite (d ≤ n) ((finset.range (n - d).nat_abs.succ).sum
(λ (l : ℕ), f (n - 1 - ↑l) * 2 ^ l)) 0∥₊ * r ^ n ≤
(2 - r⁻¹)⁻¹ * ∑' n, ∥f n∥₊ * r ^ n :=
begin
have := step1 hr1 hr2 hdf hconv hzero,
have this2 : ∑' (n : ℤ),
(((∥ite (d ≤ n) ((finset.range (n - d).nat_abs.succ).sum (λ (l : ℕ), f (n - 1 - ↑l) * 2 ^ l)) 0∥₊ *
r ^ n) : ℝ≥0) : ℝ≥0∞) < ⊤,
{ refine lt_of_le_of_lt this _,
exact ennreal.coe_lt_top,
},
have this3 : summable (λ n, ((∥ite (d ≤ n) ((finset.range (n - d).nat_abs.succ).sum (λ (l : ℕ), f (n - 1 - ↑l) * 2 ^ l)) 0∥₊ *
r ^ n) : ℝ≥0)) := ennreal.tsum_coe_ne_top_iff_summable.mp this2.ne,
rw ← ennreal.coe_le_coe,
convert this,
apply ennreal.coe_tsum this3,
end
end psi_aux_lemma
/-
## The second lemma
-/
namespace theta_aux_lemma
-- Here is the fact which Clausen/Scholze need for the application to "splitting θ
-- in a bounded way".
theorem tsum_le (r : ℝ≥0) {s : ℝ≥0} (hs0 : 0 < s) (hs : s < 1) :
∑' (n : ℤ), (nnreal.int.binary r n : ℝ≥0) * s ^ n ≤
s ^ ⌈real.log r / real.log (2⁻¹ : ℝ≥0)⌉ * (1 - s)⁻¹ :=
begin
let d := ⌈real.log r / real.log (2⁻¹ : ℝ≥0)⌉,
rw mul_comm,
rw ← nnreal.int.tsum_add_tsum_compl' {n : ℤ | n < d} (nnreal.int.binary_summable r hs),
have h0 : ∑' (x : ↥{n : ℤ | n < d}), (λ (n : ℤ), ↑(nnreal.int.binary r n) * s ^ n) ↑x = 0,
{ convert (tsum_zero : _ = (0 : ℝ≥0)), ext ⟨n, hn : n < d⟩,
simp [nnreal.int.binary_eq_zero r n hn] },
rw [h0, zero_add], clear h0,
rw ← (nat.equiv_int_lt_compl d).tsum_eq, swap, apply_instance,
simp only [nat.equiv_int_lt_compl, zpow_add₀ hs0.ne', ←mul_assoc, equiv.coe_fn_mk, subtype.coe_mk,
zpow_coe_nat, nonneg.coe_one, nnreal.tsum_mul_right],
rw mul_le_mul_right₀ (zpow_ne_zero _ hs0.ne'),
rw ← tsum_geometric_nnreal hs,
refine nnreal.tsum_le_tsum (λ n, _) (nnreal.summable_geometric hs),
apply mul_le_of_le_one_left',
norm_cast,
apply nnreal.int.binary_le_one,
end
end theta_aux_lemma
-- is `summable_subtype_and_compl` true for add_comm_monoids? Why is it stated for groups?
|