Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 38,778 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 |
-- import laurent_measures.functor
import data.finset.basic
import analysis.special_functions.log.base
import for_mathlib.pi_induced
import laurent_measures.thm69
-- import data.real.basic
/-!
This files introduces the maps `Θ`, `Φ` (***and `Ψ` ???***), which are the "measurifications" of
`θ`, `ϕ` (*** and `ψ` ???***)
`laurent_measures.thm69`, they are morphisms in the right category.
We then prove in **???** that `θ_ϕ_exact` of `laurent_measures.thm69` becomes a short exact sequence
in the category **???**.
-/
noncomputable theory
universe u
namespace laurent_measures_ses
open laurent_measures pseudo_normed_group comphaus_filtered_pseudo_normed_group
open comphaus_filtered_pseudo_normed_group_hom
open_locale big_operators nnreal
section phi_to_hom
-- parameter {p : ℝ≥0}
-- variables [fact(0 < p)] [fact (p < 1)]
-- local notation `r` := @r p
-- local notation `ℳ` := real_measures p
variable {r : ℝ≥0}
variables [fact (0 < r)]
variable {S : Fintype}
local notation `ℒ` := laurent_measures r
local notation `ϖ` := (Fintype.of punit : Type u)
variables {M₁ M₂ : Type u} [comphaus_filtered_pseudo_normed_group M₁]
[comphaus_filtered_pseudo_normed_group M₂]
def cfpng_hom_add (f g : comphaus_filtered_pseudo_normed_group_hom M₁ M₂) :
(comphaus_filtered_pseudo_normed_group_hom M₁ M₂) :=
begin
apply mk_of_bound (f.to_add_monoid_hom + g.to_add_monoid_hom) (f.bound.some + g.bound.some),
intro c,
refine ⟨_, _⟩,
{ intros x hx,
simp only [comphaus_filtered_pseudo_normed_group_hom.coe_mk],
simp only [add_monoid_hom.add_apply, coe_to_add_monoid_hom],
convert pseudo_normed_group.add_mem_filtration (f.bound.some_spec hx) (g.bound.some_spec hx),
rw add_mul, },
let f₀ : filtration M₁ c → filtration M₂ (f.bound.some * c) := λ x, ⟨f x, f.bound.some_spec x.2⟩,
have hf₀ : continuous f₀ := f.continuous _ (λ x, rfl),
let g₀ : filtration M₁ c → filtration M₂ (g.bound.some * c) := λ x, ⟨g x, g.bound.some_spec x.2⟩,
have hg₀ : continuous g₀ := g.continuous _ (λ x, rfl),
simp only [add_monoid_hom.add_apply, coe_to_add_monoid_hom],
haveI : fact ((f.bound.some * c + g.bound.some * c) ≤ ((f.bound.some + g.bound.some) * c) ) :=
fact.mk (le_of_eq (add_mul _ _ _).symm),
let ι : filtration M₂ (f.bound.some * c + g.bound.some * c) → filtration M₂
((f.bound.some + g.bound.some) * c) := cast_le,
have hι : continuous ι := continuous_cast_le _ _,
let S₀ : filtration M₂ (f.bound.some * c) × filtration M₂ (g.bound.some * c) →
filtration M₂ (f.bound.some * c + g.bound.some * c) :=
λ x, ⟨x.fst + x.snd, add_mem_filtration x.fst.2 x.snd.2⟩,
have hS₀ := continuous_add' (f.bound.some * c) (g.bound.some * c),
exact hι.comp (hS₀.comp (continuous.prod_mk hf₀ hg₀)),
end
def cfpng_hom_neg (f : comphaus_filtered_pseudo_normed_group_hom M₁ M₂) :
(comphaus_filtered_pseudo_normed_group_hom M₁ M₂) :=
begin
apply mk_of_bound (- f.to_add_monoid_hom) (f.bound.some),
intro c,
refine ⟨_, _⟩,
{ intros x hx,
simp only [comphaus_filtered_pseudo_normed_group_hom.coe_mk],
convert pseudo_normed_group.neg_mem_filtration (f.bound.some_spec hx) },
let f₀ : filtration M₁ c → filtration M₂ (f.bound.some * c) := λ x, ⟨f x, f.bound.some_spec x.2⟩,
have hf₀ : continuous f₀ := f.continuous _ (λ x, rfl),
exact (continuous_neg' _).comp hf₀,
end
instance : add_comm_group (comphaus_filtered_pseudo_normed_group_hom M₁ M₂) :=
{ add := cfpng_hom_add,
add_assoc := by {intros, ext, apply add_assoc},
zero := 0,
zero_add := by {intros, ext, apply zero_add},
add_zero := by {intros, ext, apply add_zero},
neg := cfpng_hom_neg,
add_left_neg := by {intros, ext, apply add_left_neg},
add_comm := by {intros, ext, apply add_comm} }
variable (S)
/-- The map on Laurent measures induced by multiplication by `T⁻¹ - 2` on `ℤ((T))ᵣ`. -/
def Φ : comphaus_filtered_pseudo_normed_group_hom (ℒ S) (ℒ S) := shift (1) - 2 • id
-- variable {S}
lemma Φ_eq_ϕ (F : ℒ S) : Φ S F = ϕ F := rfl
-- after the Φ refactor the below lemma is no longer true
-- lemma Φ_bound_by_3 [fact (r ≤ 1)] :
-- (Φ S : comphaus_filtered_pseudo_normed_group_hom (ℒ S) (ℒ S)).bound_by 3 :=
-- begin
-- let sh : comphaus_filtered_pseudo_normed_group_hom (ℒ S) (ℒ S) := shift (-1),
-- let shup : comphaus_filtered_pseudo_normed_group_hom (ℒ S) (ℒ S) := shift (1),
-- have Hsh : sh.bound_by 1,
-- { refine (mk_of_bound_bound_by _ _ _).mono 1 _,
-- rw [neg_neg], exact (pow_one r).le.trans (fact.out _) },
-- have Hshup : shup.bound_by 1,
-- { refine (mk_of_bound_bound_by _ _ _).mono (1) _,
-- }
-- suffices : (sh + sh + (-id)).bound_by (1 + 1 + 1),
-- { convert this using 1, ext1, dsimp only [Φ_eq_ϕ, ϕ], erw two_nsmul, }, -- was refl
-- refine (Hsh.add Hsh).add (mk_of_bound_bound_by _ _ _).neg,
-- end
lemma Φ_natural (S T : Fintype) (f : S ⟶ T) (F : ℒ S) (t : T) (n : ℤ) :
Φ T (map f F) t n = laurent_measures.map f (Φ S F) t n :=
begin
simp [Φ_eq_ϕ, ϕ, finset.mul_sum],
end
end phi_to_hom
section theta
open theta real_measures
parameter (p : ℝ≥0)
local notation `r` := @r p
local notation `ℳ` := real_measures p
local notation `ℒ` := laurent_measures r
variable {S : Fintype.{u}}
local notation `ϖ` := Fintype.of (punit : Type u)
def seval_ℒ_c (c : ℝ≥0) (s : S) : filtration (ℒ S) c → (filtration (ℒ ϖ) c) :=
λ F,
begin
refine ⟨seval_ℒ S s F, _⟩,
have hF := F.2,
simp only [filtration, set.mem_set_of_eq, seval_ℒ, nnnorm, laurent_measures.coe_mk,
fintype.univ_punit, finset.sum_singleton] at ⊢ hF,
have := finset.sum_le_sum_of_subset (finset.singleton_subset_iff.mpr $ finset.mem_univ_val _),
rw finset.sum_singleton at this,
apply le_trans this hF,
end
variable [fact (0 < p)]
lemma θ_zero : θ (0 : ℒ S) = 0 :=
begin
dsimp only [θ, theta.ϑ],
funext,
simp only [laurent_measures.zero_apply, int.cast_zero, zero_mul, tsum_zero, real_measures.zero_apply],
end
variable [fact (p < 1)]
lemma θ_add (F G : ℒ S) : θ (F + G) = θ F + θ G :=
begin
dsimp only [θ, theta.ϑ],
funext,
simp only [laurent_measures.add_apply, int.cast_add, one_div, inv_zpow', zpow_neg,
real_measures.add_apply, tsum_add],
rw ← tsum_add,
{ congr,
funext,
rw add_mul },
all_goals {apply summable_of_summable_norm, simp_rw [← inv_zpow, norm_mul, norm_zpow, norm_inv,
real.norm_two] },
exact aux_thm69.summable_smaller_radius_norm F.d half_lt_r (F.summable s) (λ n, lt_d_eq_zero _ _ _),
exact aux_thm69.summable_smaller_radius_norm G.d half_lt_r (G.summable s) (λ n, lt_d_eq_zero _ _ _),
end
--for mathlib
lemma nnreal.rpow_int_cast (x : ℝ≥0) (n : ℤ) : x ^ n = x ^ (n : ℝ) := by {
rw [← nnreal.coe_eq, nnreal.coe_zpow, ← real.rpow_int_cast, ← nnreal.coe_rpow] }
lemma nnreal.rpow_le_rpow_of_exponent_le {x : ℝ≥0} (x1 : 1 ≤ x) {y z : ℝ}
(hyz : y ≤ z) :
x ^ y ≤ x ^ z :=
by { cases x with x hx, exact real.rpow_le_rpow_of_exponent_le x1 hyz }
lemma nnreal.tsum_geom_arit_inequality (f: ℤ → ℝ) {r' : ℝ} (hr'1 : 0 < r') (hr'2 : r' ≤ 1)
(hs1 : summable (λ n, f n)) (hs2 : summable (λ n, ∥(f n)∥₊ ^ r')) :
∥ tsum (λ n, f n) ∥₊ ^ r' ≤ tsum (λ n, ∥(f n)∥₊ ^ r' ) :=
begin
rw ← summable_norm_iff at hs1,
simp_rw ← _root_.coe_nnnorm at hs1,
rw nnreal.summable_coe at hs1,
refine le_trans (nnreal.rpow_le_rpow (nnnorm_tsum_le hs1) hr'1.le) _,
have := λ s : finset ℤ, nnreal.rpow_sum_le_sum_rpow s (λ i, ∥f i∥₊) hr'1 hr'2,
dsimp only at this,
have s1' := filter.tendsto.comp (continuous.tendsto
(nnreal.continuous_rpow_const hr'1.le) _) hs1.has_sum,
dsimp [function.comp] at s1',
apply tendsto_le_of_eventually_le s1' hs2.has_sum,
delta filter.eventually_le,
convert filter.univ_sets _,
ext x,
simp [this],
end
lemma aux_bound (F : ℒ S) (s : S) : ∀ (b : ℤ), ∥(F s b : ℝ) ∥₊ ^ (p : ℝ) *
(2⁻¹ ^ (p : ℝ)) ^ (b : ℝ) ≤ ∥F s b∥₊ * r ^ b :=
begin
intro b,
rw [nnreal.rpow_int_cast],
refine mul_le_mul_of_nonneg_right _ (real.rpow_nonneg_of_nonneg (nnreal.coe_nonneg _) _),
have p_le_one : (p : ℝ) ≤ 1,
{ rw ← nnreal.coe_one,
exact (nnreal.coe_lt_coe.mpr $ fact.out _).le },
by_cases hF_nz : F s b = 0,
{ rw [hF_nz, int.cast_zero, nnnorm_zero, nnnorm_zero, nnreal.zero_rpow],
rw [ne.def, ← nnreal.coe_zero, nnreal.coe_eq, ← ne.def],
exact ne_of_gt (fact.out _) },
{ convert nnreal.rpow_le_rpow_of_exponent_le _ p_le_one,
{ rw nnreal.rpow_one,
refl },
{ refine not_lt.mp (λ hf, hF_nz (int.abs_lt_one_iff.mp _)),
suffices : (|F s b| : ℝ) < 1, exact_mod_cast this,
rw ← int.norm_eq_abs,
rwa [← nnreal.coe_lt_coe, ← nnnorm_norm, real.nnnorm_of_nonneg (norm_nonneg _)] at hf } }
end
lemma θ_bound : ∀ c : ℝ≥0, ∀ F : (ℒ S), F ∈ filtration (ℒ S) c → (θ F) ∈ filtration (ℳ S)
(1 * c) :=
begin
intros c F hF,
rw laurent_measures.mem_filtration_iff at hF,
dsimp only [laurent_measures.has_nnnorm] at hF,
rw [one_mul, real_measures.mem_filtration_iff],
dsimp only [real_measures.has_nnnorm, θ, theta.ϑ],
let T := S.2.1,
have ineq : ∀ (s ∈ T), ∥∑' (n : ℤ), ((F s n) : ℝ) * 2⁻¹ ^ n∥₊ ^ (p : ℝ) ≤ ∑' (n : ℤ),
∥ ((F s n) : ℝ) * 2⁻¹ ^ n∥₊ ^ (p : ℝ),
{ intros s hs,
apply nnreal.tsum_geom_arit_inequality (λ n, ((F s n) * 2⁻¹ ^ n)),
{ norm_num, exact fact.out _},
{ suffices : p ≤ 1, assumption_mod_cast, exact fact.out _},
{ dsimp only,
obtain ⟨d, hd⟩ := exists_bdd_filtration (r_pos) (r_lt_one) F,
apply aux_thm69.summable_smaller_radius d (F.summable s) (hd s) half_lt_r },
{ dsimp only,
simp_rw [nnnorm_mul, nnreal.mul_rpow],
have := F.summable s,
rw ← nnreal.summable_coe,
apply summable_of_nonneg_of_le (λ i, _) _ this, apply nnreal.zero_le_coe,
intro n,
push_cast,
apply mul_le_mul,
{ -- true because ∥integer∥ is either 0 or >= 1
norm_cast,
by_cases h : F s n = 0,
{ simp only [h, norm_zero],
refine le_of_eq (real.zero_rpow _),
norm_cast,
exact ne_of_gt (fact.out _) },
{ nth_rewrite 1 (real.rpow_one (∥F s n∥)).symm,
apply real.rpow_le_rpow_of_exponent_le,
{ rw [int.norm_eq_abs, le_abs'],
norm_cast,
rcases lt_trichotomy 0 (F s n) with (hF|hF|hF),
{ right, linarith },
{ exact false.elim (h hF.symm) },
{ left, change _ ≤ -(1 : ℤ), linarith, } },
{ norm_cast, exact fact.out _ } } },
{ apply le_of_eq,
rw [← r_coe],
rw real.norm_of_nonneg,
{ -- can't use pow_mul yet because one is int one is real
rw [← real.rpow_int_cast, ← real.rpow_int_cast],
rw [← real.rpow_mul, mul_comm, real.rpow_mul];
norm_num },
{ apply zpow_nonneg,
norm_num } },
{ refine (real.rpow_pos_of_pos _ _).le,
rw norm_pos_iff,
apply zpow_ne_zero,
norm_num, },
{ apply norm_nonneg, } } },
apply (finset.sum_le_sum ineq).trans,
simp_rw [nnnorm_mul, nnnorm_zpow, nnnorm_inv, nnreal.mul_rpow, real.nnnorm_two,
nnreal.rpow_int_cast, ← nnreal.rpow_mul (2 : ℝ≥0)⁻¹, mul_comm, nnreal.rpow_mul (2 : ℝ≥0)⁻¹],
apply le_trans _ hF,
apply finset.sum_le_sum,
intros s hs,
apply tsum_le_tsum,
exact aux_bound p F s,
refine nnreal.summable_of_le _ (F.2 s),
exacts [aux_bound p F s, F.2 s],
end
lemma θ_bound' : ∀ c : ℝ≥0, ∀ F : (ℒ S), F ∈ filtration (ℒ S) c → (θ F) ∈ filtration (ℳ S)
c :=by { simpa [one_mul] using (θ_bound p)}
def θ_to_add : (ℒ S) →+ (ℳ S) :=
{ to_fun := λ F, θ F,
map_zero' := θ_zero,
map_add' := θ_add, }
variable (S)
open theta metric real_measures
def seval_ℳ_c (c : ℝ≥0) (s : S) : filtration (ℳ S) c → (filtration (ℳ ϖ) c) :=
λ x,
begin
refine ⟨(λ _, x.1 s), _⟩,
have hx := x.2,
simp only [filtration, set.mem_set_of_eq, nnnorm, laurent_measures.coe_mk,
fintype.univ_punit, finset.sum_singleton] at ⊢ hx,
have := finset.sum_le_sum_of_subset (finset.singleton_subset_iff.mpr $ finset.mem_univ_val _),
rw finset.sum_singleton at this,
apply le_trans this hx,
end
-- **[FAE]** From here everything might be useless until `lemma inducing_cast_ℳ`: check
-- also the `variable (c : ℝ≥0)` issue; the idea is to replace cast_ℳ_c with α, for which
-- everything seems to work
variable (c : ℝ≥0)
def box := {F : (ℳ S) // ∀ s, ∥ F s ∥₊ ^ (p : ℝ) ≤ c }
instance : has_coe (box S c) (ℳ S) := by {dsimp only [box], apply_instance}
instance : topological_space (ℳ S) := by {dsimp only [real_measures], apply_instance}
instance : topological_space (box S c) := by {dsimp only [box], apply_instance}
def equiv_box_ϖ : (box S c) ≃ Π (s : S), (filtration (ℳ ϖ) c) :=
begin
fconstructor,
{ intros F s,
use seval_ℳ S s F.1,
simp only [real_measures.mem_filtration_iff, nnnorm, fintype.univ_punit,
finset.sum_singleton, seval_ℳ],
exact F.2 s },
{ intro G,
use λ s, (G s).1 punit.star,
intro s,
simpa only [real_measures.mem_filtration_iff, nnnorm, fintype.univ_punit,
finset.sum_singleton, seval_ℳ] using (G s).2 },
{ intro _,
ext s,
simpa only [seval_ℳ] },
{ intro G,
ext s,
simp only [seval_ℳ, subtype.val_eq_coe, subtype.coe_mk],
induction x,
refl }
end
def homeo_box_ϖ : (box S c) ≃ₜ Π (s : S), (filtration (ℳ ϖ) c) :=
{ to_equiv := equiv_box_ϖ S c,
continuous_to_fun := begin
apply continuous_pi,
intro s,
dsimp only [equiv_box_ϖ, seval_ℳ],
refine continuous_subtype_mk (λ (x : box p S c), equiv_box_ϖ._proof_3 p S c x s)
(continuous_pi (λ (i : ↥(Fintype.of punit)), _)),
exact continuous_pi_iff.mp continuous_induced_dom s,
end,
continuous_inv_fun :=
begin
dsimp only [equiv_box_ϖ, seval_ℳ],
refine continuous_subtype_mk (λ (x : ↥S → ↥(filtration (real_measures p (Fintype.of punit)) c)),
equiv_box_ϖ._proof_4 p S c x) _,
apply continuous_pi,
intro s,
have h : continuous (λ (a : S → (filtration (ℳ ϖ) c)), (a s).val)
:= continuous.subtype_coe (continuous_apply s),
have H := continuous_apply punit.star,
exact H.comp h,
end}
def α : filtration (ℳ S) c → box S c :=
begin
intro x,
use x,
have hx := x.2,
intro s,
simp only [filtration, set.mem_set_of_eq, nnnorm, laurent_measures.coe_mk,
fintype.univ_punit, finset.sum_singleton] at hx,
have := finset.sum_le_sum_of_subset (finset.singleton_subset_iff.mpr $ finset.mem_univ_val _),
rw finset.sum_singleton at this,
apply le_trans this hx,
end
lemma coe_α_coe : (coe : (box S c) → (ℳ S)) ∘ (α S c) = coe := by {funext _, refl}
lemma inducing_α : inducing (α S c) :=
begin
have ind_ind := @induced_compose _ _ (ℳ S) _ (α p S c) coe,
rw [coe_α_coe p S c] at ind_ind,
exact {induced := eq.symm ind_ind},
end
lemma seval_ℳ_α_commute (c : ℝ≥0) (s : S) :
(λ F, ((homeo_box_ϖ S c) ∘ (α S c)) F s) = (λ F, seval_ℳ_c S c s F) := rfl
lemma seval_ℳ_α_commute' {X : Type*} (c : ℝ≥0) {f : X → filtration (ℳ S) c} (s : S) :
(λ x, ((homeo_box_ϖ S c) ∘ (α S c)) (f x) s) = (λ x, seval_ℳ_c S c s (f x)) :=
begin
ext z,
have h_commute := @seval_ℳ_α_commute p S _ _ c s,
have := congr_fun h_commute (f z),
simp only at this,
rw this,
end
@[nolint unused_arguments]
def seval_ℒ_bdd_c (c : ℝ≥0) (S : Fintype) (A : finset ℤ) (s : S) :
laurent_measures_bdd r S A c → laurent_measures_bdd r ϖ A c :=
begin
intro F,
use λ _, F s,
have hF := F.2,
simp only [filtration, set.mem_set_of_eq, seval_ℒ, nnnorm, laurent_measures.coe_mk,
fintype.univ_punit, finset.sum_singleton] at ⊢ hF,
have := finset.sum_le_sum_of_subset (finset.singleton_subset_iff.mpr $ finset.mem_univ_val _),
rw finset.sum_singleton at this,
apply le_trans this hF,
end
lemma continuous_seval_ℒ_c (c : ℝ≥0) (s : S) : continuous (seval_ℒ_c c s) :=
begin
rw laurent_measures.continuous_iff,
intro A,
let := seval_ℒ_bdd_c p c S A s,
have h_trunc : (@truncate r ϖ c A) ∘ (seval_ℒ_c p c s) =
(seval_ℒ_bdd_c p c S A s) ∘ (@truncate r S c A),
{ ext ⟨F, hF⟩ π k,
dsimp only [seval_ℒ_bdd_c, seval_ℒ_c],
refl },
rw h_trunc,
apply continuous.comp,
apply continuous_of_discrete_topology,
apply truncate_continuous,
end
section topological_generalities
open metric set
variables {X : Type*} [topological_space X]
lemma reduction_balls {c : ℝ≥0} (f : X → (closed_ball (0 : ℝ) c)) (H : ∀ y : (closed_ball 0 c),
∀ ε : ℝ, is_open (f⁻¹' (ball y ε))) : continuous f :=
begin
rw continuous_def,
intros _ hU,
rw is_open_iff_forall_mem_open,
intros x hx,
obtain ⟨ε, h₀, hε⟩ := (is_open_iff.mp hU) (f x) (mem_preimage.mp hx),
use f⁻¹' (ball (f x) ε),
exact ⟨preimage_mono hε, H (f x) ε, mem_ball_self h₀⟩,
end
lemma mem_filtration_le_monomial (F : filtration (ℒ ϖ) c) (n : ℕ) :
∥ ((F.1 punit.star n) : ℝ) ∥ ≤ c * ( r⁻¹ ^ n) :=
begin
have h_le : ∑' n : ℤ, ∥ ((F.1 punit.star n) : ℝ) ∥ * r ^ n ≤ c,
{ have := (laurent_measures.mem_filtration_iff F.1 c).mp F.2,
rw laurent_measures.nnnorm_def at this,
simp only [fintype.univ_punit, finset.sum_singleton, ← nnreal.coe_le_coe,
nnreal.coe_tsum, nnreal.coe_mul, nnreal.coe_zpow, laurent_measures.coe_nnnorm] at this,
exact this },
have := @sum_le_tsum ℝ _ _ _ _ (λ n, ∥ ((F.1 punit.star n) : ℝ) ∥ * r ^ n) {n} _
(F.1.summable punit.star),
simp only [finset.sum_singleton, zpow_coe_nat] at this,
replace h_le := this.trans h_le,
rwa [← inv_mul_le_iff', inv_pow, inv_inv ((r : ℝ) ^ n), mul_comm],
{ apply pow_pos, rw inv_pos, apply r_pos },
{ rintros b -,
simp only [subtype.val_eq_coe],
exact mul_nonneg (norm_nonneg _) (zpow_nonneg (le_of_lt (nnreal.coe_pos.mpr r_pos)) b) },
end
lemma mem_filtration_sum_le_geom (F : filtration (ℒ ϖ) c) (B : ℕ) : ∥ ∑' n : {x : ℕ // B ≤ x},
((F.1 punit.star n) : ℝ) * 2⁻¹ ^ n.1 ∥ ≤ ∥ (c : ℝ) * ∑' n : {x : ℕ // B ≤ x}, (2⁻¹ * r⁻¹) ^ n.1 ∥ :=
begin
have two_r_nonneg : 0 ≤ (2⁻¹ * r⁻¹ : ℝ) := by {refine mul_nonneg (inv_nonneg.2 two_pos.le) (inv_nonneg.2 r.2) },
have h_inj : function.injective (coe : {x : ℕ // B ≤ x} → ℕ) := subtype.coe_injective,
have geom_pos : (0 : ℝ) ≤ c * ∑' (n : {x // B ≤ x}), (2⁻¹ * r⁻¹) ^ n.1,
{ apply mul_nonneg c.2 (tsum_nonneg _),
intro b,
apply pow_nonneg (two_r_nonneg) },
nth_rewrite 1 [real.norm_eq_abs],
rw [abs_eq_self.mpr geom_pos],
apply (norm_tsum_le_tsum_norm _).trans,
rw [← tsum_mul_left],
apply tsum_le_tsum,
{ intro b,
rw [norm_mul, mul_pow, mul_comm ((2⁻¹ : ℝ) ^ b.1) _, ← mul_assoc],
rw [norm_pow, norm_inv, real.norm_two ],
apply (mul_le_mul_right _).mpr,
apply mem_filtration_le_monomial p c F,
simp only [one_div, inv_pos, pow_pos, zero_lt_bit0, zero_lt_one] },
swap,
{ by_cases hc : (c : ℝ) ≠ 0,
{ rw [← summable_mul_left_iff hc],
have two_r_lt : (2⁻¹ * r⁻¹ : ℝ) < 1,
{ have := (div_lt_one (nnreal.coe_lt_coe.mpr (r_pos))).mpr half_lt_r,
simp only [← inv_eq_one_div] at this ⊢,
rw [div_eq_mul_inv, nnreal.coe_inv] at this,
convert this,
assumption', },
exact (summable_geometric_of_lt_1 two_r_nonneg two_r_lt).comp_injective h_inj,
},
{ rw not_ne_iff at hc,
simp_rw [hc, zero_mul],
exact summable_zero }, },
all_goals { simp_rw [norm_mul, norm_pow, norm_inv, real.norm_two, subtype.val_eq_coe],
refine ((aux_thm69.summable_iff_on_nat_less F.1.d _).mp (aux_thm69.summable_smaller_radius_norm
F.1.d (half_lt_r) (F.1.summable punit.star)
(λ n, lt_d_eq_zero F.1 punit.star n))).comp_injective h_inj,
intros n hn,
rw [lt_d_eq_zero F.1 punit.star n hn, norm_zero, zero_mul] },
end
def geom_B_nat (ε : ℝ) (hε : 0 < ε) : {B : ℕ // ∀ (F : filtration (ℒ ϖ) c), ∥ tsum (λ b :
{n : ℕ // B ≤ n }, ((F.1 punit.star b.1) : ℝ) * 2⁻¹ ^ b.1 ) ∥ < ε ^ (p⁻¹ : ℝ)} :=
begin
let g := (λ n : ℕ, (c : ℝ) * ((2⁻¹ * r⁻¹) ^ n)),
have := tendsto_tsum_compl_at_top_zero g,
rw tendsto_at_top at this,
have h_pos : 0 < ε ^ (p⁻¹ : ℝ) := real.rpow_pos_of_pos hε _,
specialize this (ε ^ (p⁻¹ : ℝ)) h_pos,
let A := this.some,
let B₀ : option ℕ → ℕ := λ a : (option ℕ), option.rec_on a (0 : ℕ) (λ n, n),
set B := (B₀ A.max).succ with hB,
use B,
have h_incl : A ≤ finset.range B,
rw finset.le_eq_subset,
{ by_cases H : A.nonempty,
{ intros a ha,
obtain ⟨s, hs⟩ := finset.max_of_nonempty H,
replace hB : s.succ = B, { simp only [*, option.mem_def], refl, },
have h_mem := finset.mem_range_succ_iff.mpr (finset.le_max_of_mem ha hs),
rwa hB at h_mem },
{ intros a ha,
rw [finset.not_nonempty_iff_eq_empty] at H,
finish }},
let hA := this.some_spec,
specialize hA (finset.range B) h_incl,
rw [real.dist_0_eq_abs, ← real.norm_eq_abs] at hA,
intro F,
apply lt_of_le_of_lt (mem_filtration_sum_le_geom p c F B),
convert hA using 1,
apply congr_arg,
simp_rw [subtype.val_eq_coe, ← tsum_mul_left],
have set_eq : {n : ℕ | B ≤ n} = {n : ℕ | n ∉ finset.range B} :=
by {simp only [finset.mem_range, not_lt]},
exact tsum_congr_subtype g set_eq,
end
def eq_le_int_nat (B : ℕ) : {n : ℤ // (B : ℤ) ≤ n } ≃ {n : ℕ // B ≤ n} :=
{ to_fun :=
begin
intro b,
use (int.eq_coe_of_zero_le ((int.coe_nat_nonneg B).trans b.2)).some,
rw ← int.coe_nat_le,
convert b.2,
exact (Exists.some_spec (int.eq_coe_of_zero_le ((int.coe_nat_nonneg B).trans b.2))).symm,
end,
inv_fun := λ n, ⟨n, by {simp only [coe_coe, int.coe_nat_le], from n.2}⟩,
left_inv :=
begin
rintro ⟨_, h⟩,
simp only [coe_coe, subtype.coe_mk],
exact (Exists.some_spec (int.eq_coe_of_zero_le ((int.coe_nat_nonneg B).trans h))).symm,
end,
right_inv :=
begin
rintro ⟨_, h⟩,
simp only [coe_coe, subtype.coe_mk, int.coe_nat_inj'],
exact ((@exists_eq' _ _).some_spec).symm,
end, }
def geom_B_int (ε : ℝ) (hε : 0 < ε) : {B : ℤ // ∀ (F : filtration (ℒ ϖ) c), ∥ tsum (λ b :
{n : ℤ // B ≤ n }, ((F.1 punit.star b.1) : ℝ) * 2⁻¹ ^ b.1 ) ∥ < ε ^ (p⁻¹ : ℝ)} :=
begin
let ℬ := geom_B_nat p c ε hε,
let B := ℬ.1,
let hB := ℬ.2,
use B,
intro F,
specialize hB F,
convert hB using 1,
apply congr_arg,
exact ((eq_le_int_nat B).symm.tsum_eq (λ b : {n : ℤ // ↑B ≤ n },
((F.1 punit.star b.1) : ℝ) * 2⁻¹ ^ b.1 )).symm,
end
def geom_B (ε : ℝ) (hε : 0 < ε) : ℤ := (geom_B_int c ε hε).1
lemma tail_B (ε : ℝ) (hε : 0 < ε) : ∀ (F : filtration (ℒ ϖ) c), ∥ tsum (λ b : {n : ℤ // geom_B c ε hε ≤ n },
((F.1 punit.star b.1) : ℝ) * 2⁻¹ ^ b.1 ) ∥ < ε ^ (p⁻¹ : ℝ) :=
begin
intro F,
have := (geom_B_int p c ε hε).2 F,
exact this,
end
def U (F : filtration (ℒ ϖ) c) (B : ℤ) : set (filtration (ℒ ϖ) c) :=
λ G, ∀ s n, n < B → F s n = G s n
lemma mem_U (F : filtration (ℒ ϖ) c) (B : ℤ) : F ∈ (U c F B) := λ _ _ _, rfl
lemma explodes_pow_r (ρ : ℝ≥0) (h₀ : 0 < ρ.1) (h₁ : ρ.1 < 1) (c : ℝ≥0) :
∃ n₀ : ℤ, ∀ (m : ℤ), m < n₀ → c < ρ ^ m :=
begin
convert_to ∃ n₀ : ℕ, ∀ (m : ℕ), (- m : ℤ) < - n₀ → (c : ℝ) < ρ ^ ( - m : ℤ) using 0,
{ simp only [neg_lt_neg_iff, int.coe_nat_lt, zpow_neg, zpow_coe_nat, eq_iff_iff],
split,
{ rintro ⟨n₀, hn₀⟩,
induction n₀,
{ use n₀,
intros m hm,
rw [← int.coe_nat_lt] at hm,
replace hm := neg_lt.mpr (lt_of_le_of_lt (neg_le_self (int.coe_nat_nonneg _)) hm),
specialize hn₀ (- m) hm,
rwa [← nnreal.coe_lt_coe, nnreal.coe_zpow, zpow_neg] at hn₀ },
{ use n₀ + 1,
intros m hm,
rw [← int.coe_nat_lt, ← neg_lt_neg_iff, ← int.neg_succ_of_nat_coe] at hm,
specialize hn₀ (- m) hm,
rwa [← nnreal.coe_lt_coe, nnreal.coe_zpow, zpow_neg] at hn₀ },},
{ rintro ⟨n₀, hn₀⟩,
use - n₀,
rintro ⟨m⟩ hm,
{ have := right.neg_nonpos_iff.mpr (int.of_nat_nonneg n₀),
rw [int.of_nat_eq_coe] at this,
replace := ne_of_lt (lt_of_lt_of_le (lt_of_le_of_lt (int.of_nat_nonneg m) hm) this),
finish },
{ rw [int.neg_succ_of_nat_coe, neg_lt_neg_iff, int.coe_nat_lt] at hm,
specialize hn₀ (m + 1) hm,
rwa [int.neg_succ_of_nat_coe, ← nnreal.coe_lt_coe, zpow_neg, zpow_coe_nat, nnreal.coe_inv,
nnreal.coe_pow] }}},
have h := (tendsto_pow_at_top_nhds_within_0_of_lt_1 h₀ h₁).inv_tendsto_zero,
simp_rw [← zpow_coe_nat] at h,
have : (λ (n : ℕ), ρ.1 ^ (n : ℤ))⁻¹ = (λ (n : ℕ), ρ.1 ^ (- n : ℤ)) := by {ext,
simp only [pi.inv_apply, zpow_neg] },
rw [this, filter.tendsto_at_top] at h,
specialize h (c + 1),
rw [nnreal.val_eq_coe] at h,
simp_rw [← nnreal.coe_zpow] at h,
obtain ⟨n₀, hn₀⟩ := filter.eventually.exists_forall_of_at_top h,
use n₀,
intros m hm,
rw [neg_lt_neg_iff, int.coe_nat_lt] at hm,
replace hm := le_of_lt hm,
specialize hn₀ m hm,
rw nnreal.coe_zpow at hn₀,
refine lt_of_lt_of_le _ hn₀,
exact lt_add_one _,
end
lemma is_open_U (F : filtration (ℒ ϖ) c) (B : ℤ) : is_open (U c F B) :=
begin
let ι : filtration (ℒ ϖ) c → Π (i : ℤ), ℤ :=
λ t i, truncate {i} t punit.star ⟨i,by simp⟩,
have hι : continuous ι,
{ rw continuous_pi_iff, intros i,
dsimp [ι],
change continuous ((λ (t : laurent_measures_bdd r ϖ {i} c),
t punit.star ⟨i,by simp⟩) ∘ truncate {i}),
refine continuous.comp continuous_bot (truncate_continuous «r» (Fintype.of punit) c {i}) },
obtain ⟨n₀,h₀⟩ : ∃ n₀ : ℤ, ∀ (m : ℤ) (H : ℒ ϖ) (hH : H ∈ filtration (ℒ ϖ) c),
m < n₀ → H punit.star m = 0,
{ obtain ⟨n₀,h₀⟩ : ∃ n₀ : ℤ, ∀ (m : ℤ), m < n₀ → c < r^m := explodes_pow_r r r_pos r_lt_one c,
use n₀, intros m H hH hm,
exact eq_zero_of_filtration H _ hH punit.star m (h₀ m hm) },
classical,
let UU : set (Π (i : ℤ), ℤ) :=
set.pi (set.Ico n₀ B) (λ i, if i ∈ set.Ico n₀ B then { F punit.star i } else ⊤),
have hUU : is_open UU,
{ apply is_open_set_pi, exact finite_Ico n₀ B,
intros a ha, trivial },
convert hUU.preimage hι,
ext G,
split,
{ intros hG, dsimp [U, UU, ι] at ⊢ hG,
intros i hi, rw if_pos hi,
simp only [mem_singleton_iff],
symmetry,
apply hG, exact hi.2 },
{ intros hG, dsimp [U, UU, ι] at ⊢ hG,
rintros ⟨⟩ n hn,
symmetry,
by_cases hn' : n < n₀,
{ erw [h₀ n G.1 G.2 hn', h₀ n F.1 F.2 hn'] },
push_neg at hn',
specialize hG n, simpa [hn', hn] using hG },
end
end topological_generalities
def θ_c (c : ℝ≥0) (T : Fintype) : (filtration (laurent_measures r T) c) →
(filtration (real_measures p T) c) :=
begin
intro f,
rw [← one_mul c],
use ⟨θ f, θ_bound p c f f.2⟩,
end
lemma commute_seval_ℒ_ℳ (c : ℝ≥0) (s : S) :
(θ_c c (Fintype.of punit)) ∘ (seval_ℒ_c c s) = (seval_ℳ_c S c s) ∘ (θ_c c S) := by simpa only
[seval_ℳ_c, seval_ℒ_c, seval_ℒ, θ_c, one_mul, subtype.coe_mk, eq_mpr_eq_cast, set_coe_cast]
lemma continuous_of_seval_ℳ_comp_continuous (c : ℝ≥0) {X : Type*} [topological_space X]
{f : X → (filtration (ℳ S) c)} : (∀ s, continuous ((seval_ℳ_c S c s) ∘ f)) → continuous f :=
begin
intro H,
replace H : ∀ (s : S), continuous (λ x : X, ((homeo_box_ϖ p S c) ∘ (α p S c)) (f x) s),
{ intro,
rw [seval_ℳ_α_commute' p S c s],
exact H s },
rw ← continuous_pi_iff at H,
convert_to (continuous (λ x, (homeo_box_ϖ p S c) (α p S c (f x)))) using 0,
{ apply eq_iff_iff.mpr,
rw [homeomorph.comp_continuous_iff, (inducing_α p S c).continuous_iff] },
exact H,
end
lemma tsum_subtype_sub {f g : ℤ → ℝ} {B : ℤ}
(hf : summable (λ (b : {x // B ≤ x}), f b * 2⁻¹ ^ b.1))
(hg : summable (λ (b : {x // B ≤ x}), g b * 2⁻¹ ^ b.1)) :
∥ tsum ((λ (b : ℤ), (((g b) : ℝ) - f b) * 2⁻¹ ^ b) ∘ (coe : {b | B ≤ b} → ℤ)) ∥ =
∥ ∑' (b : {x // B ≤ x}), (g b : ℝ) * 2⁻¹ ^ b.1 - ∑' (b : {x // B ≤ x}),
(f b : ℝ) * 2⁻¹ ^ b.1 ∥ :=
begin
rw [← tsum_sub hg hf, tsum_eq_tsum_of_has_sum_iff_has_sum],
intro _,
simp_rw [sub_mul, iff_eq_eq],
refl,
end
lemma aux_summability_no_norm (F : filtration (ℒ ϖ) c) : summable
(λ b : ℤ, (((F punit.star b) : ℝ) * 2⁻¹ ^ b)) := aux_thm69.summable_smaller_radius F.1.d (F.1.summable punit.star)
(λ n, lt_d_eq_zero F.1 punit.star n) half_lt_r
lemma aux_summability_subtype (F : filtration (ℒ ϖ) c) (B : ℤ) : summable (λ b : {x : ℤ // B ≤ x},
(((F punit.star b) : ℝ) * 2⁻¹ ^ b.1)) :=
by {exact (aux_summability_no_norm p c F).comp_injective subtype.coe_injective}
lemma pos_ε_pow (ε : ℝ) (hε : 0 < ε) : 0 < (ε / (2 : ℝ) ^ p.1) := by {apply div_pos hε
(real.rpow_pos_of_pos _ _), simp only [zero_lt_bit0, zero_lt_one]}
lemma dist_lt_of_mem_U (ε : ℝ≥0) (hε : 0 < ε) (F G : filtration (ℒ ϖ) c) :
G ∈ (U c F (geom_B c (ε / (2 : ℝ) ^ p.1) (pos_ε_pow ε hε))) → ∥ ((θ_c c ϖ G) : (ℳ ϖ)) - (θ_c c ϖ) F ∥ < ε :=
begin
intro h_mem_G,
rw real_measures.norm_def,
simp only [fintype.univ_punit, real_measures.sub_apply, finset.sum_singleton],
rw [← real.rpow_lt_rpow_iff _ _ _, ← real.rpow_mul,
mul_inv_cancel, real.rpow_one],
rotate,
{ rw ← nnreal.coe_zero,
exact ne_of_gt (nnreal.coe_lt_coe.mpr (fact.out _)) },
{ apply norm_nonneg },
{ apply real.rpow_nonneg_of_nonneg (norm_nonneg _) },
{ rw ← nnreal.coe_zero,
exact ε.2 },
{ rw [inv_pos, ← nnreal.coe_zero],
exact (nnreal.coe_lt_coe.mpr (fact.out _)) },
simp only [θ_c, one_mul, eq_mpr_eq_cast, set_coe_cast, subtype.coe_mk],
dsimp only [θ, ϑ],
have h_B : ∀ b : ℤ, b < (geom_B p c (ε / 2 ^ p.1) (pos_ε_pow p ε hε)) → ((G punit.star b) : ℝ) - (F punit.star b) = 0,
{ intros b hb,
simp only [h_mem_G punit.star b hb, sub_self] },
rw [← tsum_sub],
rotate,
{exact (aux_summability_no_norm p c G)},
{exact (aux_summability_no_norm p c F)},
simp_rw [← sub_mul],
set B := (geom_B p c (ε / 2 ^ p.1) (pos_ε_pow p ε hε)) with def_B,
let f := λ b : ℤ, ((((G : (ℒ ϖ)) punit.star b) - ((F : (ℒ ϖ)) punit.star b)) : ℝ)
* 2⁻¹ ^ b,
let g : ({ b : ℤ | B ≤ b}) → ℝ := f ∘ coe,
let i : function.support g → ℤ := (coe : { b : ℤ | B ≤ b} → ℤ) ∘ (coe : function.support g → { b : ℤ | B ≤ b}),
have hi : ∀ ⦃x y : ↥(function.support g)⦄, i x = i y → ↑x = ↑y,
{intros _ _ h,
simp only [subtype.coe_inj] at h,
rwa [subtype.coe_inj] },
have hf : function.support f ⊆ set.range i,
{ intros a ha,
simp only [f, function.mem_support, ne.def] at ha,
have ha' : B ≤ a,
{ by_contra',
specialize h_B a this,
simp only [one_div, inv_zpow', zpow_neg, mul_eq_zero, inv_eq_zero, not_or_distrib] at ha,
replace ha := ha.1,
simpa only },
simp only [set.mem_set_of_eq, function.mem_support, ne.def, set.mem_range, set_coe.exists],
use [a, ha', ha, refl _] },
have hF := tail_B p c (ε.1 / 2 ^ p.1) (pos_ε_pow p ε hε) F,
have hG := tail_B p c (ε.1 / 2 ^ p.1) (pos_ε_pow p ε hε) G,
have h02 : (0 : ℝ) ≤ 2 := two_pos.le,
have h02p : (0 : ℝ) ≤ 2 ^ p.val := real.rpow_nonneg_of_nonneg h02 _,
rw [real.div_rpow ε.2 h02p, ← real.rpow_mul h02] at hF hG,
simp_rw [@subtype.val_eq_coe _ _ p] at hF hG,
have hp0 : (p : ℝ) ≠ 0 := nnreal.coe_ne_zero.mpr (ne_of_gt (fact.out _)),
rw [mul_inv_cancel hp0, real.rpow_one] at hF hG,
rw [tsum_eq_tsum_of_ne_zero_bij i hi hf (λ _, refl _)],
dsimp only [f, g],
rw [tsum_subtype_sub],
rotate,
{ exact (aux_summability_subtype p c F B) },
{ exact (aux_summability_subtype p c G B) },
apply lt_of_le_of_lt (norm_sub_le _ _),
convert add_lt_add hG hF,
simp only [nnreal.val_eq_coe, add_halves'],
end
lemma coe_pow_half (η : ℝ) (η_pos' : 0 < η) (η₀ : ℝ≥0) (hη₀ : η₀ = ⟨η, le_of_lt η_pos'⟩) :
(η / 2) ^ (p : ℝ) = ((η₀ ^ (p : ℝ) : ℝ)) / 2 ^ (p.1) := by {rw [real.div_rpow (le_of_lt η_pos') _,
nnreal.val_eq_coe, hη₀, subtype.coe_mk], simp only [zero_le_bit0, zero_le_one]}
section
variables {c}
def ξ (F : filtration (ℒ ϖ) c) : ℝ :=
(homeo_filtration_ϖ_ball c) (θ_c c (Fintype.of punit) F)
def hξ (F : filtration (ℒ ϖ) c) :
ξ F = (homeo_filtration_ϖ_ball c) (θ_c c (Fintype.of punit) F) := rfl
lemma speed_aux' (ε η : ℝ) (η₀ : ℝ≥0) (hη₀ : η = η₀)
(y : (closed_ball (0 : ℝ) (c ^ (p : ℝ)⁻¹)))
(F G : (filtration (ℒ (Fintype.of punit)) c))
(hF : |(((homeo_filtration_ϖ_ball c) (θ_c c (Fintype.of punit) F)) : ℝ) - y| < ε)
(hη : η = ε - |(homeo_filtration_ϖ_ball c (θ_c c ϖ F)) - y|) (h_pos : 0 < (η / 2) ^ (p : ℝ))
(h_pos : 0 < (η / 2) ^ (p:ℝ))
(hp : 0 < (p:ℝ))
(η_pos' : 0 < η)
(h_η_η₀ : (η / 2) ^ (p:ℝ) = ↑η₀ ^ (p:ℝ) / 2 ^ p.val) (h_pos'')
(hG : G ∈ U c F (geom_B c ((↑η₀ ^ (p:ℝ) / 2 ^ p.val)) h_pos'')) :
∥(θ_c c (Fintype.of punit) G).val - (θ_c c (Fintype.of punit) F).val∥ < η ^ (p:ℝ) :=
begin
have foo : 0 < η₀ ^ (p:ℝ),
{ apply real.rpow_pos_of_pos, rw ← hη₀, exact η_pos' },
-- exact dist_lt_of_mem_U p c (η₀ ^ (p : ℝ)) (real.rpow_pos_of_pos η_pos' _) F G hG
have := dist_lt_of_mem_U p c (η₀ ^ (p : ℝ)) foo F G hG,
convert this,
end
lemma speed_aux (ε η : ℝ) (η₀ : ℝ≥0) (hη₀ : η = η₀)
(y : (closed_ball (0 : ℝ) (c ^ (p : ℝ)⁻¹)))
(F G : (filtration (ℒ (Fintype.of punit)) c))
(hF : |(((homeo_filtration_ϖ_ball c) (θ_c c (Fintype.of punit) F)) : ℝ) - y| < ε)
(hη : η = ε - |(homeo_filtration_ϖ_ball c (θ_c c ϖ F)) - y|) (h_pos : 0 < (η / 2) ^ (p : ℝ))
(h_pos : 0 < (η / 2) ^ (p:ℝ))
(hp : 0 < (p:ℝ))
(η_pos' : 0 < η)
(h_η_η₀ : (η / 2) ^ (p:ℝ) = ↑η₀ ^ (p:ℝ) / 2 ^ p.val) (h_pos'')
(hG : G ∈ U c F (geom_B c ((↑η₀ ^ (p:ℝ) / 2 ^ p.val)) h_pos'')) :
|ξ G - ξ F| < ε - |ξ F - y| :=
begin
repeat {rw hξ},
rw [← real_measures.dist_eq,
← real.rpow_lt_rpow_iff
(real.rpow_nonneg_of_nonneg (real_measures.norm_nonneg _) _) (sub_nonneg.mpr (le_of_lt hF)) hp,
← real.rpow_mul (real_measures.norm_nonneg _),
inv_mul_cancel (ne_of_gt hp), real.rpow_one, ← hη],
apply speed_aux', assumption'
end
lemma speed (ε η : ℝ) (y : closed_ball (0 : ℝ) (c ^ (p⁻¹ : ℝ)))
(F G : filtration (ℒ ϖ) c)
(hF : |(((homeo_filtration_ϖ_ball c) (θ_c c (Fintype.of punit) F)) : ℝ) - y| < ε)
(hη : η = ε - |(homeo_filtration_ϖ_ball c (θ_c c ϖ F)) - y|) (h_pos : 0 < (η / 2) ^ (p : ℝ))
(hG : G ∈ U c F (geom_B c ((η / 2) ^ (p:ℝ)) h_pos)) :
|(ξ G) - (ξ F)| + |(ξ F) - y| < ε - |(ξ F) - y| + |(ξ F) - y| :=
begin
have hp : 0 < (p : ℝ), { rw [← nnreal.coe_zero, nnreal.coe_lt_coe], from fact.out _ },
have η_pos' : 0 < η := by {rw hη, from (sub_pos.mpr hF)},
set η₀ : ℝ≥0 := ⟨η, le_of_lt η_pos'⟩ with hη₀,
have h_η_η₀ := @coe_pow_half p _ _ η η_pos' η₀ hη₀,
simp_rw [h_η_η₀] at hG,
apply add_lt_add_right,
apply @speed_aux p _ _ c ε η η₀ _ y F G,
assumption',
rw hη₀, refl,
end
end
lemma U_subset_preimage' (ε η : ℝ) (y : closed_ball (0 : ℝ) (c ^ (p⁻¹ : ℝ)))
(F : filtration (ℒ ϖ) c)
(hF : |(((homeo_filtration_ϖ_ball c) (θ_c c (Fintype.of punit) F)) : ℝ) - y| < ε)
(hη : η = ε - |(homeo_filtration_ϖ_ball c (θ_c c ϖ F)) - y|) (h_pos : 0 < (η / 2) ^ (p : ℝ))
(G : (filtration (ℒ (Fintype.of punit)) c))
(hG : G ∈ U c F (geom_B c ((η / 2) ^ (p:ℝ)) h_pos)) :
|ξ G - y| < ε :=
begin
have aux : |(ξ p G) - (ξ p F)| + |(ξ p F) - y | < ε - | (ξ p F) - y | + | (ξ p F) - y |,
{ apply speed; assumption },
replace aux : |(ξ p G) - (ξ p F)| + |(ξ p F) - y | < ε,
{ rwa [sub_add_cancel ε (| (ξ p F) - y |)] at aux },
have := lt_of_le_of_lt (abs_sub_le (ξ p G) (ξ p F) y) aux,
rw ← real.norm_eq_abs at this ⊢,
exact this,
end
lemma U_subset_preimage (ε η : ℝ) (y : closed_ball (0 : ℝ) (c ^ (p⁻¹ : ℝ)))
(F : filtration (ℒ ϖ) c)
(hF : |(((homeo_filtration_ϖ_ball c) (θ_c c (Fintype.of punit) F)) : ℝ) - y| < ε)
(hη : η = ε - |(homeo_filtration_ϖ_ball c (θ_c c ϖ F)) - y|) (h_pos : 0 < (η / 2) ^ (p : ℝ)) :
(U c F (geom_B c ((η / 2) ^ (p : ℝ)) h_pos) ) ⊆
((homeo_filtration_ϖ_ball c) ∘ θ_c c (ϖ) ⁻¹' (ball y ε)) :=
begin
intros G hG,
simp only [set.mem_preimage, one_mul, eq_self_iff_true, eq_mpr_eq_cast, set_coe_cast,
function.comp_app, mem_ball, subtype.dist_eq, real.dist_eq],
apply U_subset_preimage'; assumption,
end
-- This is the main continuity property needed in `ses2.lean`
theorem continuous_θ_c (c : ℝ≥0) : continuous (θ_c c S) :=
begin
apply continuous_of_seval_ℳ_comp_continuous,
intro s,
rw ← commute_seval_ℒ_ℳ,
refine continuous.comp _ (continuous_seval_ℒ_c p S c s),
apply (homeo_filtration_ϖ_ball c).comp_continuous_iff.mp,
apply reduction_balls,
intros y ε,
rw is_open_iff_forall_mem_open,
intros F hF,
simp only [set.mem_preimage, one_mul, eq_self_iff_true, eq_mpr_eq_cast, set_coe_cast,
function.comp_app, mem_ball, subtype.dist_eq, real.dist_eq] at hF,
set η := ε - |(homeo_filtration_ϖ_ball c (θ_c p c ϖ F)) - y| with hη,
have η_pos' : 0 < η := by {rw hη, from (sub_pos.mpr hF)},
have η_pos : 0 < (η / 2) ^ (p : ℝ) := real.rpow_pos_of_pos (half_pos η_pos') _,
set V := U p c F (geom_B p c ((η / 2) ^ (p : ℝ)) η_pos) with hV,
simp_rw [real.div_rpow (le_of_lt η_pos') (le_of_lt (@two_pos ℝ _ _))] at hV,
use V,
exact and.intro (U_subset_preimage p c ε η y F hF hη η_pos)
(and.intro (is_open_U p c F _) (mem_U p c F _)),
end
end theta
end laurent_measures_ses
|