Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 17,695 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
import system_of_complexes.double
import system_of_complexes.truncate
import normed_snake
import category_theory.concrete_category
import thm95.constants.spectral_constants
noncomputable theory
open_locale nnreal
open category_theory
universe variables u
namespace system_of_double_complexes
@[simps]
def truncate : system_of_double_complexes.{u} ⥤ system_of_double_complexes.{u} :=
(whiskering_right _ _ _).obj $
@functor.map_homological_complex _ _ _ _ _ _ _ _ SemiNormedGroup.truncate.additive.{u} _
-- TODO: why do I need to give the instance manually? ↑ ↑ ↑
namespace truncate
variables (M : system_of_double_complexes.{u})
-- defeq abuse for the win!!!
lemma row (p : ℕ) :
(truncate.obj M).row p = system_of_complexes.truncate.obj (M.row p) := rfl
lemma col_pos (q : ℕ) :
(truncate.obj M).col (q+1) = M.col (q+1+1) :=
rfl
@[simp]
lemma d'_zero_one (c : ℝ≥0) (p : ℕ) (x : M.X c p 1) :
(truncate.obj M).d' 0 1 (SemiNormedGroup.explicit_cokernel_π _ x) = M.d' 1 2 x := rfl
@[simp]
lemma d_π (c : ℝ≥0) (p p' : ℕ) (x : M.X c p 1) :
@d (truncate.obj M) _ p p' 0 (SemiNormedGroup.explicit_cokernel_π _ x) =
SemiNormedGroup.explicit_cokernel_π _ (M.d p p' x) := rfl
@[simp]
lemma res_π (c₁ c₂ : ℝ≥0) (p : ℕ) (h : fact (c₁ ≤ c₂)) (x : M.X c₂ p 1) :
@res (truncate.obj M) _ _ p 0 h (SemiNormedGroup.explicit_cokernel_π _ x) =
SemiNormedGroup.explicit_cokernel_π _ (M.res x) := rfl
def quotient_map : M.col 1 ⟶ (truncate.obj M).col 0 :=
{ app := λ c,
{ f := λ p, SemiNormedGroup.explicit_cokernel_π _,
comm' := λ p p' _, by { ext, refl } },
naturality' := by { intros, ext, refl } }
lemma admissible (hM : M.admissible) : (truncate.obj M).admissible :=
{ d_norm_noninc' := λ c p' p q h,
begin
cases q,
{ apply SemiNormedGroup.explicit_cokernel_desc_norm_noninc,
exact (SemiNormedGroup.norm_noninc_explicit_cokernel_π _).comp (hM.d_norm_noninc _ _ _ _) },
{ exact hM.d_norm_noninc c p' p _ }
end,
d'_norm_noninc' := λ c p,
((M.row p).truncate_admissible (hM.row p)).d_norm_noninc' c,
res_norm_noninc := λ c₁ c₂ p,
((M.row p).truncate_admissible (hM.row p)).res_norm_noninc c₁ c₂ }
end truncate
open opposite
structure normed_spectral_homotopy {row₀ row₁ : system_of_complexes.{u}} (d : row₀ ⟶ row₁)
(m : ℕ) (k' ε : ℝ≥0) [fact (1 ≤ k')] (c₀ H : ℝ≥0) [fact (0 < H)] :=
(h : Π (q : ℕ) {q' : ℕ} {c}, row₀ (k' * c) q' ⟶ row₁ c q)
(norm_h_le : ∀ (q q' : ℕ) (hq : q ≤ m) (hq' : q+1 = q') (c) [fact (c₀ ≤ c)],
∥(h q : row₀ (k' * c) q' ⟶ row₁ c q)∥ ≤ H)
(δ : Π (c : ℝ≥0), row₀.obj (op $ c) ⟶ row₁.obj (op $ k' * c))
(hδ : ∀ (c : ℝ≥0) [fact (c₀ ≤ c)] (q : ℕ) (hq : q ≤ m),
(system_of_complexes.res : row₀ (k' * (k' * c)) q ⟶ _) ≫ (δ c).f q =
d.apply ≫ system_of_complexes.res + row₀.d q (q+1) ≫ h q + h (q-1) ≫ row₁.d (q-1) q)
(norm_δ_le : ∀ (c : ℝ≥0) [fact (c₀ ≤ c)] (q : ℕ) (hq : q ≤ m), ∥(δ c).f q∥ ≤ ε)
.
lemma normed_spectral_homotopy.hδ_apply {row₀ row₁ : system_of_complexes.{u}} {d : row₀ ⟶ row₁}
{m : ℕ} {k' ε : ℝ≥0} [fact (1 ≤ k')] {c₀ H : ℝ≥0} [fact (0 < H)]
(NSH : normed_spectral_homotopy d m k' ε c₀ H)
(c : ℝ≥0) [fact (c₀ ≤ c)] (q : ℕ) (hq : q ≤ m) (x : row₀ (k' * (k' * c)) q) :
(NSH.δ c).f q (system_of_complexes.res x) =
system_of_complexes.res (d x) + NSH.h q (row₀.d q (q+1) x) + row₁.d (q-1) q (NSH.h (q-1) x) :=
begin
show ((system_of_complexes.res : row₀ (k' * (k' * c)) q ⟶ _) ≫ (NSH.δ c).f q) x = _,
rw NSH.hδ c q hq,
dsimp, refl
end
def normed_spectral_homotopy.of_iso {row₀ row₁ : system_of_complexes.{u}} {d : row₀ ⟶ row₁}
{m : ℕ} {k' ε : ℝ≥0} [fact (1 ≤ k')] {c₀ H : ℝ≥0} [fact (0 < H)]
(NSH : normed_spectral_homotopy d m k' ε c₀ H)
(row'₀ row'₁ : system_of_complexes.{u}) (d' : row'₀ ⟶ row'₁)
(φ₀ : row₀ ≅ row'₀) (φ₁ : row₁ ≅ row'₁)
(hφ₀ : ∀ c i (x : row'₀ c i), ∥φ₀.inv x∥ = ∥x∥)
(hφ₁ : ∀ c i (x : row₁ c i), ∥φ₁.hom x∥ = ∥x∥)
(hcomm : d' = φ₀.inv ≫ d ≫ φ₁.hom) :
normed_spectral_homotopy d' m k' ε c₀ H :=
{ h := λ q q' c, φ₀.inv.apply ≫ NSH.h q ≫ φ₁.hom.apply,
δ := λ c, φ₀.inv.app (op $ c) ≫ NSH.δ c ≫ φ₁.hom.app (op $ k' * c),
norm_h_le :=
begin
introsI q q' hqm hq' c hc,
refine normed_add_group_hom.op_norm_le_bound _ (nnreal.coe_nonneg H) (λ x, _),
calc ∥φ₁.hom (NSH.h q (φ₀.inv x))∥
= ∥NSH.h q (φ₀.inv x)∥ : hφ₁ _ _ _
... ≤ ↑H * ∥φ₀.inv x∥ :
normed_add_group_hom.le_of_op_norm_le _ (NSH.norm_h_le _ _ hqm hq' _) (φ₀.inv x)
... = ↑H * ∥x∥ : congr_arg _ (hφ₀ _ _ _),
end,
hδ :=
begin
introsI c hc q hq,
ext1 x,
have := congr_arg (λ x, φ₁.hom x) (NSH.hδ_apply c q hq (φ₀.inv x)),
simp only [coe_comp, hcomm, system_of_complexes.res_apply, system_of_complexes.d_apply] at this ⊢,
refine this.trans _, clear this,
calc φ₁.hom (d (φ₀.inv (system_of_complexes.res x)) +
(NSH.h q) (φ₀.inv (row'₀.d q (q+1) x)) +
(row₁.d (q - 1) q) (NSH.h (q - 1) (φ₀.inv x)))
= φ₁.hom (d (φ₀.inv (system_of_complexes.res x)) +
(NSH.h q) (φ₀.inv (row'₀.d q (q+1) x))) +
φ₁.hom ((row₁.d (q - 1) q) (NSH.h (q - 1) (φ₀.inv x))) : _
... = _ : _,
{ apply normed_add_group_hom.map_add' },
congr' 1,
{ refine (normed_add_group_hom.map_add' _ _ _).trans _,
simp only [← comp_apply, ← system_of_complexes.res_comp_apply], refl },
{ erw [system_of_complexes.d_apply], refl }
end,
norm_δ_le := λ c hc q hq,
begin
resetI,
refine normed_add_group_hom.op_norm_le_bound _ (nnreal.coe_nonneg ε) _,
rintro (x : row'₀ c q),
calc ∥φ₁.hom ((NSH.δ c).f q (φ₀.inv x))∥
= ∥(NSH.δ c).f q (φ₀.inv x)∥ : hφ₁ _ _ _
... ≤ ↑ε * ∥φ₀.inv x∥ : normed_add_group_hom.le_of_op_norm_le _ (NSH.norm_δ_le _ _ hq) (φ₀.inv x)
... = ↑ε * ∥x∥ : congr_arg _ (hφ₀ _ _ _),
end }
/-- The assumptions on `M` in Proposition 9.6 bundled into a structure. -/
structure normed_spectral_conditions (M : system_of_double_complexes.{u})
(m : ℕ) (k K k' ε : ℝ≥0) [fact (1 ≤ k)] [fact (1 ≤ k')] (c₀ H : ℝ≥0) [fact (0 < H)] :=
(row_exact : 0 < m → ∀ i ≤ m + 1, (M.row i).is_weak_bounded_exact k K (m-1) c₀)
(col_exact : ∀ j ≤ m, (M.col j).is_weak_bounded_exact k K m c₀)
(htpy : normed_spectral_homotopy (M.row_map 0 1) m k' ε c₀ H)
-- ergonomics: we bundle this assumption, instead of passing it around separately
(admissible : M.admissible)
.
namespace normed_spectral_conditions
variables {M : system_of_double_complexes.{u}}
variables {m : ℕ} {k K k' ε k₀ : ℝ≥0}
variables [fact (1 ≤ k)] [fact (1 ≤ k₀)] [fact (k₀ ≤ k')] [fact (1 ≤ k')]
variables {c₀ H : ℝ≥0} [fact (0 < H)]
lemma truncate_admissible (condM : M.normed_spectral_conditions m k K k' ε c₀ H) :
(truncate.obj M).admissible :=
truncate.admissible _ condM.admissible
variables (condM : M.normed_spectral_conditions (m+1) k K k' ε c₀ H)
include condM
lemma col_zero_exact :
((truncate.obj M).col 0).is_weak_bounded_exact (k*k*k) (K*(K*K+1)) m c₀ :=
begin
apply weak_normed_snake (M.col 0) (M.col 1) ((truncate.obj M).col 0)
(M.col_map 0 1) (truncate.quotient_map M)
(condM.col_exact 0 dec_trivial) (condM.col_exact 1 dec_trivial)
(condM.admissible.col 1),
{ intros c p, exact condM.admissible.d'_norm_noninc c p 0 1 },
{ intros c hc i hi x,
apply le_of_forall_pos_le_add,
intros ε' hε',
-- should we factor out a dedicated `weak_bounded_in_degrees_le_zero` lemma?
simpa only [exists_prop, row_res, d'_self_apply, exists_eq_left, sub_zero,
exists_and_distrib_left, zero_add, row_d, exists_eq_left', exists_const]
using condM.row_exact (nat.zero_lt_succ _) i hi c hc 0 (nat.zero_le _) x ε' hε' },
{ intros c i, apply quotient_add_group.ker_mk },
{ intros c p, exact SemiNormedGroup.is_quotient_explicit_cokernel_π _ }
end
-- morally `q'` is `q + 1`
def h_truncate : Π (q : ℕ) {q' : ℕ} {c : ℝ≥0},
(truncate.obj M).X (k' * c) 0 q' ⟶ (truncate.obj M).X c 1 q
| 0 1 c := condM.htpy.h 1 ≫ SemiNormedGroup.explicit_cokernel_π _
| (q+1) (q'+1) c := condM.htpy.h (q+2)
| _ _ _ := 0
@[simp]
lemma h_truncate_zero {c : ℝ≥0} (x : (truncate.obj M).X (k' * c) 0 1) :
condM.h_truncate 0 x = SemiNormedGroup.explicit_cokernel_π _ (condM.htpy.h 1 x) := rfl
lemma norm_h_truncate_le : ∀ (q q' : ℕ), q ≤ m → q+1 = q' → ∀ (c : ℝ≥0), fact (c₀ ≤ c) →
∥(condM.h_truncate q : (truncate.obj M).X (k' * c) 0 q' ⟶ _)∥ ≤ H
| (q+1) (q'+1) hq rfl := condM.htpy.norm_h_le _ _ (nat.succ_le_succ hq)
(by simp only [nat.add_def, add_zero])
| 0 1 hq rfl :=
begin
introsI c hc,
refine normed_add_group_hom.op_norm_le_bound _ (nnreal.coe_nonneg H) (λ x, _),
calc _ = ∥SemiNormedGroup.explicit_cokernel_π _ (condM.htpy.h 1 x)∥ : rfl
... ≤ ∥condM.htpy.h 1 x∥ : (SemiNormedGroup.is_quotient_explicit_cokernel_π _).norm_le _
... ≤ H * ∥x∥ : normed_add_group_hom.le_of_op_norm_le _ (condM.htpy.norm_h_le 1 2 dec_trivial rfl c) x
end
def δ_truncate (c : ℝ≥0) :
((truncate.obj M).row 0).obj (op $ c) ⟶ ((truncate.obj M).row 1).obj (op $ k' * c) :=
SemiNormedGroup.truncate.map (condM.htpy.δ c)
lemma hδ_truncate (c : ℝ≥0) [fact (c₀ ≤ c)] : ∀ (q : ℕ) (hq : q ≤ m),
(truncate.obj M).res ≫ (condM.δ_truncate c).f q = (d _ 0 1) ≫ (truncate.obj M).res +
(d' _ q (q+1)) ≫ condM.h_truncate q + (condM.h_truncate (q-1)) ≫ d' _ (q-1) q
| 1 h := condM.htpy.hδ _ _ (nat.succ_le_succ h)
| (q+2) h := condM.htpy.hδ _ _ (nat.succ_le_succ h)
| 0 h :=
begin
ext x, dsimp,
let π := λ c p, SemiNormedGroup.explicit_cokernel_π (@d' M c p 0 1),
obtain ⟨y, hy⟩ : ∃ x', π _ _ x' = (SemiNormedGroup.explicit_cokernel_π _ x) :=
SemiNormedGroup.explicit_cokernel_π_surjective (SemiNormedGroup.explicit_cokernel_π _ x),
transitivity π _ _ ((condM.htpy.δ c).f 1 (M.res x)), { refl },
erw condM.htpy.hδ_apply _ _ (nat.succ_le_succ h) x,
simp only [nat.zero_sub, d'_self_apply, add_zero, row_d,
truncate.d_π, truncate.res_π, truncate.d'_zero_one, h_truncate_zero,
map_add, SemiNormedGroup.explicit_cokernel_π_apply_dom_eq_zero],
refl
end
lemma norm_δ_truncate_le (c : ℝ≥0) [fact (c₀ ≤ c)] :
∀ (q : ℕ) (hq : q ≤ m), ∥(condM.δ_truncate c).f q∥ ≤ ε
| (q+1) h := condM.htpy.norm_δ_le c (q+2) (nat.succ_le_succ h)
| 0 h :=
begin
refine SemiNormedGroup.explicit_cokernel_desc_norm_le_of_norm_le _ _
(normed_add_group_hom.op_norm_le_bound _ (nnreal.coe_nonneg ε) (λ x, _)),
refine (SemiNormedGroup.norm_noninc_explicit_cokernel_π _ _).trans _,
exact normed_add_group_hom.le_of_op_norm_le _ (condM.htpy.norm_δ_le c _ (nat.succ_le_succ h)) _
end
def truncate :
(truncate.obj M).normed_spectral_conditions m (k*k*k) (K*(K*K+1)) k' ε c₀ H :=
{ row_exact :=
begin
intros hm i hi,
cases m, { exact (nat.not_lt_zero _ hm).elim },
suffices : ((truncate.obj M).row i).is_weak_bounded_exact k K m c₀,
{ apply this.of_le (condM.truncate_admissible.row i) _ _ le_rfl ⟨le_rfl⟩;
apply_instance },
rw truncate.row,
apply (M.row i).truncate_is_weak_bounded_exact,
{ refine condM.row_exact (nat.zero_lt_succ _) i (hi.trans (nat.le_succ _)), }
end,
col_exact :=
begin
rintro (j|j) hj,
{ exact condM.col_zero_exact },
{ rw truncate.col_pos,
refine (condM.col_exact (j+2) (nat.succ_le_succ hj)).of_le
(condM.admissible.col (j+2)) _ _ m.le_succ ⟨le_rfl⟩;
apply_instance }
end,
htpy :=
{ h := condM.h_truncate,
norm_h_le := condM.norm_h_truncate_le,
δ := condM.δ_truncate,
hδ := condM.hδ_truncate,
norm_δ_le := condM.norm_δ_truncate_le },
admissible := condM.truncate_admissible }
omit condM
variables {m_ : ℕ} {k_ K_ : ℝ≥0} [fact (1 ≤ k_)]
variables {ε_ : ℝ≥0} {k₀_ : ℝ≥0} [fact (1 ≤ k₀_)]
variables [fact (k₀_ ≤ k')] {c₀_ H_ : ℝ≥0} [fact (0 < H_)]
def of_le (cond : M.normed_spectral_conditions m k K k' ε c₀ H)
(hm : m_ ≤ m) (hk : fact (k ≤ k_)) (hK : fact (K ≤ K_)) (hε : ε ≤ ε_)
(hc₀ : fact (c₀ ≤ c₀_)) (hH : H ≤ H_) :
M.normed_spectral_conditions m_ k_ K_ k' ε_ c₀_ H_ :=
{ col_exact := λ j hj, (cond.col_exact j (hj.trans hm)).of_le (cond.admissible.col j) hk hK hm hc₀,
row_exact := λ hm_ i hi,
(cond.row_exact (hm_.trans_le hm) i (hi.trans $ nat.succ_le_succ hm)).of_le
(cond.admissible.row i) hk hK (nat.pred_le_pred hm) hc₀,
htpy :=
{ h := cond.htpy.h,
norm_h_le := λ q q' hq hq' c hc, have fact (c₀ ≤ c) := ⟨hc₀.out.trans hc.out⟩, by exactI
begin
refine normed_add_group_hom.op_norm_le_bound _ (nnreal.coe_nonneg H_) (λ x, _),
calc ∥cond.htpy.h q x∥ ≤ H * ∥x∥ :
normed_add_group_hom.le_of_op_norm_le _ (cond.htpy.norm_h_le q q' (hq.trans hm) hq' c) x
... ≤ H_ * ∥x∥ : mul_le_mul_of_nonneg_right hH (norm_nonneg x),
end,
δ := cond.htpy.δ,
hδ := λ c hc q hq, have fact (c₀ ≤ c) := ⟨hc₀.out.trans hc.out⟩,
by exactI cond.htpy.hδ c q (hq.trans hm),
norm_δ_le := λ c hc q hq, have fact (c₀ ≤ c) := ⟨hc₀.out.trans hc.out⟩, by exactI
begin
refine normed_add_group_hom.op_norm_le_bound _ (nnreal.coe_nonneg ε_) (λ x, _),
refine normed_add_group_hom.le_of_op_norm_le _ _ x,
exact le_trans (cond.htpy.norm_δ_le c q (hq.trans hm)) hε,
end },
admissible := cond.admissible }
end normed_spectral_conditions
namespace normed_spectral
/-- Base case of the induction for Proposition 9.6. -/
theorem base (c₀ H : ℝ≥0) [fact (0 < H)] (M : system_of_double_complexes.{u})
(k K k' : ℝ≥0) [hk : fact (1 ≤ k)] [hK : fact (1 ≤ K)] [fact (k₀ 0 k ≤ k')] [fact (1 ≤ k')]
(cond : M.normed_spectral_conditions 0 k K k' (ε 0 K) c₀ H) :
(M.row 0).is_weak_bounded_exact (k' * k') (2 * K₀ 0 K * H) 0 c₀ :=
begin
dsimp [k₀, K₀],
introsI c hc i hi,
interval_cases i, clear hi,
intros x ε' hε',
let φ : ℝ := ε' / 2,
have hφ : 0 < φ := div_pos hε' zero_lt_two,
have hδφ : ε' = φ + φ, { dsimp [φ], rw [← add_div, half_add_self] },
haveI : fact (k' * (k' * c) ≤ k' * k' * c) := by { rw mul_assoc, exact ⟨le_rfl⟩ },
have Hx1 := (cond.col_exact 0 le_rfl).of_le
(cond.admissible.col 0) ‹_› ⟨le_rfl⟩ le_rfl ⟨le_rfl⟩ c hc 0 le_rfl,
have Hx2 := normed_add_group_hom.le_of_op_norm_le _ (cond.htpy.norm_δ_le c 0 le_rfl) (M.res x),
have aux := cond.htpy.hδ_apply c 0 le_rfl (M.res x),
erw [res_res] at aux,
rw aux at Hx2,
simp only [row_d, col_d, d_self_apply, d'_self_apply, sub_zero, add_zero, smul_zero,
d_res, d'_res, res_res, one_div, row_res, units.coe_one, one_smul, row_map_apply] at Hx1 Hx2 ⊢,
refine ⟨0, 1, rfl, rfl, 0, _⟩,
obtain ⟨i, j, hi, hj, y1, hx1⟩ := Hx1 (M.res x) φ hφ,
simp [← eq_neg_iff_add_eq_zero] at hi hj, subst i, subst j,
simp only [d_self_apply, d'_self_apply, sub_zero,
nnreal.coe_mul, nnreal.coe_bit0, nnreal.coe_one, d_res] at hx1 ⊢,
erw [res_res] at hx1,
clear y1 Hx1,
replace Hx1 := mul_le_mul_of_nonneg_left hx1 (ε 0 K).coe_nonneg,
replace Hx2 := (norm_le_add_norm_add _ _).trans (add_le_add (Hx2.trans Hx1) le_rfl),
dsimp [ε] at Hx2,
have K0 : (K:ℝ) ≠ 0 := ne_of_gt (lt_of_lt_of_le zero_lt_one hK.out),
simp only [mul_add, add_assoc, mul_inv, mul_assoc, inv_mul_cancel_left₀ K0] at Hx2,
simp only [← div_eq_inv_mul, sub_half, ← sub_le_iff_le_add'] at Hx2,
simp only [sub_le_iff_le_add', div_le_iff' (zero_lt_two : (0:ℝ) < 2)] at Hx2,
replace Hx2 := mul_le_mul_of_nonneg_left Hx2 K.coe_nonneg,
simp only [mul_add, div_eq_inv_mul, add_comm φ,
mul_inv_cancel_left₀ (two_ne_zero : (2:ℝ) ≠ 0), mul_inv_cancel_left₀ K0] at Hx2,
refine hx1.trans _,
simp only [mul_comm (2:ℝ) K, mul_assoc, hδφ, ← add_assoc, ← mul_add, add_le_add_iff_right],
refine Hx2.trans _,
simp only [add_le_add_iff_right],
refine (mul_le_mul_of_nonneg_left _ K.coe_nonneg),
refine (mul_le_mul_of_nonneg_left _ zero_le_two),
refine le_trans (normed_add_group_hom.le_of_op_norm_le _ (cond.htpy.norm_h_le _ _ le_rfl rfl _) _) _,
refine mul_le_mul_of_nonneg_left (le_of_eq _) H.coe_nonneg,
apply norm_res_of_eq,
rw mul_assoc
end
.
end normed_spectral
open normed_spectral
/-- Proposition 9.6 in [Analytic] -/
theorem normed_spectral {m : ℕ} {c₀ H : ℝ≥0} [fact (0 < H)]
{M : system_of_double_complexes.{u}} {k K k' : ℝ≥0}
[fact (1 ≤ k)] [hK : fact (1 ≤ K)] [fact (k₀ m k ≤ k')] [fact (1 ≤ k')]
(cond : M.normed_spectral_conditions m k K k' (ε m K) c₀ H) :
(M.row 0).is_weak_bounded_exact (k' * k') (2 * K₀ m K * H) m c₀ :=
begin
unfreezingI { revert M k K k' },
induction m with m IH, { exact base c₀ H },
dsimp [ε, k₀, K₀],
introsI M k K k' _ _ _ _ cond,
rw ← system_of_complexes.truncate_is_weak_bounded_exact_iff,
{ exact IH cond.truncate },
{ refine @IH M (k*k*k) (K*(K*K+1)) k' _ _ _ _ (cond.of_le (m.le_succ) _ _ le_rfl ⟨le_rfl⟩ le_rfl),
all_goals { apply_instance } }
end
end system_of_double_complexes
|