Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 17,695 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import system_of_complexes.double
import system_of_complexes.truncate
import normed_snake
import category_theory.concrete_category

import thm95.constants.spectral_constants

noncomputable theory
open_locale nnreal
open category_theory

universe variables u

namespace system_of_double_complexes

@[simps]
def truncate : system_of_double_complexes.{u} ⥤ system_of_double_complexes.{u} :=
(whiskering_right _ _ _).obj $
  @functor.map_homological_complex _ _ _ _ _ _ _ _ SemiNormedGroup.truncate.additive.{u} _
-- TODO: why do I need to give the instance manually? ↑ ↑ ↑

namespace truncate

variables (M : system_of_double_complexes.{u})

-- defeq abuse for the win!!!
lemma row (p : ℕ) :
  (truncate.obj M).row p = system_of_complexes.truncate.obj (M.row p) := rfl

lemma col_pos (q : ℕ) :
  (truncate.obj M).col (q+1) = M.col (q+1+1) :=
rfl

@[simp]
lemma d'_zero_one (c : ℝ≥0) (p : ℕ) (x : M.X c p 1) :
  (truncate.obj M).d' 0 1 (SemiNormedGroup.explicit_cokernel_π _ x) = M.d' 1 2 x := rfl

@[simp]
lemma d_π (c : ℝ≥0) (p p' : ℕ) (x : M.X c p 1) :
  @d (truncate.obj M) _ p p' 0 (SemiNormedGroup.explicit_cokernel_π _ x) =
  SemiNormedGroup.explicit_cokernel_π _ (M.d p p' x) := rfl

@[simp]
lemma res_π (c₁ c₂ : ℝ≥0) (p : ℕ) (h : fact (c₁ ≤ c₂)) (x : M.X c₂ p 1) :
  @res (truncate.obj M) _ _ p 0 h (SemiNormedGroup.explicit_cokernel_π _ x) =
  SemiNormedGroup.explicit_cokernel_π _ (M.res x) := rfl

def quotient_map : M.col 1 ⟶ (truncate.obj M).col 0 :=
{ app := λ c,
  { f := λ p, SemiNormedGroup.explicit_cokernel_π _,
    comm' := λ p p' _, by { ext, refl } },
  naturality' := by { intros, ext, refl } }

lemma admissible (hM : M.admissible) : (truncate.obj M).admissible :=
{ d_norm_noninc' := λ c p' p q h,
  begin
    cases q,
    { apply SemiNormedGroup.explicit_cokernel_desc_norm_noninc,
      exact (SemiNormedGroup.norm_noninc_explicit_cokernel_π _).comp (hM.d_norm_noninc _ _ _ _) },
    { exact hM.d_norm_noninc c p' p _ }
  end,
  d'_norm_noninc' := λ c p,
    ((M.row p).truncate_admissible (hM.row p)).d_norm_noninc' c,
  res_norm_noninc := λ c₁ c₂ p,
    ((M.row p).truncate_admissible (hM.row p)).res_norm_noninc c₁ c₂ }

end truncate

open opposite

structure normed_spectral_homotopy {row₀ row₁ : system_of_complexes.{u}} (d : row₀ ⟶ row₁)
  (m : ℕ) (k' ε : ℝ≥0) [fact (1 ≤ k')] (c₀ H : ℝ≥0) [fact (0 < H)] :=
(h : Π (q : ℕ) {q' : ℕ} {c}, row₀ (k' * c) q' ⟶ row₁ c q)
(norm_h_le : ∀ (q q' : ℕ) (hq : q ≤ m) (hq' : q+1 = q') (c) [fact (c₀ ≤ c)],
  ∥(h q : row₀ (k' * c) q' ⟶ row₁ c q)∥ ≤ H)
(δ : Π (c : ℝ≥0), row₀.obj (op $ c) ⟶ row₁.obj (op $ k' * c))
(hδ : ∀ (c : ℝ≥0) [fact (c₀ ≤ c)] (q : ℕ) (hq : q ≤ m),
  (system_of_complexes.res : row₀ (k' * (k' * c)) q ⟶ _) ≫ (δ c).f q =
    d.apply ≫ system_of_complexes.res + row₀.d q (q+1) ≫ h q + h (q-1) ≫ row₁.d (q-1) q)
(norm_δ_le : ∀ (c : ℝ≥0) [fact (c₀ ≤ c)] (q : ℕ) (hq : q ≤ m), ∥(δ c).f q∥ ≤ ε)
.

lemma normed_spectral_homotopy.hδ_apply {row₀ row₁ : system_of_complexes.{u}} {d : row₀ ⟶ row₁}
  {m : ℕ} {k' ε : ℝ≥0} [fact (1 ≤ k')] {c₀ H : ℝ≥0} [fact (0 < H)]
  (NSH : normed_spectral_homotopy d m k' ε c₀ H)
  (c : ℝ≥0) [fact (c₀ ≤ c)] (q : ℕ) (hq : q ≤ m) (x : row₀ (k' * (k' * c)) q) :
  (NSH.δ c).f q (system_of_complexes.res x) =
    system_of_complexes.res (d x) + NSH.h q (row₀.d q (q+1) x) + row₁.d (q-1) q (NSH.h (q-1) x) :=
begin
  show ((system_of_complexes.res : row₀ (k' * (k' * c)) q ⟶ _) ≫ (NSH.δ c).f q) x = _,
  rw NSH.hδ c q hq,
  dsimp, refl
end

def normed_spectral_homotopy.of_iso {row₀ row₁ : system_of_complexes.{u}} {d : row₀ ⟶ row₁}
  {m : ℕ} {k' ε : ℝ≥0} [fact (1 ≤ k')] {c₀ H : ℝ≥0} [fact (0 < H)]
  (NSH : normed_spectral_homotopy d m k' ε c₀ H)
  (row'₀ row'₁ : system_of_complexes.{u}) (d' : row'₀ ⟶ row'₁)
  (φ₀ : row₀ ≅ row'₀) (φ₁ : row₁ ≅ row'₁)
  (hφ₀ : ∀ c i (x : row'₀ c i), ∥φ₀.inv x∥ = ∥x∥)
  (hφ₁ : ∀ c i (x : row₁ c i), ∥φ₁.hom x∥ = ∥x∥)
  (hcomm : d' = φ₀.inv ≫ d ≫ φ₁.hom) :
  normed_spectral_homotopy d' m k' ε c₀ H :=
{ h := λ q q' c, φ₀.inv.apply ≫ NSH.h q ≫ φ₁.hom.apply,
  δ := λ c, φ₀.inv.app (op $ c) ≫ NSH.δ c ≫ φ₁.hom.app (op $ k' * c),
  norm_h_le :=
  begin
    introsI q q' hqm hq' c hc,
    refine normed_add_group_hom.op_norm_le_bound _ (nnreal.coe_nonneg H) (λ x, _),
    calc  ∥φ₁.hom (NSH.h q (φ₀.inv x))∥
        = ∥NSH.h q (φ₀.inv x)∥ : hφ₁ _ _ _
    ... ≤ ↑H * ∥φ₀.inv x∥ :
      normed_add_group_hom.le_of_op_norm_le _ (NSH.norm_h_le _ _ hqm hq' _) (φ₀.inv x)
    ... = ↑H * ∥x∥ : congr_arg _ (hφ₀ _ _ _),
  end,
  hδ :=
  begin
    introsI c hc q hq,
    ext1 x,
    have := congr_arg (λ x, φ₁.hom x) (NSH.hδ_apply c q hq (φ₀.inv x)),
    simp only [coe_comp, hcomm, system_of_complexes.res_apply, system_of_complexes.d_apply] at this ⊢,
    refine this.trans _, clear this,
    calc φ₁.hom (d (φ₀.inv (system_of_complexes.res x)) +
          (NSH.h q) (φ₀.inv (row'₀.d q (q+1) x)) +
          (row₁.d (q - 1) q) (NSH.h (q - 1) (φ₀.inv x)))
        = φ₁.hom (d (φ₀.inv (system_of_complexes.res x)) +
          (NSH.h q) (φ₀.inv (row'₀.d q (q+1) x))) +
          φ₁.hom ((row₁.d (q - 1) q) (NSH.h (q - 1) (φ₀.inv x))) : _
    ... = _ : _,
    { apply normed_add_group_hom.map_add' },
    congr' 1,
    { refine (normed_add_group_hom.map_add' _ _ _).trans _,
      simp only [← comp_apply, ← system_of_complexes.res_comp_apply], refl },
    { erw [system_of_complexes.d_apply], refl }
  end,
  norm_δ_le := λ c hc q hq,
  begin
    resetI,
    refine normed_add_group_hom.op_norm_le_bound _ (nnreal.coe_nonneg ε) _,
    rintro (x : row'₀ c q),
    calc  ∥φ₁.hom ((NSH.δ c).f q (φ₀.inv x))∥
        = ∥(NSH.δ c).f q (φ₀.inv x)∥ : hφ₁ _ _ _
    ... ≤ ↑ε * ∥φ₀.inv x∥ : normed_add_group_hom.le_of_op_norm_le _  (NSH.norm_δ_le _ _ hq) (φ₀.inv x)
    ... = ↑ε * ∥x∥ : congr_arg _ (hφ₀ _ _ _),
  end }

/-- The assumptions on `M` in Proposition 9.6 bundled into a structure. -/
structure normed_spectral_conditions (M : system_of_double_complexes.{u})
  (m : ℕ) (k K k' ε : ℝ≥0) [fact (1 ≤ k)] [fact (1 ≤ k')] (c₀ H : ℝ≥0) [fact (0 < H)] :=
(row_exact : 0 < m → ∀ i ≤ m + 1, (M.row i).is_weak_bounded_exact k K (m-1) c₀)
(col_exact : ∀ j ≤ m, (M.col j).is_weak_bounded_exact k K m c₀)
(htpy      : normed_spectral_homotopy (M.row_map 0 1) m k' ε c₀ H)
-- ergonomics: we bundle this assumption, instead of passing it around separately
(admissible : M.admissible)

.

namespace normed_spectral_conditions

variables {M : system_of_double_complexes.{u}}
variables {m : ℕ} {k K k' ε k₀ : ℝ≥0}
variables [fact (1 ≤ k)] [fact (1 ≤ k₀)] [fact (k₀ ≤ k')] [fact (1 ≤ k')]
variables {c₀ H : ℝ≥0} [fact (0 < H)]

lemma truncate_admissible (condM : M.normed_spectral_conditions m k K k' ε c₀ H) :
  (truncate.obj M).admissible :=
truncate.admissible _ condM.admissible

variables (condM : M.normed_spectral_conditions (m+1) k K k' ε c₀ H)

include condM

lemma col_zero_exact :
  ((truncate.obj M).col 0).is_weak_bounded_exact (k*k*k) (K*(K*K+1)) m c₀ :=
begin
  apply weak_normed_snake (M.col 0) (M.col 1) ((truncate.obj M).col 0)
    (M.col_map 0 1) (truncate.quotient_map M)
    (condM.col_exact 0 dec_trivial) (condM.col_exact 1 dec_trivial)
    (condM.admissible.col 1),
  { intros c p, exact condM.admissible.d'_norm_noninc c p 0 1 },
  { intros c hc i hi x,
    apply le_of_forall_pos_le_add,
    intros ε' hε',
    -- should we factor out a dedicated `weak_bounded_in_degrees_le_zero` lemma?
    simpa only [exists_prop, row_res, d'_self_apply, exists_eq_left, sub_zero,
      exists_and_distrib_left, zero_add, row_d, exists_eq_left', exists_const]
      using condM.row_exact (nat.zero_lt_succ _) i hi c hc 0 (nat.zero_le _) x ε' hε' },
  { intros c i, apply quotient_add_group.ker_mk },
  { intros c p, exact SemiNormedGroup.is_quotient_explicit_cokernel_π _ }
end

-- morally `q'` is `q + 1`
def h_truncate : Π (q : ℕ) {q' : ℕ} {c : ℝ≥0},
  (truncate.obj M).X (k' * c) 0 q' ⟶ (truncate.obj M).X c 1 q
| 0     1      c := condM.htpy.h 1 ≫ SemiNormedGroup.explicit_cokernel_π _
| (q+1) (q'+1) c := condM.htpy.h (q+2)
| _     _      _ := 0

@[simp]
lemma h_truncate_zero {c : ℝ≥0} (x : (truncate.obj M).X (k' * c) 0 1) :
  condM.h_truncate 0 x = SemiNormedGroup.explicit_cokernel_π _ (condM.htpy.h 1 x) := rfl

lemma norm_h_truncate_le : ∀ (q q' : ℕ), q ≤ m → q+1 = q' → ∀ (c : ℝ≥0), fact (c₀ ≤ c) →
  ∥(condM.h_truncate q : (truncate.obj M).X (k' * c) 0 q' ⟶ _)∥ ≤ H
| (q+1) (q'+1) hq rfl := condM.htpy.norm_h_le _ _ (nat.succ_le_succ hq)
                                    (by simp only [nat.add_def, add_zero])
| 0     1      hq rfl :=
begin
  introsI c hc,
  refine normed_add_group_hom.op_norm_le_bound _ (nnreal.coe_nonneg H) (λ x, _),
  calc _ = ∥SemiNormedGroup.explicit_cokernel_π _ (condM.htpy.h 1 x)∥ : rfl
  ...  ≤ ∥condM.htpy.h 1 x∥ : (SemiNormedGroup.is_quotient_explicit_cokernel_π _).norm_le _
  ... ≤ H * ∥x∥ : normed_add_group_hom.le_of_op_norm_le _ (condM.htpy.norm_h_le 1 2 dec_trivial rfl c) x
end

def δ_truncate (c : ℝ≥0) :
  ((truncate.obj M).row 0).obj (op $ c) ⟶ ((truncate.obj M).row 1).obj (op $ k' * c) :=
SemiNormedGroup.truncate.map (condM.htpy.δ c)

lemma hδ_truncate (c : ℝ≥0) [fact (c₀ ≤ c)] : ∀ (q : ℕ) (hq : q ≤ m),
  (truncate.obj M).res ≫ (condM.δ_truncate c).f q = (d _ 0 1) ≫ (truncate.obj M).res +
    (d' _ q (q+1)) ≫ condM.h_truncate q + (condM.h_truncate (q-1)) ≫ d' _ (q-1) q
| 1     h := condM.htpy.hδ _ _ (nat.succ_le_succ h)
| (q+2) h := condM.htpy.hδ _ _ (nat.succ_le_succ h)
| 0     h :=
begin
  ext x, dsimp,
  let π := λ c p, SemiNormedGroup.explicit_cokernel_π (@d' M c p 0 1),
  obtain ⟨y, hy⟩ : ∃ x', π _ _ x' = (SemiNormedGroup.explicit_cokernel_π _ x) :=
    SemiNormedGroup.explicit_cokernel_π_surjective (SemiNormedGroup.explicit_cokernel_π _ x),
  transitivity π _ _ ((condM.htpy.δ c).f 1 (M.res x)), { refl },
  erw condM.htpy.hδ_apply _ _ (nat.succ_le_succ h) x,
  simp only [nat.zero_sub, d'_self_apply, add_zero, row_d,
    truncate.d_π, truncate.res_π, truncate.d'_zero_one, h_truncate_zero,
    map_add, SemiNormedGroup.explicit_cokernel_π_apply_dom_eq_zero],
  refl
end

lemma norm_δ_truncate_le (c : ℝ≥0) [fact (c₀ ≤ c)] :
  ∀ (q : ℕ) (hq : q ≤ m), ∥(condM.δ_truncate c).f q∥ ≤ ε
| (q+1) h := condM.htpy.norm_δ_le c (q+2) (nat.succ_le_succ h)
| 0     h :=
begin
  refine SemiNormedGroup.explicit_cokernel_desc_norm_le_of_norm_le _ _
    (normed_add_group_hom.op_norm_le_bound _ (nnreal.coe_nonneg ε) (λ x, _)),
  refine (SemiNormedGroup.norm_noninc_explicit_cokernel_π _ _).trans _,
  exact normed_add_group_hom.le_of_op_norm_le _ (condM.htpy.norm_δ_le c _ (nat.succ_le_succ h)) _
end

def truncate :
  (truncate.obj M).normed_spectral_conditions m (k*k*k) (K*(K*K+1)) k' ε c₀ H :=
{ row_exact :=
  begin
    intros hm i hi,
    cases m, { exact (nat.not_lt_zero _ hm).elim },
    suffices : ((truncate.obj M).row i).is_weak_bounded_exact k K m c₀,
    { apply this.of_le (condM.truncate_admissible.row i) _ _ le_rfl ⟨le_rfl⟩;
      apply_instance },
    rw truncate.row,
    apply (M.row i).truncate_is_weak_bounded_exact,
    { refine condM.row_exact (nat.zero_lt_succ _) i (hi.trans (nat.le_succ _)), }
  end,
  col_exact :=
  begin
    rintro (j|j) hj,
    { exact condM.col_zero_exact },
    { rw truncate.col_pos,
      refine (condM.col_exact (j+2) (nat.succ_le_succ hj)).of_le
        (condM.admissible.col (j+2)) _ _ m.le_succ ⟨le_rfl⟩;
      apply_instance }
  end,
  htpy :=
  { h := condM.h_truncate,
    norm_h_le := condM.norm_h_truncate_le,
    δ := condM.δ_truncate,
    hδ := condM.hδ_truncate,
    norm_δ_le := condM.norm_δ_truncate_le },
  admissible := condM.truncate_admissible }

omit condM

variables {m_ : ℕ} {k_ K_ : ℝ≥0} [fact (1 ≤ k_)]
variables {ε_ : ℝ≥0} {k₀_ : ℝ≥0} [fact (1 ≤ k₀_)]
variables [fact (k₀_ ≤ k')] {c₀_ H_ : ℝ≥0} [fact (0 < H_)]

def of_le (cond : M.normed_spectral_conditions m k K k' ε c₀ H)
  (hm : m_ ≤ m) (hk : fact (k ≤ k_)) (hK : fact (K ≤ K_)) (hε : ε ≤ ε_)
  (hc₀ : fact (c₀ ≤ c₀_)) (hH : H ≤ H_) :
  M.normed_spectral_conditions m_ k_ K_ k' ε_ c₀_ H_ :=
{ col_exact := λ j hj, (cond.col_exact j (hj.trans hm)).of_le (cond.admissible.col j) hk hK hm hc₀,
  row_exact := λ hm_ i hi,
    (cond.row_exact (hm_.trans_le hm) i (hi.trans $ nat.succ_le_succ hm)).of_le
      (cond.admissible.row i) hk hK (nat.pred_le_pred hm) hc₀,
  htpy :=
  { h := cond.htpy.h,
    norm_h_le := λ q q' hq hq' c hc, have fact (c₀ ≤ c) := ⟨hc₀.out.trans hc.out⟩, by exactI
    begin
    refine normed_add_group_hom.op_norm_le_bound _ (nnreal.coe_nonneg H_) (λ x, _),
    calc ∥cond.htpy.h q x∥ ≤ H * ∥x∥  :
      normed_add_group_hom.le_of_op_norm_le _ (cond.htpy.norm_h_le q q' (hq.trans hm) hq' c) x
                       ... ≤ H_ * ∥x∥ : mul_le_mul_of_nonneg_right hH (norm_nonneg x),
    end,
    δ := cond.htpy.δ,
    hδ := λ c hc q hq, have fact (c₀ ≤ c) := ⟨hc₀.out.trans hc.out⟩,
      by exactI cond.htpy.hδ c q (hq.trans hm),
    norm_δ_le := λ c hc q hq, have fact (c₀ ≤ c) := ⟨hc₀.out.trans hc.out⟩, by exactI
    begin
      refine normed_add_group_hom.op_norm_le_bound _ (nnreal.coe_nonneg ε_) (λ x, _),
      refine normed_add_group_hom.le_of_op_norm_le _ _ x,
      exact le_trans (cond.htpy.norm_δ_le c q (hq.trans hm)) hε,
    end },
  admissible := cond.admissible }

end normed_spectral_conditions

namespace normed_spectral

/-- Base case of the induction for Proposition 9.6. -/
theorem base (c₀ H : ℝ≥0) [fact (0 < H)] (M : system_of_double_complexes.{u})
  (k K k' : ℝ≥0) [hk : fact (1 ≤ k)] [hK : fact (1 ≤ K)] [fact (k₀ 0 k ≤ k')] [fact (1 ≤ k')]
  (cond : M.normed_spectral_conditions 0 k K k' (ε 0 K) c₀ H) :
  (M.row 0).is_weak_bounded_exact (k' * k') (2 * K₀ 0 K * H) 0 c₀ :=
begin
  dsimp [k₀, K₀],
  introsI c hc i hi,
  interval_cases i, clear hi,
  intros x ε' hε',
  let φ : ℝ := ε' / 2,
  have hφ : 0 < φ := div_pos hε' zero_lt_two,
  have hδφ : ε' = φ + φ, { dsimp [φ], rw [← add_div, half_add_self] },
  haveI : fact (k' * (k' * c) ≤ k' * k' * c) := by { rw mul_assoc, exact ⟨le_rfl⟩ },
  have Hx1 := (cond.col_exact 0 le_rfl).of_le
    (cond.admissible.col 0) ‹_› ⟨le_rfl⟩ le_rfl ⟨le_rfl⟩ c hc 0 le_rfl,
  have Hx2 := normed_add_group_hom.le_of_op_norm_le _ (cond.htpy.norm_δ_le c 0 le_rfl) (M.res x),
  have aux := cond.htpy.hδ_apply c 0 le_rfl (M.res x),
  erw [res_res] at aux,
  rw aux at Hx2,
  simp only [row_d, col_d, d_self_apply, d'_self_apply, sub_zero, add_zero, smul_zero,
    d_res, d'_res, res_res, one_div, row_res, units.coe_one, one_smul, row_map_apply] at Hx1 Hx2 ⊢,
  refine ⟨0, 1, rfl, rfl, 0, _⟩,
  obtain ⟨i, j, hi, hj, y1, hx1⟩ := Hx1 (M.res x) φ hφ,
  simp [← eq_neg_iff_add_eq_zero] at hi hj, subst i, subst j,
  simp only [d_self_apply, d'_self_apply, sub_zero,
    nnreal.coe_mul, nnreal.coe_bit0, nnreal.coe_one, d_res] at hx1 ⊢,
  erw [res_res] at hx1,
  clear y1 Hx1,
  replace Hx1 := mul_le_mul_of_nonneg_left hx1 (ε 0 K).coe_nonneg,
  replace Hx2 := (norm_le_add_norm_add _ _).trans (add_le_add (Hx2.trans Hx1) le_rfl),
  dsimp [ε] at Hx2,
  have K0 : (K:ℝ) ≠ 0 := ne_of_gt (lt_of_lt_of_le zero_lt_one hK.out),
  simp only [mul_add, add_assoc, mul_inv, mul_assoc, inv_mul_cancel_left₀ K0] at Hx2,
  simp only [← div_eq_inv_mul, sub_half, ← sub_le_iff_le_add'] at Hx2,
  simp only [sub_le_iff_le_add', div_le_iff' (zero_lt_two : (0:ℝ) < 2)] at Hx2,
  replace Hx2 := mul_le_mul_of_nonneg_left Hx2 K.coe_nonneg,
  simp only [mul_add, div_eq_inv_mul, add_comm φ,
    mul_inv_cancel_left₀ (two_ne_zero : (2:ℝ) ≠ 0), mul_inv_cancel_left₀ K0] at Hx2,
  refine hx1.trans _,
  simp only [mul_comm (2:ℝ) K, mul_assoc, hδφ, ← add_assoc, ← mul_add, add_le_add_iff_right],
  refine Hx2.trans _,
  simp only [add_le_add_iff_right],
  refine (mul_le_mul_of_nonneg_left _ K.coe_nonneg),
  refine (mul_le_mul_of_nonneg_left _ zero_le_two),
  refine le_trans (normed_add_group_hom.le_of_op_norm_le _ (cond.htpy.norm_h_le _ _ le_rfl rfl _) _) _,
  refine mul_le_mul_of_nonneg_left (le_of_eq _) H.coe_nonneg,
  apply norm_res_of_eq,
  rw mul_assoc
end
.

end normed_spectral

open normed_spectral

/-- Proposition 9.6 in [Analytic] -/
theorem normed_spectral {m : ℕ} {c₀ H : ℝ≥0} [fact (0 < H)]
  {M : system_of_double_complexes.{u}} {k K k' : ℝ≥0}
  [fact (1 ≤ k)] [hK : fact (1 ≤ K)] [fact (k₀ m k ≤ k')] [fact (1 ≤ k')]
  (cond : M.normed_spectral_conditions m k K k' (ε m K) c₀ H) :
  (M.row 0).is_weak_bounded_exact (k' * k') (2 * K₀ m K * H) m c₀ :=
begin
  unfreezingI { revert M k K k' },
  induction m with m IH, { exact base c₀ H },
  dsimp [ε, k₀, K₀],
  introsI M k K k' _ _ _ _ cond,
  rw ← system_of_complexes.truncate_is_weak_bounded_exact_iff,
  { exact IH cond.truncate },
  { refine @IH M (k*k*k) (K*(K*K+1)) k' _ _ _ _ (cond.of_le (m.le_succ) _ _ le_rfl ⟨le_rfl⟩ le_rfl),
    all_goals { apply_instance } }
end

end system_of_double_complexes