Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 14,551 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
/-
Copyright (c) 2020 Joseph Myers. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Myers, Yury Kudryashov
-/
import data.set.pointwise

/-!
# Torsors of additive group actions

This file defines torsors of additive group actions.

## Notations

The group elements are referred to as acting on points.  This file
defines the notation `+ᵥ` for adding a group element to a point and
`-ᵥ` for subtracting two points to produce a group element.

## Implementation notes

Affine spaces are the motivating example of torsors of additive group actions. It may be appropriate
to refactor in terms of the general definition of group actions, via `to_additive`, when there is a
use for multiplicative torsors (currently mathlib only develops the theory of group actions for
multiplicative group actions).

## Notations

* `v +ᵥ p` is a notation for `has_vadd.vadd`, the left action of an additive monoid;

* `p₁ -ᵥ p₂` is a notation for `has_vsub.vsub`, difference between two points in an additive torsor
  as an element of the corresponding additive group;

## References

* https://en.wikipedia.org/wiki/Principal_homogeneous_space
* https://en.wikipedia.org/wiki/Affine_space

-/

/-- An `add_torsor G P` gives a structure to the nonempty type `P`,
acted on by an `add_group G` with a transitive and free action given
by the `+ᵥ` operation and a corresponding subtraction given by the
`-ᵥ` operation. In the case of a vector space, it is an affine
space. -/
class add_torsor (G : out_param Type*) (P : Type*) [out_param $ add_group G]
  extends add_action G P, has_vsub G P :=
[nonempty : nonempty P]
(vsub_vadd' : ∀ (p1 p2 : P), (p1 -ᵥ p2 : G) +ᵥ p2 = p1)
(vadd_vsub' : ∀ (g : G) (p : P), g +ᵥ p -ᵥ p = g)

attribute [instance, priority 100, nolint dangerous_instance] add_torsor.nonempty
attribute [nolint dangerous_instance] add_torsor.to_has_vsub

/-- An `add_group G` is a torsor for itself. -/
@[nolint instance_priority]
instance add_group_is_add_torsor (G : Type*) [add_group G] :
  add_torsor G G :=
{ vsub := has_sub.sub,
  vsub_vadd' := sub_add_cancel,
  vadd_vsub' := add_sub_cancel }

/-- Simplify subtraction for a torsor for an `add_group G` over
itself. -/
@[simp] lemma vsub_eq_sub {G : Type*} [add_group G] (g1 g2 : G) : g1 -ᵥ g2 = g1 - g2 :=
rfl

section general

variables {G : Type*} {P : Type*} [add_group G] [T : add_torsor G P]
include T

/-- Adding the result of subtracting from another point produces that
point. -/
@[simp] lemma vsub_vadd (p1 p2 : P) : p1 -ᵥ p2 +ᵥ p2 = p1 :=
add_torsor.vsub_vadd' p1 p2

/-- Adding a group element then subtracting the original point
produces that group element. -/
@[simp] lemma vadd_vsub (g : G) (p : P) : g +ᵥ p -ᵥ p = g :=
add_torsor.vadd_vsub' g p

/-- If the same point added to two group elements produces equal
results, those group elements are equal. -/
lemma vadd_right_cancel {g1 g2 : G} (p : P) (h : g1 +ᵥ p = g2 +ᵥ p) : g1 = g2 :=
by rw [←vadd_vsub g1, h, vadd_vsub]

@[simp] lemma vadd_right_cancel_iff {g1 g2 : G} (p : P) :  g1 +ᵥ p = g2 +ᵥ p ↔ g1 = g2 :=
⟨vadd_right_cancel p, λ h, h ▸ rfl⟩

/-- Adding a group element to the point `p` is an injective
function. -/
lemma vadd_right_injective (p : P) : function.injective ((+ᵥ p) : G → P) :=
λ g1 g2, vadd_right_cancel p

/-- Adding a group element to a point, then subtracting another point,
produces the same result as subtracting the points then adding the
group element. -/
lemma vadd_vsub_assoc (g : G) (p1 p2 : P) : g +ᵥ p1 -ᵥ p2 = g + (p1 -ᵥ p2) :=
begin
  apply vadd_right_cancel p2,
  rw [vsub_vadd, add_vadd, vsub_vadd]
end

/-- Subtracting a point from itself produces 0. -/
@[simp] lemma vsub_self (p : P) : p -ᵥ p = (0 : G) :=
by rw [←zero_add (p -ᵥ p), ←vadd_vsub_assoc, vadd_vsub]

/-- If subtracting two points produces 0, they are equal. -/
lemma eq_of_vsub_eq_zero {p1 p2 : P} (h : p1 -ᵥ p2 = (0 : G)) : p1 = p2 :=
by rw [←vsub_vadd p1 p2, h, zero_vadd]

/-- Subtracting two points produces 0 if and only if they are
equal. -/
@[simp] lemma vsub_eq_zero_iff_eq {p1 p2 : P} : p1 -ᵥ p2 = (0 : G) ↔ p1 = p2 :=
iff.intro eq_of_vsub_eq_zero (λ h, h ▸ vsub_self _)

lemma vsub_ne_zero {p q : P} : p -ᵥ q ≠ (0 : G) ↔ p ≠ q :=
not_congr vsub_eq_zero_iff_eq

/-- Cancellation adding the results of two subtractions. -/
@[simp] lemma vsub_add_vsub_cancel (p1 p2 p3 : P) : p1 -ᵥ p2 + (p2 -ᵥ p3) = (p1 -ᵥ p3) :=
begin
  apply vadd_right_cancel p3,
  rw [add_vadd, vsub_vadd, vsub_vadd, vsub_vadd]
end

/-- Subtracting two points in the reverse order produces the negation
of subtracting them. -/
@[simp] lemma neg_vsub_eq_vsub_rev (p1 p2 : P) : -(p1 -ᵥ p2) = (p2 -ᵥ p1) :=
begin
  refine neg_eq_of_add_eq_zero_right (vadd_right_cancel p1 _),
  rw [vsub_add_vsub_cancel, vsub_self],
end

lemma vadd_vsub_eq_sub_vsub (g : G) (p q : P) : g +ᵥ p -ᵥ q = g - (q -ᵥ p) :=
by rw [vadd_vsub_assoc, sub_eq_add_neg, neg_vsub_eq_vsub_rev]

/-- Subtracting the result of adding a group element produces the same result
as subtracting the points and subtracting that group element. -/
lemma vsub_vadd_eq_vsub_sub (p1 p2 : P) (g : G) : p1 -ᵥ (g +ᵥ p2) = (p1 -ᵥ p2) - g :=
by rw [←add_right_inj (p2 -ᵥ p1 : G), vsub_add_vsub_cancel, ←neg_vsub_eq_vsub_rev, vadd_vsub,
       ←add_sub_assoc, ←neg_vsub_eq_vsub_rev, neg_add_self, zero_sub]

/-- Cancellation subtracting the results of two subtractions. -/
@[simp] lemma vsub_sub_vsub_cancel_right (p1 p2 p3 : P) :
  (p1 -ᵥ p3) - (p2 -ᵥ p3) = (p1 -ᵥ p2) :=
by rw [←vsub_vadd_eq_vsub_sub, vsub_vadd]

/-- Convert between an equality with adding a group element to a point
and an equality of a subtraction of two points with a group
element. -/
lemma eq_vadd_iff_vsub_eq (p1 : P) (g : G) (p2 : P) : p1 = g +ᵥ p2 ↔ p1 -ᵥ p2 = g :=
⟨λ h, h.symm ▸ vadd_vsub _ _, λ h, h ▸ (vsub_vadd _ _).symm⟩

lemma vadd_eq_vadd_iff_neg_add_eq_vsub {v₁ v₂ : G} {p₁ p₂ : P} :
  v₁ +ᵥ p₁ = v₂ +ᵥ p₂ ↔ - v₁ + v₂ = p₁ -ᵥ p₂ :=
by rw [eq_vadd_iff_vsub_eq, vadd_vsub_assoc, ← add_right_inj (-v₁), neg_add_cancel_left, eq_comm]

namespace set
open_locale pointwise

@[simp] lemma singleton_vsub_self (p : P) : ({p} : set P) -ᵥ {p} = {(0:G)} :=
by rw [set.singleton_vsub_singleton, vsub_self]

end set

@[simp] lemma vadd_vsub_vadd_cancel_right (v₁ v₂ : G) (p : P) :
  (v₁ +ᵥ p) -ᵥ (v₂ +ᵥ p) = v₁ - v₂ :=
by rw [vsub_vadd_eq_vsub_sub, vadd_vsub_assoc, vsub_self, add_zero]

/-- If the same point subtracted from two points produces equal
results, those points are equal. -/
lemma vsub_left_cancel {p1 p2 p : P} (h : p1 -ᵥ p = p2 -ᵥ p) : p1 = p2 :=
by rwa [←sub_eq_zero, vsub_sub_vsub_cancel_right, vsub_eq_zero_iff_eq] at h

/-- The same point subtracted from two points produces equal results
if and only if those points are equal. -/
@[simp] lemma vsub_left_cancel_iff {p1 p2 p : P} : (p1 -ᵥ p) = p2 -ᵥ p ↔ p1 = p2 :=
⟨vsub_left_cancel, λ h, h ▸ rfl⟩

/-- Subtracting the point `p` is an injective function. -/
lemma vsub_left_injective (p : P) : function.injective ((-ᵥ p) : P → G) :=
λ p2 p3, vsub_left_cancel

/-- If subtracting two points from the same point produces equal
results, those points are equal. -/
lemma vsub_right_cancel {p1 p2 p : P} (h : p -ᵥ p1 = p -ᵥ p2) : p1 = p2 :=
begin
  refine vadd_left_cancel (p -ᵥ p2) _,
  rw [vsub_vadd, ← h, vsub_vadd]
end

/-- Subtracting two points from the same point produces equal results
if and only if those points are equal. -/
@[simp] lemma vsub_right_cancel_iff {p1 p2 p : P} : p -ᵥ p1 = p -ᵥ p2 ↔ p1 = p2 :=
⟨vsub_right_cancel, λ h, h ▸ rfl⟩

/-- Subtracting a point from the point `p` is an injective
function. -/
lemma vsub_right_injective (p : P) : function.injective ((-ᵥ) p : P → G) :=
λ p2 p3, vsub_right_cancel

end general

section comm

variables {G : Type*} {P : Type*} [add_comm_group G] [add_torsor G P]

include G

/-- Cancellation subtracting the results of two subtractions. -/
@[simp] lemma vsub_sub_vsub_cancel_left (p1 p2 p3 : P) :
  (p3 -ᵥ p2) - (p3 -ᵥ p1) = (p1 -ᵥ p2) :=
by rw [sub_eq_add_neg, neg_vsub_eq_vsub_rev, add_comm, vsub_add_vsub_cancel]

@[simp] lemma vadd_vsub_vadd_cancel_left (v : G) (p1 p2 : P) :
  (v +ᵥ p1) -ᵥ (v +ᵥ p2) = p1 -ᵥ p2 :=
by rw [vsub_vadd_eq_vsub_sub, vadd_vsub_assoc, add_sub_cancel']

lemma vsub_vadd_comm (p1 p2 p3 : P) : (p1 -ᵥ p2 : G) +ᵥ p3 = p3 -ᵥ p2 +ᵥ p1 :=
begin
  rw [←@vsub_eq_zero_iff_eq G, vadd_vsub_assoc, vsub_vadd_eq_vsub_sub],
  simp
end

lemma vadd_eq_vadd_iff_sub_eq_vsub {v₁ v₂ : G} {p₁ p₂ : P} :
  v₁ +ᵥ p₁ = v₂ +ᵥ p₂ ↔ v₂ - v₁ = p₁ -ᵥ p₂ :=
by rw [vadd_eq_vadd_iff_neg_add_eq_vsub, neg_add_eq_sub]

lemma vsub_sub_vsub_comm (p₁ p₂ p₃ p₄ : P) :
  (p₁ -ᵥ p₂) - (p₃ -ᵥ p₄) = (p₁ -ᵥ p₃) - (p₂ -ᵥ p₄) :=
by rw [← vsub_vadd_eq_vsub_sub, vsub_vadd_comm, vsub_vadd_eq_vsub_sub]

end comm

namespace prod

variables {G : Type*} {P : Type*} {G' : Type*} {P' : Type*} [add_group G] [add_group G']
  [add_torsor G P] [add_torsor G' P']

instance : add_torsor (G × G') (P × P') :=
{ vadd := λ v p, (v.1 +ᵥ p.1, v.2 +ᵥ p.2),
  zero_vadd := λ p, by simp,
  add_vadd := by simp [add_vadd],
  vsub := λ p₁ p₂, (p₁.1 -ᵥ p₂.1, p₁.2 -ᵥ p₂.2),
  nonempty := prod.nonempty,
  vsub_vadd' := λ p₁ p₂, show (p₁.1 -ᵥ p₂.1 +ᵥ p₂.1, _) = p₁, by simp,
  vadd_vsub' := λ v p, show (v.1 +ᵥ p.1 -ᵥ p.1, v.2 +ᵥ p.2 -ᵥ p.2)  =v, by simp }

@[simp] lemma fst_vadd (v : G × G') (p : P × P') : (v +ᵥ p).1 = v.1 +ᵥ p.1 := rfl
@[simp] lemma snd_vadd (v : G × G') (p : P × P') : (v +ᵥ p).2 = v.2 +ᵥ p.2 := rfl
@[simp] lemma mk_vadd_mk (v : G) (v' : G') (p : P) (p' : P') :
  (v, v') +ᵥ (p, p') = (v +ᵥ p, v' +ᵥ p') := rfl

@[simp] lemma fst_vsub (p₁ p₂ : P × P') : (p₁ -ᵥ p₂ : G × G').1 = p₁.1 -ᵥ p₂.1 := rfl
@[simp] lemma snd_vsub (p₁ p₂ : P × P') : (p₁ -ᵥ p₂ : G × G').2 = p₁.2 -ᵥ p₂.2 := rfl
@[simp] lemma mk_vsub_mk (p₁ p₂ : P) (p₁' p₂' : P') :
  ((p₁, p₁') -ᵥ (p₂, p₂') : G × G') = (p₁ -ᵥ p₂, p₁' -ᵥ p₂') := rfl

end prod

namespace pi

universes u v w
variables {I : Type u} {fg : I → Type v} [∀ i, add_group (fg i)] {fp : I → Type w}

open add_action add_torsor

/-- A product of `add_torsor`s is an `add_torsor`. -/
instance [T : ∀ i, add_torsor (fg i) (fp i)] : add_torsor (Π i, fg i) (Π i, fp i) :=
{ vadd := λ g p, λ i, g i +ᵥ p i,
  zero_vadd := λ p, funext $ λ i, zero_vadd (fg i) (p i),
  add_vadd := λ g₁ g₂ p, funext $ λ i, add_vadd (g₁ i) (g₂ i) (p i),
  vsub := λ p₁ p₂, λ i, p₁ i -ᵥ p₂ i,
  nonempty := ⟨λ i, classical.choice (T i).nonempty⟩,
  vsub_vadd' := λ p₁ p₂, funext $ λ i, vsub_vadd (p₁ i) (p₂ i),
  vadd_vsub' := λ g p, funext $ λ i, vadd_vsub (g i) (p i) }

end pi

namespace equiv

variables {G : Type*} {P : Type*} [add_group G] [add_torsor G P]

include G

/-- `v ↦ v +ᵥ p` as an equivalence. -/
def vadd_const (p : P) : G ≃ P :=
{ to_fun := λ v, v +ᵥ p,
  inv_fun := λ p', p' -ᵥ p,
  left_inv := λ v, vadd_vsub _ _,
  right_inv := λ p', vsub_vadd _ _ }

@[simp] lemma coe_vadd_const (p : P) : ⇑(vadd_const p) = λ v, v+ᵥ p := rfl

@[simp] lemma coe_vadd_const_symm (p : P) : ⇑(vadd_const p).symm = λ p', p' -ᵥ p := rfl

/-- `p' ↦ p -ᵥ p'` as an equivalence. -/
def const_vsub (p : P) : P ≃ G :=
{ to_fun := (-ᵥ) p,
  inv_fun := λ v, -v +ᵥ p,
  left_inv := λ p', by simp,
  right_inv := λ v, by simp [vsub_vadd_eq_vsub_sub] }

@[simp] lemma coe_const_vsub (p : P) : ⇑(const_vsub p) = (-ᵥ) p := rfl

@[simp] lemma coe_const_vsub_symm (p : P) : ⇑(const_vsub p).symm = λ v, -v +ᵥ p := rfl

variables (P)

/-- The permutation given by `p ↦ v +ᵥ p`. -/
def const_vadd (v : G) : equiv.perm P :=
{ to_fun := (+ᵥ) v,
  inv_fun := (+ᵥ) (-v),
  left_inv := λ p, by simp [vadd_vadd],
  right_inv := λ p, by simp [vadd_vadd] }

@[simp] lemma coe_const_vadd (v : G) : ⇑(const_vadd P v) = (+ᵥ) v := rfl

variable (G)

@[simp] lemma const_vadd_zero : const_vadd P (0:G) = 1 := ext $ zero_vadd G

variable {G}

@[simp] lemma const_vadd_add (v₁ v₂ : G) :
  const_vadd P (v₁ + v₂) = const_vadd P v₁ * const_vadd P v₂ :=
ext $ add_vadd v₁ v₂

/-- `equiv.const_vadd` as a homomorphism from `multiplicative G` to `equiv.perm P` -/
def const_vadd_hom : multiplicative G →* equiv.perm P :=
{ to_fun := λ v, const_vadd P v.to_add,
  map_one' := const_vadd_zero G P,
  map_mul' := const_vadd_add P }

variable {P}

open function

/-- Point reflection in `x` as a permutation. -/
def point_reflection (x : P) : perm P := (const_vsub x).trans (vadd_const x)

lemma point_reflection_apply (x y : P) : point_reflection x y = x -ᵥ y +ᵥ x := rfl

@[simp] lemma point_reflection_symm (x : P) : (point_reflection x).symm = point_reflection x :=
ext $ by simp [point_reflection]

@[simp] lemma point_reflection_self (x : P) : point_reflection x x = x := vsub_vadd _ _

lemma point_reflection_involutive (x : P) : involutive (point_reflection x : P → P) :=
λ y, (equiv.apply_eq_iff_eq_symm_apply _).2 $ by rw point_reflection_symm

/-- `x` is the only fixed point of `point_reflection x`. This lemma requires
`x + x = y + y ↔ x = y`. There is no typeclass to use here, so we add it as an explicit argument. -/
lemma point_reflection_fixed_iff_of_injective_bit0 {x y : P} (h : injective (bit0 : G → G)) :
  point_reflection x y = y ↔ y = x :=
by rw [point_reflection_apply, eq_comm, eq_vadd_iff_vsub_eq, ← neg_vsub_eq_vsub_rev,
  neg_eq_iff_add_eq_zero, ← bit0, ← bit0_zero, h.eq_iff, vsub_eq_zero_iff_eq, eq_comm]

omit G

lemma injective_point_reflection_left_of_injective_bit0 {G P : Type*} [add_comm_group G]
  [add_torsor G P] (h : injective (bit0 : G → G)) (y : P) :
  injective (λ x : P, point_reflection x y) :=
λ x₁ x₂ (hy : point_reflection x₁ y = point_reflection x₂ y),
  by rwa [point_reflection_apply, point_reflection_apply, vadd_eq_vadd_iff_sub_eq_vsub,
    vsub_sub_vsub_cancel_right, ← neg_vsub_eq_vsub_rev, neg_eq_iff_add_eq_zero, ← bit0, ← bit0_zero,
    h.eq_iff, vsub_eq_zero_iff_eq] at hy

end equiv

lemma add_torsor.subsingleton_iff (G P : Type*) [add_group G] [add_torsor G P] :
  subsingleton G ↔ subsingleton P :=
begin
  inhabit P,
  exact (equiv.vadd_const default).subsingleton_congr,
end