Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 14,551 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
/-
Copyright (c) 2020 Joseph Myers. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Myers, Yury Kudryashov
-/
import data.set.pointwise
/-!
# Torsors of additive group actions
This file defines torsors of additive group actions.
## Notations
The group elements are referred to as acting on points. This file
defines the notation `+ᵥ` for adding a group element to a point and
`-ᵥ` for subtracting two points to produce a group element.
## Implementation notes
Affine spaces are the motivating example of torsors of additive group actions. It may be appropriate
to refactor in terms of the general definition of group actions, via `to_additive`, when there is a
use for multiplicative torsors (currently mathlib only develops the theory of group actions for
multiplicative group actions).
## Notations
* `v +ᵥ p` is a notation for `has_vadd.vadd`, the left action of an additive monoid;
* `p₁ -ᵥ p₂` is a notation for `has_vsub.vsub`, difference between two points in an additive torsor
as an element of the corresponding additive group;
## References
* https://en.wikipedia.org/wiki/Principal_homogeneous_space
* https://en.wikipedia.org/wiki/Affine_space
-/
/-- An `add_torsor G P` gives a structure to the nonempty type `P`,
acted on by an `add_group G` with a transitive and free action given
by the `+ᵥ` operation and a corresponding subtraction given by the
`-ᵥ` operation. In the case of a vector space, it is an affine
space. -/
class add_torsor (G : out_param Type*) (P : Type*) [out_param $ add_group G]
extends add_action G P, has_vsub G P :=
[nonempty : nonempty P]
(vsub_vadd' : ∀ (p1 p2 : P), (p1 -ᵥ p2 : G) +ᵥ p2 = p1)
(vadd_vsub' : ∀ (g : G) (p : P), g +ᵥ p -ᵥ p = g)
attribute [instance, priority 100, nolint dangerous_instance] add_torsor.nonempty
attribute [nolint dangerous_instance] add_torsor.to_has_vsub
/-- An `add_group G` is a torsor for itself. -/
@[nolint instance_priority]
instance add_group_is_add_torsor (G : Type*) [add_group G] :
add_torsor G G :=
{ vsub := has_sub.sub,
vsub_vadd' := sub_add_cancel,
vadd_vsub' := add_sub_cancel }
/-- Simplify subtraction for a torsor for an `add_group G` over
itself. -/
@[simp] lemma vsub_eq_sub {G : Type*} [add_group G] (g1 g2 : G) : g1 -ᵥ g2 = g1 - g2 :=
rfl
section general
variables {G : Type*} {P : Type*} [add_group G] [T : add_torsor G P]
include T
/-- Adding the result of subtracting from another point produces that
point. -/
@[simp] lemma vsub_vadd (p1 p2 : P) : p1 -ᵥ p2 +ᵥ p2 = p1 :=
add_torsor.vsub_vadd' p1 p2
/-- Adding a group element then subtracting the original point
produces that group element. -/
@[simp] lemma vadd_vsub (g : G) (p : P) : g +ᵥ p -ᵥ p = g :=
add_torsor.vadd_vsub' g p
/-- If the same point added to two group elements produces equal
results, those group elements are equal. -/
lemma vadd_right_cancel {g1 g2 : G} (p : P) (h : g1 +ᵥ p = g2 +ᵥ p) : g1 = g2 :=
by rw [←vadd_vsub g1, h, vadd_vsub]
@[simp] lemma vadd_right_cancel_iff {g1 g2 : G} (p : P) : g1 +ᵥ p = g2 +ᵥ p ↔ g1 = g2 :=
⟨vadd_right_cancel p, λ h, h ▸ rfl⟩
/-- Adding a group element to the point `p` is an injective
function. -/
lemma vadd_right_injective (p : P) : function.injective ((+ᵥ p) : G → P) :=
λ g1 g2, vadd_right_cancel p
/-- Adding a group element to a point, then subtracting another point,
produces the same result as subtracting the points then adding the
group element. -/
lemma vadd_vsub_assoc (g : G) (p1 p2 : P) : g +ᵥ p1 -ᵥ p2 = g + (p1 -ᵥ p2) :=
begin
apply vadd_right_cancel p2,
rw [vsub_vadd, add_vadd, vsub_vadd]
end
/-- Subtracting a point from itself produces 0. -/
@[simp] lemma vsub_self (p : P) : p -ᵥ p = (0 : G) :=
by rw [←zero_add (p -ᵥ p), ←vadd_vsub_assoc, vadd_vsub]
/-- If subtracting two points produces 0, they are equal. -/
lemma eq_of_vsub_eq_zero {p1 p2 : P} (h : p1 -ᵥ p2 = (0 : G)) : p1 = p2 :=
by rw [←vsub_vadd p1 p2, h, zero_vadd]
/-- Subtracting two points produces 0 if and only if they are
equal. -/
@[simp] lemma vsub_eq_zero_iff_eq {p1 p2 : P} : p1 -ᵥ p2 = (0 : G) ↔ p1 = p2 :=
iff.intro eq_of_vsub_eq_zero (λ h, h ▸ vsub_self _)
lemma vsub_ne_zero {p q : P} : p -ᵥ q ≠ (0 : G) ↔ p ≠ q :=
not_congr vsub_eq_zero_iff_eq
/-- Cancellation adding the results of two subtractions. -/
@[simp] lemma vsub_add_vsub_cancel (p1 p2 p3 : P) : p1 -ᵥ p2 + (p2 -ᵥ p3) = (p1 -ᵥ p3) :=
begin
apply vadd_right_cancel p3,
rw [add_vadd, vsub_vadd, vsub_vadd, vsub_vadd]
end
/-- Subtracting two points in the reverse order produces the negation
of subtracting them. -/
@[simp] lemma neg_vsub_eq_vsub_rev (p1 p2 : P) : -(p1 -ᵥ p2) = (p2 -ᵥ p1) :=
begin
refine neg_eq_of_add_eq_zero_right (vadd_right_cancel p1 _),
rw [vsub_add_vsub_cancel, vsub_self],
end
lemma vadd_vsub_eq_sub_vsub (g : G) (p q : P) : g +ᵥ p -ᵥ q = g - (q -ᵥ p) :=
by rw [vadd_vsub_assoc, sub_eq_add_neg, neg_vsub_eq_vsub_rev]
/-- Subtracting the result of adding a group element produces the same result
as subtracting the points and subtracting that group element. -/
lemma vsub_vadd_eq_vsub_sub (p1 p2 : P) (g : G) : p1 -ᵥ (g +ᵥ p2) = (p1 -ᵥ p2) - g :=
by rw [←add_right_inj (p2 -ᵥ p1 : G), vsub_add_vsub_cancel, ←neg_vsub_eq_vsub_rev, vadd_vsub,
←add_sub_assoc, ←neg_vsub_eq_vsub_rev, neg_add_self, zero_sub]
/-- Cancellation subtracting the results of two subtractions. -/
@[simp] lemma vsub_sub_vsub_cancel_right (p1 p2 p3 : P) :
(p1 -ᵥ p3) - (p2 -ᵥ p3) = (p1 -ᵥ p2) :=
by rw [←vsub_vadd_eq_vsub_sub, vsub_vadd]
/-- Convert between an equality with adding a group element to a point
and an equality of a subtraction of two points with a group
element. -/
lemma eq_vadd_iff_vsub_eq (p1 : P) (g : G) (p2 : P) : p1 = g +ᵥ p2 ↔ p1 -ᵥ p2 = g :=
⟨λ h, h.symm ▸ vadd_vsub _ _, λ h, h ▸ (vsub_vadd _ _).symm⟩
lemma vadd_eq_vadd_iff_neg_add_eq_vsub {v₁ v₂ : G} {p₁ p₂ : P} :
v₁ +ᵥ p₁ = v₂ +ᵥ p₂ ↔ - v₁ + v₂ = p₁ -ᵥ p₂ :=
by rw [eq_vadd_iff_vsub_eq, vadd_vsub_assoc, ← add_right_inj (-v₁), neg_add_cancel_left, eq_comm]
namespace set
open_locale pointwise
@[simp] lemma singleton_vsub_self (p : P) : ({p} : set P) -ᵥ {p} = {(0:G)} :=
by rw [set.singleton_vsub_singleton, vsub_self]
end set
@[simp] lemma vadd_vsub_vadd_cancel_right (v₁ v₂ : G) (p : P) :
(v₁ +ᵥ p) -ᵥ (v₂ +ᵥ p) = v₁ - v₂ :=
by rw [vsub_vadd_eq_vsub_sub, vadd_vsub_assoc, vsub_self, add_zero]
/-- If the same point subtracted from two points produces equal
results, those points are equal. -/
lemma vsub_left_cancel {p1 p2 p : P} (h : p1 -ᵥ p = p2 -ᵥ p) : p1 = p2 :=
by rwa [←sub_eq_zero, vsub_sub_vsub_cancel_right, vsub_eq_zero_iff_eq] at h
/-- The same point subtracted from two points produces equal results
if and only if those points are equal. -/
@[simp] lemma vsub_left_cancel_iff {p1 p2 p : P} : (p1 -ᵥ p) = p2 -ᵥ p ↔ p1 = p2 :=
⟨vsub_left_cancel, λ h, h ▸ rfl⟩
/-- Subtracting the point `p` is an injective function. -/
lemma vsub_left_injective (p : P) : function.injective ((-ᵥ p) : P → G) :=
λ p2 p3, vsub_left_cancel
/-- If subtracting two points from the same point produces equal
results, those points are equal. -/
lemma vsub_right_cancel {p1 p2 p : P} (h : p -ᵥ p1 = p -ᵥ p2) : p1 = p2 :=
begin
refine vadd_left_cancel (p -ᵥ p2) _,
rw [vsub_vadd, ← h, vsub_vadd]
end
/-- Subtracting two points from the same point produces equal results
if and only if those points are equal. -/
@[simp] lemma vsub_right_cancel_iff {p1 p2 p : P} : p -ᵥ p1 = p -ᵥ p2 ↔ p1 = p2 :=
⟨vsub_right_cancel, λ h, h ▸ rfl⟩
/-- Subtracting a point from the point `p` is an injective
function. -/
lemma vsub_right_injective (p : P) : function.injective ((-ᵥ) p : P → G) :=
λ p2 p3, vsub_right_cancel
end general
section comm
variables {G : Type*} {P : Type*} [add_comm_group G] [add_torsor G P]
include G
/-- Cancellation subtracting the results of two subtractions. -/
@[simp] lemma vsub_sub_vsub_cancel_left (p1 p2 p3 : P) :
(p3 -ᵥ p2) - (p3 -ᵥ p1) = (p1 -ᵥ p2) :=
by rw [sub_eq_add_neg, neg_vsub_eq_vsub_rev, add_comm, vsub_add_vsub_cancel]
@[simp] lemma vadd_vsub_vadd_cancel_left (v : G) (p1 p2 : P) :
(v +ᵥ p1) -ᵥ (v +ᵥ p2) = p1 -ᵥ p2 :=
by rw [vsub_vadd_eq_vsub_sub, vadd_vsub_assoc, add_sub_cancel']
lemma vsub_vadd_comm (p1 p2 p3 : P) : (p1 -ᵥ p2 : G) +ᵥ p3 = p3 -ᵥ p2 +ᵥ p1 :=
begin
rw [←@vsub_eq_zero_iff_eq G, vadd_vsub_assoc, vsub_vadd_eq_vsub_sub],
simp
end
lemma vadd_eq_vadd_iff_sub_eq_vsub {v₁ v₂ : G} {p₁ p₂ : P} :
v₁ +ᵥ p₁ = v₂ +ᵥ p₂ ↔ v₂ - v₁ = p₁ -ᵥ p₂ :=
by rw [vadd_eq_vadd_iff_neg_add_eq_vsub, neg_add_eq_sub]
lemma vsub_sub_vsub_comm (p₁ p₂ p₃ p₄ : P) :
(p₁ -ᵥ p₂) - (p₃ -ᵥ p₄) = (p₁ -ᵥ p₃) - (p₂ -ᵥ p₄) :=
by rw [← vsub_vadd_eq_vsub_sub, vsub_vadd_comm, vsub_vadd_eq_vsub_sub]
end comm
namespace prod
variables {G : Type*} {P : Type*} {G' : Type*} {P' : Type*} [add_group G] [add_group G']
[add_torsor G P] [add_torsor G' P']
instance : add_torsor (G × G') (P × P') :=
{ vadd := λ v p, (v.1 +ᵥ p.1, v.2 +ᵥ p.2),
zero_vadd := λ p, by simp,
add_vadd := by simp [add_vadd],
vsub := λ p₁ p₂, (p₁.1 -ᵥ p₂.1, p₁.2 -ᵥ p₂.2),
nonempty := prod.nonempty,
vsub_vadd' := λ p₁ p₂, show (p₁.1 -ᵥ p₂.1 +ᵥ p₂.1, _) = p₁, by simp,
vadd_vsub' := λ v p, show (v.1 +ᵥ p.1 -ᵥ p.1, v.2 +ᵥ p.2 -ᵥ p.2) =v, by simp }
@[simp] lemma fst_vadd (v : G × G') (p : P × P') : (v +ᵥ p).1 = v.1 +ᵥ p.1 := rfl
@[simp] lemma snd_vadd (v : G × G') (p : P × P') : (v +ᵥ p).2 = v.2 +ᵥ p.2 := rfl
@[simp] lemma mk_vadd_mk (v : G) (v' : G') (p : P) (p' : P') :
(v, v') +ᵥ (p, p') = (v +ᵥ p, v' +ᵥ p') := rfl
@[simp] lemma fst_vsub (p₁ p₂ : P × P') : (p₁ -ᵥ p₂ : G × G').1 = p₁.1 -ᵥ p₂.1 := rfl
@[simp] lemma snd_vsub (p₁ p₂ : P × P') : (p₁ -ᵥ p₂ : G × G').2 = p₁.2 -ᵥ p₂.2 := rfl
@[simp] lemma mk_vsub_mk (p₁ p₂ : P) (p₁' p₂' : P') :
((p₁, p₁') -ᵥ (p₂, p₂') : G × G') = (p₁ -ᵥ p₂, p₁' -ᵥ p₂') := rfl
end prod
namespace pi
universes u v w
variables {I : Type u} {fg : I → Type v} [∀ i, add_group (fg i)] {fp : I → Type w}
open add_action add_torsor
/-- A product of `add_torsor`s is an `add_torsor`. -/
instance [T : ∀ i, add_torsor (fg i) (fp i)] : add_torsor (Π i, fg i) (Π i, fp i) :=
{ vadd := λ g p, λ i, g i +ᵥ p i,
zero_vadd := λ p, funext $ λ i, zero_vadd (fg i) (p i),
add_vadd := λ g₁ g₂ p, funext $ λ i, add_vadd (g₁ i) (g₂ i) (p i),
vsub := λ p₁ p₂, λ i, p₁ i -ᵥ p₂ i,
nonempty := ⟨λ i, classical.choice (T i).nonempty⟩,
vsub_vadd' := λ p₁ p₂, funext $ λ i, vsub_vadd (p₁ i) (p₂ i),
vadd_vsub' := λ g p, funext $ λ i, vadd_vsub (g i) (p i) }
end pi
namespace equiv
variables {G : Type*} {P : Type*} [add_group G] [add_torsor G P]
include G
/-- `v ↦ v +ᵥ p` as an equivalence. -/
def vadd_const (p : P) : G ≃ P :=
{ to_fun := λ v, v +ᵥ p,
inv_fun := λ p', p' -ᵥ p,
left_inv := λ v, vadd_vsub _ _,
right_inv := λ p', vsub_vadd _ _ }
@[simp] lemma coe_vadd_const (p : P) : ⇑(vadd_const p) = λ v, v+ᵥ p := rfl
@[simp] lemma coe_vadd_const_symm (p : P) : ⇑(vadd_const p).symm = λ p', p' -ᵥ p := rfl
/-- `p' ↦ p -ᵥ p'` as an equivalence. -/
def const_vsub (p : P) : P ≃ G :=
{ to_fun := (-ᵥ) p,
inv_fun := λ v, -v +ᵥ p,
left_inv := λ p', by simp,
right_inv := λ v, by simp [vsub_vadd_eq_vsub_sub] }
@[simp] lemma coe_const_vsub (p : P) : ⇑(const_vsub p) = (-ᵥ) p := rfl
@[simp] lemma coe_const_vsub_symm (p : P) : ⇑(const_vsub p).symm = λ v, -v +ᵥ p := rfl
variables (P)
/-- The permutation given by `p ↦ v +ᵥ p`. -/
def const_vadd (v : G) : equiv.perm P :=
{ to_fun := (+ᵥ) v,
inv_fun := (+ᵥ) (-v),
left_inv := λ p, by simp [vadd_vadd],
right_inv := λ p, by simp [vadd_vadd] }
@[simp] lemma coe_const_vadd (v : G) : ⇑(const_vadd P v) = (+ᵥ) v := rfl
variable (G)
@[simp] lemma const_vadd_zero : const_vadd P (0:G) = 1 := ext $ zero_vadd G
variable {G}
@[simp] lemma const_vadd_add (v₁ v₂ : G) :
const_vadd P (v₁ + v₂) = const_vadd P v₁ * const_vadd P v₂ :=
ext $ add_vadd v₁ v₂
/-- `equiv.const_vadd` as a homomorphism from `multiplicative G` to `equiv.perm P` -/
def const_vadd_hom : multiplicative G →* equiv.perm P :=
{ to_fun := λ v, const_vadd P v.to_add,
map_one' := const_vadd_zero G P,
map_mul' := const_vadd_add P }
variable {P}
open function
/-- Point reflection in `x` as a permutation. -/
def point_reflection (x : P) : perm P := (const_vsub x).trans (vadd_const x)
lemma point_reflection_apply (x y : P) : point_reflection x y = x -ᵥ y +ᵥ x := rfl
@[simp] lemma point_reflection_symm (x : P) : (point_reflection x).symm = point_reflection x :=
ext $ by simp [point_reflection]
@[simp] lemma point_reflection_self (x : P) : point_reflection x x = x := vsub_vadd _ _
lemma point_reflection_involutive (x : P) : involutive (point_reflection x : P → P) :=
λ y, (equiv.apply_eq_iff_eq_symm_apply _).2 $ by rw point_reflection_symm
/-- `x` is the only fixed point of `point_reflection x`. This lemma requires
`x + x = y + y ↔ x = y`. There is no typeclass to use here, so we add it as an explicit argument. -/
lemma point_reflection_fixed_iff_of_injective_bit0 {x y : P} (h : injective (bit0 : G → G)) :
point_reflection x y = y ↔ y = x :=
by rw [point_reflection_apply, eq_comm, eq_vadd_iff_vsub_eq, ← neg_vsub_eq_vsub_rev,
neg_eq_iff_add_eq_zero, ← bit0, ← bit0_zero, h.eq_iff, vsub_eq_zero_iff_eq, eq_comm]
omit G
lemma injective_point_reflection_left_of_injective_bit0 {G P : Type*} [add_comm_group G]
[add_torsor G P] (h : injective (bit0 : G → G)) (y : P) :
injective (λ x : P, point_reflection x y) :=
λ x₁ x₂ (hy : point_reflection x₁ y = point_reflection x₂ y),
by rwa [point_reflection_apply, point_reflection_apply, vadd_eq_vadd_iff_sub_eq_vsub,
vsub_sub_vsub_cancel_right, ← neg_vsub_eq_vsub_rev, neg_eq_iff_add_eq_zero, ← bit0, ← bit0_zero,
h.eq_iff, vsub_eq_zero_iff_eq] at hy
end equiv
lemma add_torsor.subsingleton_iff (G P : Type*) [add_group G] [add_torsor G P] :
subsingleton G ↔ subsingleton P :=
begin
inhabit P,
exact (equiv.vadd_const default).subsingleton_congr,
end
|