Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 14,736 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Robert Y. Lewis
-/
import algebra.order.ring
import algebra.group_power.ring
/-!
# Lemmas about the interaction of power operations with order
Note that some lemmas are in `algebra/group_power/lemmas.lean` as they import files which
depend on this file.
-/
variables {A G M R : Type*}
section preorder
variables [monoid M] [preorder M] [covariant_class M M (*) (β€)]
@[to_additive nsmul_le_nsmul_of_le_right, mono]
lemma pow_le_pow_of_le_left' [covariant_class M M (function.swap (*)) (β€)]
{a b : M} (hab : a β€ b) : β i : β, a ^ i β€ b ^ i
| 0 := by simp
| (k+1) := by { rw [pow_succ, pow_succ],
exact mul_le_mul' hab (pow_le_pow_of_le_left' k) }
attribute [mono] nsmul_le_nsmul_of_le_right
@[to_additive nsmul_nonneg]
theorem one_le_pow_of_one_le' {a : M} (H : 1 β€ a) : β n : β, 1 β€ a ^ n
| 0 := by simp
| (k + 1) := by { rw pow_succ, exact one_le_mul H (one_le_pow_of_one_le' k) }
@[to_additive nsmul_nonpos]
lemma pow_le_one' {a : M} (H : a β€ 1) (n : β) : a ^ n β€ 1 := @one_le_pow_of_one_le' Mα΅α΅ _ _ _ _ H n
@[to_additive nsmul_le_nsmul]
theorem pow_le_pow' {a : M} {n m : β} (ha : 1 β€ a) (h : n β€ m) : a ^ n β€ a ^ m :=
let β¨k, hkβ© := nat.le.dest h in
calc a ^ n β€ a ^ n * a ^ k : le_mul_of_one_le_right' (one_le_pow_of_one_le' ha _)
... = a ^ m : by rw [β hk, pow_add]
@[to_additive nsmul_le_nsmul_of_nonpos]
theorem pow_le_pow_of_le_one' {a : M} {n m : β} (ha : a β€ 1) (h : n β€ m) : a ^ m β€ a ^ n :=
@pow_le_pow' Mα΅α΅ _ _ _ _ _ _ ha h
@[to_additive nsmul_pos]
theorem one_lt_pow' {a : M} (ha : 1 < a) {k : β} (hk : k β 0) : 1 < a ^ k :=
begin
rcases nat.exists_eq_succ_of_ne_zero hk with β¨l, rflβ©,
clear hk,
induction l with l IH,
{ simpa using ha },
{ rw pow_succ,
exact one_lt_mul'' ha IH }
end
@[to_additive nsmul_neg]
lemma pow_lt_one' {a : M} (ha : a < 1) {k : β} (hk : k β 0) : a ^ k < 1 :=
@one_lt_pow' Mα΅α΅ _ _ _ _ ha k hk
@[to_additive nsmul_lt_nsmul]
theorem pow_lt_pow' [covariant_class M M (*) (<)] {a : M} {n m : β} (ha : 1 < a) (h : n < m) :
a ^ n < a ^ m :=
begin
rcases nat.le.dest h with β¨k, rflβ©, clear h,
rw [pow_add, pow_succ', mul_assoc, β pow_succ],
exact lt_mul_of_one_lt_right' _ (one_lt_pow' ha k.succ_ne_zero)
end
@[to_additive nsmul_strict_mono_right]
lemma pow_strict_mono_left [covariant_class M M (*) (<)] {a : M} (ha : 1 < a) :
strict_mono ((^) a : β β M) :=
Ξ» m n, pow_lt_pow' ha
end preorder
section linear_order
variables [monoid M] [linear_order M] [covariant_class M M (*) (β€)]
@[to_additive nsmul_nonneg_iff]
lemma one_le_pow_iff {x : M} {n : β} (hn : n β 0) : 1 β€ x ^ n β 1 β€ x :=
β¨le_imp_le_of_lt_imp_lt $ Ξ» h, pow_lt_one' h hn, Ξ» h, one_le_pow_of_one_le' h nβ©
@[to_additive]
lemma pow_le_one_iff {x : M} {n : β} (hn : n β 0) : x ^ n β€ 1 β x β€ 1 :=
@one_le_pow_iff Mα΅α΅ _ _ _ _ _ hn
@[to_additive nsmul_pos_iff]
lemma one_lt_pow_iff {x : M} {n : β} (hn : n β 0) : 1 < x ^ n β 1 < x :=
lt_iff_lt_of_le_iff_le (pow_le_one_iff hn)
@[to_additive]
lemma pow_lt_one_iff {x : M} {n : β} (hn : n β 0) : x ^ n < 1 β x < 1 :=
lt_iff_lt_of_le_iff_le (one_le_pow_iff hn)
@[to_additive]
lemma pow_eq_one_iff {x : M} {n : β} (hn : n β 0) : x ^ n = 1 β x = 1 :=
by simp only [le_antisymm_iff, pow_le_one_iff hn, one_le_pow_iff hn]
variables [covariant_class M M (*) (<)] {a : M} {m n : β}
@[to_additive nsmul_le_nsmul_iff]
lemma pow_le_pow_iff' (ha : 1 < a) : a ^ m β€ a ^ n β m β€ n := (pow_strict_mono_left ha).le_iff_le
@[to_additive nsmul_lt_nsmul_iff]
lemma pow_lt_pow_iff' (ha : 1 < a) : a ^ m < a ^ n β m < n := (pow_strict_mono_left ha).lt_iff_lt
end linear_order
section div_inv_monoid
variables [div_inv_monoid G] [preorder G] [covariant_class G G (*) (β€)]
@[to_additive zsmul_nonneg]
theorem one_le_zpow {x : G} (H : 1 β€ x) {n : β€} (hn : 0 β€ n) :
1 β€ x ^ n :=
begin
lift n to β using hn,
rw zpow_coe_nat,
apply one_le_pow_of_one_le' H,
end
end div_inv_monoid
namespace canonically_ordered_comm_semiring
variables [canonically_ordered_comm_semiring R]
theorem pow_pos {a : R} (H : 0 < a) (n : β) : 0 < a ^ n :=
pos_iff_ne_zero.2 $ pow_ne_zero _ H.ne'
end canonically_ordered_comm_semiring
section ordered_semiring
variables [ordered_semiring R] {a x y : R} {n m : β}
lemma zero_pow_le_one : β n : β, (0 : R) ^ n β€ 1
| 0 := (pow_zero _).le
| (n + 1) := by { rw [zero_pow n.succ_pos], exact zero_le_one }
theorem pow_add_pow_le (hx : 0 β€ x) (hy : 0 β€ y) (hn : n β 0) : x ^ n + y ^ n β€ (x + y) ^ n :=
begin
rcases nat.exists_eq_succ_of_ne_zero hn with β¨k, rflβ©,
induction k with k ih, { simp only [pow_one] },
let n := k.succ,
have h1 := add_nonneg (mul_nonneg hx (pow_nonneg hy n)) (mul_nonneg hy (pow_nonneg hx n)),
have h2 := add_nonneg hx hy,
calc x^n.succ + y^n.succ
β€ x*x^n + y*y^n + (x*y^n + y*x^n) :
by { rw [pow_succ _ n, pow_succ _ n], exact le_add_of_nonneg_right h1 }
... = (x+y) * (x^n + y^n) :
by rw [add_mul, mul_add, mul_add, add_comm (y*x^n), β add_assoc,
β add_assoc, add_assoc (x*x^n) (x*y^n), add_comm (x*y^n) (y*y^n), β add_assoc]
... β€ (x+y)^n.succ :
by { rw [pow_succ _ n], exact mul_le_mul_of_nonneg_left (ih (nat.succ_ne_zero k)) h2 }
end
theorem pow_lt_pow_of_lt_left (Hxy : x < y) (Hxpos : 0 β€ x) (Hnpos : 0 < n) :
x ^ n < y ^ n :=
begin
cases lt_or_eq_of_le Hxpos,
{ rw β tsub_add_cancel_of_le (nat.succ_le_of_lt Hnpos),
induction (n - 1), { simpa only [pow_one] },
rw [pow_add, pow_add, nat.succ_eq_add_one, pow_one, pow_one],
apply mul_lt_mul ih (le_of_lt Hxy) h (le_of_lt (pow_pos (lt_trans h Hxy) _)) },
{ rw [βh, zero_pow Hnpos], apply pow_pos (by rwa βh at Hxy : 0 < y),}
end
lemma pow_lt_one (hβ : 0 β€ a) (hβ : a < 1) {n : β} (hn : n β 0) : a ^ n < 1 :=
(one_pow n).subst (pow_lt_pow_of_lt_left hβ hβ (nat.pos_of_ne_zero hn))
theorem strict_mono_on_pow (hn : 0 < n) : strict_mono_on (Ξ» x : R, x ^ n) (set.Ici 0) :=
Ξ» x hx y hy h, pow_lt_pow_of_lt_left h hx hn
theorem one_le_pow_of_one_le (H : 1 β€ a) : β (n : β), 1 β€ a ^ n
| 0 := by rw [pow_zero]
| (n+1) := by { rw pow_succ, simpa only [mul_one] using mul_le_mul H (one_le_pow_of_one_le n)
zero_le_one (le_trans zero_le_one H) }
lemma pow_mono (h : 1 β€ a) : monotone (Ξ» n : β, a ^ n) :=
monotone_nat_of_le_succ $ Ξ» n,
by { rw pow_succ, exact le_mul_of_one_le_left (pow_nonneg (zero_le_one.trans h) _) h }
theorem pow_le_pow (ha : 1 β€ a) (h : n β€ m) : a ^ n β€ a ^ m :=
pow_mono ha h
theorem le_self_pow (ha : 1 β€ a) (h : 1 β€ m) : a β€ a ^ m :=
eq.trans_le (pow_one a).symm (pow_le_pow ha h)
lemma strict_mono_pow (h : 1 < a) : strict_mono (Ξ» n : β, a ^ n) :=
have 0 < a := zero_le_one.trans_lt h,
strict_mono_nat_of_lt_succ $ Ξ» n, by simpa only [one_mul, pow_succ]
using mul_lt_mul h (le_refl (a ^ n)) (pow_pos this _) this.le
lemma pow_lt_pow (h : 1 < a) (h2 : n < m) : a ^ n < a ^ m :=
strict_mono_pow h h2
lemma pow_lt_pow_iff (h : 1 < a) : a ^ n < a ^ m β n < m :=
(strict_mono_pow h).lt_iff_lt
lemma pow_le_pow_iff (h : 1 < a) : a ^ n β€ a ^ m β n β€ m :=
(strict_mono_pow h).le_iff_le
lemma strict_anti_pow (hβ : 0 < a) (hβ : a < 1) : strict_anti (Ξ» n : β, a ^ n) :=
strict_anti_nat_of_succ_lt $ Ξ» n,
by simpa only [pow_succ, one_mul] using mul_lt_mul hβ le_rfl (pow_pos hβ n) zero_le_one
lemma pow_lt_pow_iff_of_lt_one (hβ : 0 < a) (hβ : a < 1) : a ^ m < a ^ n β n < m :=
(strict_anti_pow hβ hβ).lt_iff_lt
lemma pow_lt_pow_of_lt_one (h : 0 < a) (ha : a < 1) {i j : β} (hij : i < j) : a ^ j < a ^ i :=
(pow_lt_pow_iff_of_lt_one h ha).2 hij
@[mono] lemma pow_le_pow_of_le_left {a b : R} (ha : 0 β€ a) (hab : a β€ b) : β i : β, a^i β€ b^i
| 0 := by simp
| (k+1) := by { rw [pow_succ, pow_succ],
exact mul_le_mul hab (pow_le_pow_of_le_left _) (pow_nonneg ha _) (le_trans ha hab) }
lemma one_lt_pow (ha : 1 < a) {n : β} (hn : n β 0) : 1 < a ^ n :=
pow_zero a βΈ pow_lt_pow ha (pos_iff_ne_zero.2 hn)
lemma pow_le_one : β (n : β) (hβ : 0 β€ a) (hβ : a β€ 1), a ^ n β€ 1
| 0 hβ hβ := (pow_zero a).le
| (n + 1) hβ hβ := (pow_succ' a n).le.trans (mul_le_one (pow_le_one n hβ hβ) hβ hβ)
lemma sq_pos_of_pos (ha : 0 < a) : 0 < a ^ 2 := by { rw sq, exact mul_pos ha ha }
end ordered_semiring
section ordered_ring
variables [ordered_ring R] {a : R}
lemma sq_pos_of_neg (ha : a < 0) : 0 < a ^ 2 := by { rw sq, exact mul_pos_of_neg_of_neg ha ha }
lemma pow_bit0_pos_of_neg (ha : a < 0) (n : β) : 0 < a ^ bit0 n :=
begin
rw pow_bit0',
exact pow_pos (mul_pos_of_neg_of_neg ha ha) _,
end
lemma pow_bit1_neg (ha : a < 0) (n : β) : a ^ bit1 n < 0 :=
begin
rw [bit1, pow_succ],
exact mul_neg_of_neg_of_pos ha (pow_bit0_pos_of_neg ha n),
end
end ordered_ring
section linear_ordered_semiring
variables [linear_ordered_semiring R] {a b : R}
lemma pow_le_one_iff_of_nonneg {a : R} (ha : 0 β€ a) {n : β} (hn : n β 0) : a ^ n β€ 1 β a β€ 1 :=
begin
refine β¨_, pow_le_one n haβ©,
rw [βnot_lt, βnot_lt],
exact mt (Ξ» h, one_lt_pow h hn),
end
lemma one_le_pow_iff_of_nonneg {a : R} (ha : 0 β€ a) {n : β} (hn : n β 0) : 1 β€ a ^ n β 1 β€ a :=
begin
refine β¨_, Ξ» h, one_le_pow_of_one_le h nβ©,
rw [βnot_lt, βnot_lt],
exact mt (Ξ» h, pow_lt_one ha h hn),
end
lemma one_lt_pow_iff_of_nonneg {a : R} (ha : 0 β€ a) {n : β} (hn : n β 0) : 1 < a ^ n β 1 < a :=
lt_iff_lt_of_le_iff_le (pow_le_one_iff_of_nonneg ha hn)
lemma pow_lt_one_iff_of_nonneg {a : R} (ha : 0 β€ a) {n : β} (hn : n β 0) : a ^ n < 1 β a < 1 :=
lt_iff_lt_of_le_iff_le (one_le_pow_iff_of_nonneg ha hn)
lemma sq_le_one_iff {a : R} (ha : 0 β€ a) : a^2 β€ 1 β a β€ 1 :=
pow_le_one_iff_of_nonneg ha (nat.succ_ne_zero _)
lemma sq_lt_one_iff {a : R} (ha : 0 β€ a) : a^2 < 1 β a < 1 :=
pow_lt_one_iff_of_nonneg ha (nat.succ_ne_zero _)
lemma one_le_sq_iff {a : R} (ha : 0 β€ a) : 1 β€ a^2 β 1 β€ a :=
one_le_pow_iff_of_nonneg ha (nat.succ_ne_zero _)
lemma one_lt_sq_iff {a : R} (ha : 0 β€ a) : 1 < a^2 β 1 < a :=
one_lt_pow_iff_of_nonneg ha (nat.succ_ne_zero _)
@[simp] theorem pow_left_inj {x y : R} {n : β} (Hxpos : 0 β€ x) (Hypos : 0 β€ y) (Hnpos : 0 < n) :
x ^ n = y ^ n β x = y :=
(@strict_mono_on_pow R _ _ Hnpos).inj_on.eq_iff Hxpos Hypos
lemma lt_of_pow_lt_pow {a b : R} (n : β) (hb : 0 β€ b) (h : a ^ n < b ^ n) : a < b :=
lt_of_not_ge $ Ξ» hn, not_lt_of_ge (pow_le_pow_of_le_left hb hn _) h
lemma le_of_pow_le_pow {a b : R} (n : β) (hb : 0 β€ b) (hn : 0 < n) (h : a ^ n β€ b ^ n) : a β€ b :=
le_of_not_lt $ Ξ» h1, not_le_of_lt (pow_lt_pow_of_lt_left h1 hb hn) h
@[simp] lemma sq_eq_sq {a b : R} (ha : 0 β€ a) (hb : 0 β€ b) : a ^ 2 = b ^ 2 β a = b :=
pow_left_inj ha hb dec_trivial
lemma lt_of_mul_self_lt_mul_self (hb : 0 β€ b) : a * a < b * b β a < b :=
by { simp_rw βsq, exact lt_of_pow_lt_pow _ hb }
end linear_ordered_semiring
section linear_ordered_ring
variable [linear_ordered_ring R]
lemma pow_abs (a : R) (n : β) : |a| ^ n = |a ^ n| :=
((abs_hom.to_monoid_hom : R β* R).map_pow a n).symm
lemma abs_neg_one_pow (n : β) : |(-1 : R) ^ n| = 1 :=
by rw [βpow_abs, abs_neg, abs_one, one_pow]
theorem pow_bit0_nonneg (a : R) (n : β) : 0 β€ a ^ bit0 n :=
by { rw pow_bit0, exact mul_self_nonneg _ }
theorem sq_nonneg (a : R) : 0 β€ a ^ 2 :=
pow_bit0_nonneg a 1
alias sq_nonneg β pow_two_nonneg
theorem pow_bit0_pos {a : R} (h : a β 0) (n : β) : 0 < a ^ bit0 n :=
(pow_bit0_nonneg a n).lt_of_ne (pow_ne_zero _ h).symm
theorem sq_pos_of_ne_zero (a : R) (h : a β 0) : 0 < a ^ 2 :=
pow_bit0_pos h 1
alias sq_pos_of_ne_zero β pow_two_pos_of_ne_zero
theorem pow_bit0_pos_iff (a : R) {n : β} (hn : n β 0) : 0 < a ^ bit0 n β a β 0 :=
begin
refine β¨Ξ» h, _, Ξ» h, pow_bit0_pos h nβ©,
rintro rfl,
rw zero_pow (nat.zero_lt_bit0 hn) at h,
exact lt_irrefl _ h,
end
theorem sq_pos_iff (a : R) : 0 < a ^ 2 β a β 0 :=
pow_bit0_pos_iff a one_ne_zero
variables {x y : R}
theorem sq_abs (x : R) : |x| ^ 2 = x ^ 2 :=
by simpa only [sq] using abs_mul_abs_self x
theorem abs_sq (x : R) : |x ^ 2| = x ^ 2 :=
by simpa only [sq] using abs_mul_self x
theorem sq_lt_sq : x ^ 2 < y ^ 2 β |x| < |y| :=
by simpa only [sq_abs]
using (@strict_mono_on_pow R _ _ two_pos).lt_iff_lt (abs_nonneg x) (abs_nonneg y)
theorem sq_lt_sq' (h1 : -y < x) (h2 : x < y) : x ^ 2 < y ^ 2 :=
sq_lt_sq.2 (lt_of_lt_of_le (abs_lt.2 β¨h1, h2β©) (le_abs_self _))
theorem sq_le_sq : x ^ 2 β€ y ^ 2 β |x| β€ |y| :=
by simpa only [sq_abs]
using (@strict_mono_on_pow R _ _ two_pos).le_iff_le (abs_nonneg x) (abs_nonneg y)
theorem sq_le_sq' (h1 : -y β€ x) (h2 : x β€ y) : x ^ 2 β€ y ^ 2 :=
sq_le_sq.2 (le_trans (abs_le.mpr β¨h1, h2β©) (le_abs_self _))
theorem abs_lt_of_sq_lt_sq (h : x^2 < y^2) (hy : 0 β€ y) : |x| < y :=
by rwa [β abs_of_nonneg hy, β sq_lt_sq]
theorem abs_lt_of_sq_lt_sq' (h : x^2 < y^2) (hy : 0 β€ y) : -y < x β§ x < y :=
abs_lt.mp $ abs_lt_of_sq_lt_sq h hy
theorem abs_le_of_sq_le_sq (h : x^2 β€ y^2) (hy : 0 β€ y) : |x| β€ y :=
by rwa [β abs_of_nonneg hy, β sq_le_sq]
theorem abs_le_of_sq_le_sq' (h : x^2 β€ y^2) (hy : 0 β€ y) : -y β€ x β§ x β€ y :=
abs_le.mp $ abs_le_of_sq_le_sq h hy
lemma sq_eq_sq_iff_abs_eq_abs (x y : R) : x^2 = y^2 β |x| = |y| :=
by simp only [le_antisymm_iff, sq_le_sq]
@[simp] lemma sq_le_one_iff_abs_le_one (x : R) : x^2 β€ 1 β |x| β€ 1 :=
by simpa only [one_pow, abs_one] using @sq_le_sq _ _ x 1
@[simp] lemma sq_lt_one_iff_abs_lt_one (x : R) : x^2 < 1 β |x| < 1 :=
by simpa only [one_pow, abs_one] using @sq_lt_sq _ _ x 1
@[simp] lemma one_le_sq_iff_one_le_abs (x : R) : 1 β€ x^2 β 1 β€ |x| :=
by simpa only [one_pow, abs_one] using @sq_le_sq _ _ 1 x
@[simp] lemma one_lt_sq_iff_one_lt_abs (x : R) : 1 < x^2 β 1 < |x| :=
by simpa only [one_pow, abs_one] using @sq_lt_sq _ _ 1 x
lemma pow_four_le_pow_two_of_pow_two_le {x y : R} (h : x^2 β€ y) : x^4 β€ y^2 :=
(pow_mul x 2 2).symm βΈ pow_le_pow_of_le_left (sq_nonneg x) h 2
end linear_ordered_ring
section linear_ordered_comm_ring
variables [linear_ordered_comm_ring R]
/-- Arithmetic mean-geometric mean (AM-GM) inequality for linearly ordered commutative rings. -/
lemma two_mul_le_add_sq (a b : R) : 2 * a * b β€ a ^ 2 + b ^ 2 :=
sub_nonneg.mp ((sub_add_eq_add_sub _ _ _).subst ((sub_sq a b).subst (sq_nonneg _)))
alias two_mul_le_add_sq β two_mul_le_add_pow_two
end linear_ordered_comm_ring
|