Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 14,736 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Robert Y. Lewis
-/
import algebra.order.ring
import algebra.group_power.ring

/-!
# Lemmas about the interaction of power operations with order

Note that some lemmas are in `algebra/group_power/lemmas.lean` as they import files which
depend on this file.
-/

variables {A G M R : Type*}

section preorder

variables [monoid M] [preorder M] [covariant_class M M (*) (≀)]

@[to_additive nsmul_le_nsmul_of_le_right, mono]
lemma pow_le_pow_of_le_left' [covariant_class M M (function.swap (*)) (≀)]
  {a b : M} (hab : a ≀ b) : βˆ€ i : β„•, a ^ i ≀ b ^ i
| 0     := by simp
| (k+1) := by { rw [pow_succ, pow_succ],
    exact mul_le_mul' hab (pow_le_pow_of_le_left' k) }

attribute [mono] nsmul_le_nsmul_of_le_right

@[to_additive nsmul_nonneg]
theorem one_le_pow_of_one_le' {a : M} (H : 1 ≀ a) : βˆ€ n : β„•, 1 ≀ a ^ n
| 0       := by simp
| (k + 1) := by { rw pow_succ, exact one_le_mul H (one_le_pow_of_one_le' k) }

@[to_additive nsmul_nonpos]
lemma pow_le_one' {a : M} (H : a ≀ 1) (n : β„•) : a ^ n ≀ 1 := @one_le_pow_of_one_le' Mα΅’α΅ˆ _ _ _ _ H n

@[to_additive nsmul_le_nsmul]
theorem pow_le_pow' {a : M} {n m : β„•} (ha : 1 ≀ a) (h : n ≀ m) : a ^ n ≀ a ^ m :=
let ⟨k, hk⟩ := nat.le.dest h in
calc a ^ n ≀ a ^ n * a ^ k : le_mul_of_one_le_right' (one_le_pow_of_one_le' ha _)
       ... = a ^ m         : by rw [← hk, pow_add]

@[to_additive nsmul_le_nsmul_of_nonpos]
theorem pow_le_pow_of_le_one' {a : M} {n m : β„•} (ha : a ≀ 1) (h : n ≀ m) : a ^ m ≀ a ^ n :=
@pow_le_pow' Mα΅’α΅ˆ _ _ _ _ _ _  ha h

@[to_additive nsmul_pos]
theorem one_lt_pow' {a : M} (ha : 1 < a) {k : β„•} (hk : k β‰  0) : 1 < a ^ k :=
begin
  rcases nat.exists_eq_succ_of_ne_zero hk with ⟨l, rfl⟩,
  clear hk,
  induction l with l IH,
  { simpa using ha },
  { rw pow_succ,
    exact one_lt_mul'' ha IH }
end

@[to_additive nsmul_neg]
lemma pow_lt_one' {a : M} (ha : a < 1) {k : β„•} (hk : k β‰  0) : a ^ k < 1 :=
@one_lt_pow' Mα΅’α΅ˆ _ _ _ _ ha k hk

@[to_additive nsmul_lt_nsmul]
theorem pow_lt_pow' [covariant_class M M (*) (<)] {a : M} {n m : β„•} (ha : 1 < a) (h : n < m) :
  a ^ n < a ^ m :=
begin
  rcases nat.le.dest h with ⟨k, rfl⟩, clear h,
  rw [pow_add, pow_succ', mul_assoc, ← pow_succ],
  exact lt_mul_of_one_lt_right' _ (one_lt_pow' ha k.succ_ne_zero)
end

@[to_additive nsmul_strict_mono_right]
lemma pow_strict_mono_left [covariant_class M M (*) (<)] {a : M} (ha : 1 < a) :
  strict_mono ((^) a : β„• β†’ M) :=
Ξ» m n, pow_lt_pow' ha

end preorder

section linear_order

variables [monoid M] [linear_order M] [covariant_class M M (*) (≀)]

@[to_additive nsmul_nonneg_iff]
lemma one_le_pow_iff {x : M} {n : β„•} (hn : n β‰  0) : 1 ≀ x ^ n ↔ 1 ≀ x :=
⟨le_imp_le_of_lt_imp_lt $ λ h, pow_lt_one' h hn, λ h, one_le_pow_of_one_le' h n⟩

@[to_additive]
lemma pow_le_one_iff {x : M} {n : β„•} (hn : n β‰  0) : x ^ n ≀ 1 ↔ x ≀ 1 :=
@one_le_pow_iff Mα΅’α΅ˆ _ _ _ _ _ hn

@[to_additive nsmul_pos_iff]
lemma one_lt_pow_iff {x : M} {n : β„•} (hn : n β‰  0) : 1 < x ^ n ↔ 1 < x :=
lt_iff_lt_of_le_iff_le (pow_le_one_iff hn)

@[to_additive]
lemma pow_lt_one_iff {x : M} {n : β„•} (hn : n β‰  0) : x ^ n < 1 ↔ x < 1 :=
lt_iff_lt_of_le_iff_le (one_le_pow_iff hn)

@[to_additive]
lemma pow_eq_one_iff {x : M} {n : β„•} (hn : n β‰  0) : x ^ n = 1 ↔ x = 1 :=
by simp only [le_antisymm_iff, pow_le_one_iff hn, one_le_pow_iff hn]

variables [covariant_class M M (*) (<)] {a : M} {m n : β„•}

@[to_additive nsmul_le_nsmul_iff]
lemma pow_le_pow_iff' (ha : 1 < a) : a ^ m ≀ a ^ n ↔ m ≀ n := (pow_strict_mono_left ha).le_iff_le

@[to_additive nsmul_lt_nsmul_iff]
lemma pow_lt_pow_iff' (ha : 1 < a) : a ^ m < a ^ n ↔ m < n := (pow_strict_mono_left ha).lt_iff_lt

end linear_order

section div_inv_monoid

variables [div_inv_monoid G] [preorder G] [covariant_class G G (*) (≀)]

@[to_additive zsmul_nonneg]
theorem one_le_zpow {x : G} (H : 1 ≀ x) {n : β„€} (hn : 0 ≀ n) :
  1 ≀ x ^ n :=
begin
  lift n to β„• using hn,
  rw zpow_coe_nat,
  apply one_le_pow_of_one_le' H,
end

end div_inv_monoid

namespace canonically_ordered_comm_semiring

variables [canonically_ordered_comm_semiring R]

theorem pow_pos {a : R} (H : 0 < a) (n : β„•) : 0 < a ^ n :=
pos_iff_ne_zero.2 $ pow_ne_zero _ H.ne'

end canonically_ordered_comm_semiring

section ordered_semiring
variables [ordered_semiring R] {a x y : R} {n m : β„•}

lemma zero_pow_le_one : βˆ€ n : β„•, (0 : R) ^ n ≀ 1
| 0 := (pow_zero _).le
| (n + 1) := by { rw [zero_pow n.succ_pos], exact zero_le_one }

theorem pow_add_pow_le (hx : 0 ≀ x) (hy : 0 ≀ y) (hn : n β‰  0) : x ^ n + y ^ n ≀ (x + y) ^ n :=
begin
  rcases nat.exists_eq_succ_of_ne_zero hn with ⟨k, rfl⟩,
  induction k with k ih, { simp only [pow_one] },
  let n := k.succ,
  have h1 := add_nonneg (mul_nonneg hx (pow_nonneg hy n)) (mul_nonneg hy (pow_nonneg hx n)),
  have h2 := add_nonneg hx hy,
  calc x^n.succ + y^n.succ
    ≀ x*x^n + y*y^n + (x*y^n + y*x^n) :
      by { rw [pow_succ _ n, pow_succ _ n], exact le_add_of_nonneg_right h1 }
    ... = (x+y) * (x^n + y^n) :
      by rw [add_mul, mul_add, mul_add, add_comm (y*x^n), ← add_assoc,
        ← add_assoc, add_assoc (x*x^n) (x*y^n), add_comm (x*y^n) (y*y^n), ← add_assoc]
    ... ≀ (x+y)^n.succ :
      by { rw [pow_succ _ n], exact mul_le_mul_of_nonneg_left (ih (nat.succ_ne_zero k)) h2 }
end

theorem pow_lt_pow_of_lt_left (Hxy : x < y) (Hxpos : 0 ≀ x) (Hnpos : 0 < n) :
  x ^ n < y ^ n :=
begin
  cases lt_or_eq_of_le Hxpos,
  { rw ← tsub_add_cancel_of_le (nat.succ_le_of_lt Hnpos),
    induction (n - 1), { simpa only [pow_one] },
    rw [pow_add, pow_add, nat.succ_eq_add_one, pow_one, pow_one],
    apply mul_lt_mul ih (le_of_lt Hxy) h (le_of_lt (pow_pos (lt_trans h Hxy) _)) },
  { rw [←h, zero_pow Hnpos], apply pow_pos (by rwa ←h at Hxy : 0 < y),}
end

lemma pow_lt_one (hβ‚€ : 0 ≀ a) (h₁ : a < 1) {n : β„•} (hn : n β‰  0) : a ^ n < 1 :=
(one_pow n).subst (pow_lt_pow_of_lt_left h₁ hβ‚€ (nat.pos_of_ne_zero hn))

theorem strict_mono_on_pow (hn : 0 < n) : strict_mono_on (Ξ» x : R, x ^ n) (set.Ici 0) :=
Ξ» x hx y hy h, pow_lt_pow_of_lt_left h hx hn

theorem one_le_pow_of_one_le (H : 1 ≀ a) : βˆ€ (n : β„•), 1 ≀ a ^ n
| 0     := by rw [pow_zero]
| (n+1) := by { rw pow_succ, simpa only [mul_one] using mul_le_mul H (one_le_pow_of_one_le n)
    zero_le_one (le_trans zero_le_one H) }

lemma pow_mono (h : 1 ≀ a) : monotone (Ξ» n : β„•, a ^ n) :=
monotone_nat_of_le_succ $ Ξ» n,
  by { rw pow_succ, exact le_mul_of_one_le_left (pow_nonneg (zero_le_one.trans h) _) h }

theorem pow_le_pow (ha : 1 ≀ a) (h : n ≀ m) : a ^ n ≀ a ^ m :=
pow_mono ha h

theorem le_self_pow (ha : 1 ≀ a) (h : 1 ≀ m) : a ≀ a ^ m :=
eq.trans_le (pow_one a).symm (pow_le_pow ha h)

lemma strict_mono_pow (h : 1 < a) : strict_mono (Ξ» n : β„•, a ^ n) :=
have 0 < a := zero_le_one.trans_lt h,
strict_mono_nat_of_lt_succ $ Ξ» n, by simpa only [one_mul, pow_succ]
  using mul_lt_mul h (le_refl (a ^ n)) (pow_pos this _) this.le

lemma pow_lt_pow (h : 1 < a) (h2 : n < m) : a ^ n < a ^ m :=
strict_mono_pow h h2

lemma pow_lt_pow_iff (h : 1 < a) : a ^ n < a ^ m ↔ n < m :=
(strict_mono_pow h).lt_iff_lt

lemma pow_le_pow_iff (h : 1 < a) : a ^ n ≀ a ^ m ↔ n ≀ m :=
(strict_mono_pow h).le_iff_le

lemma strict_anti_pow (hβ‚€ : 0 < a) (h₁ : a < 1) : strict_anti (Ξ» n : β„•, a ^ n) :=
strict_anti_nat_of_succ_lt $ Ξ» n,
  by simpa only [pow_succ, one_mul] using mul_lt_mul h₁ le_rfl (pow_pos hβ‚€ n) zero_le_one

lemma pow_lt_pow_iff_of_lt_one (hβ‚€ : 0 < a) (h₁ : a < 1) : a ^ m < a ^ n ↔ n < m :=
(strict_anti_pow hβ‚€ h₁).lt_iff_lt

lemma pow_lt_pow_of_lt_one (h : 0 < a) (ha : a < 1) {i j : β„•} (hij : i < j) : a ^ j < a ^ i :=
(pow_lt_pow_iff_of_lt_one h ha).2 hij

@[mono] lemma pow_le_pow_of_le_left {a b : R} (ha : 0 ≀ a) (hab : a ≀ b) : βˆ€ i : β„•, a^i ≀ b^i
| 0     := by simp
| (k+1) := by { rw [pow_succ, pow_succ],
    exact mul_le_mul hab (pow_le_pow_of_le_left _) (pow_nonneg ha _) (le_trans ha hab) }

lemma one_lt_pow (ha : 1 < a) {n : β„•} (hn : n β‰  0) : 1 < a ^ n :=
pow_zero a β–Έ pow_lt_pow ha (pos_iff_ne_zero.2 hn)

lemma pow_le_one : βˆ€ (n : β„•) (hβ‚€ : 0 ≀ a) (h₁ : a ≀ 1), a ^ n ≀ 1
| 0       hβ‚€ h₁ := (pow_zero a).le
| (n + 1) hβ‚€ h₁ := (pow_succ' a n).le.trans (mul_le_one (pow_le_one n hβ‚€ h₁) hβ‚€ h₁)

lemma sq_pos_of_pos (ha : 0 < a) : 0 < a ^ 2 := by { rw sq, exact mul_pos ha ha }

end ordered_semiring

section ordered_ring
variables [ordered_ring R] {a : R}

lemma sq_pos_of_neg (ha : a < 0) : 0 < a ^ 2 := by { rw sq, exact mul_pos_of_neg_of_neg ha ha }

lemma pow_bit0_pos_of_neg (ha : a < 0) (n : β„•) : 0 < a ^ bit0 n :=
begin
  rw pow_bit0',
  exact pow_pos (mul_pos_of_neg_of_neg ha ha) _,
end

lemma pow_bit1_neg (ha : a < 0) (n : β„•) : a ^ bit1 n < 0 :=
begin
  rw [bit1, pow_succ],
  exact mul_neg_of_neg_of_pos ha (pow_bit0_pos_of_neg ha n),
end

end ordered_ring

section linear_ordered_semiring
variables [linear_ordered_semiring R] {a b : R}

lemma pow_le_one_iff_of_nonneg {a : R} (ha : 0 ≀ a) {n : β„•} (hn : n β‰  0) : a ^ n ≀ 1 ↔ a ≀ 1 :=
begin
  refine ⟨_, pow_le_one n ha⟩,
  rw [←not_lt, ←not_lt],
  exact mt (Ξ» h, one_lt_pow h hn),
end

lemma one_le_pow_iff_of_nonneg {a : R} (ha : 0 ≀ a) {n : β„•} (hn : n β‰  0) : 1 ≀ a ^ n ↔ 1 ≀ a :=
begin
  refine ⟨_, λ h, one_le_pow_of_one_le h n⟩,
  rw [←not_lt, ←not_lt],
  exact mt (Ξ» h, pow_lt_one ha h hn),
end

lemma one_lt_pow_iff_of_nonneg {a : R} (ha : 0 ≀ a) {n : β„•} (hn : n β‰  0) : 1 < a ^ n ↔ 1 < a :=
lt_iff_lt_of_le_iff_le (pow_le_one_iff_of_nonneg ha hn)

lemma pow_lt_one_iff_of_nonneg {a : R} (ha : 0 ≀ a) {n : β„•} (hn : n β‰  0) : a ^ n < 1 ↔ a < 1 :=
lt_iff_lt_of_le_iff_le (one_le_pow_iff_of_nonneg ha hn)

lemma sq_le_one_iff {a : R} (ha : 0 ≀ a) : a^2 ≀ 1 ↔ a ≀ 1 :=
pow_le_one_iff_of_nonneg ha (nat.succ_ne_zero _)

lemma sq_lt_one_iff {a : R} (ha : 0 ≀ a) : a^2 < 1 ↔ a < 1 :=
pow_lt_one_iff_of_nonneg ha (nat.succ_ne_zero _)

lemma one_le_sq_iff {a : R} (ha : 0 ≀ a) : 1 ≀ a^2 ↔ 1 ≀ a :=
one_le_pow_iff_of_nonneg ha (nat.succ_ne_zero _)

lemma one_lt_sq_iff {a : R} (ha : 0 ≀ a) : 1 < a^2 ↔ 1 < a :=
one_lt_pow_iff_of_nonneg ha (nat.succ_ne_zero _)

@[simp] theorem pow_left_inj {x y : R} {n : β„•} (Hxpos : 0 ≀ x) (Hypos : 0 ≀ y) (Hnpos : 0 < n) :
  x ^ n = y ^ n ↔ x = y :=
(@strict_mono_on_pow R _ _ Hnpos).inj_on.eq_iff Hxpos Hypos

lemma lt_of_pow_lt_pow {a b : R} (n : β„•) (hb : 0 ≀ b) (h : a ^ n < b ^ n) : a < b :=
lt_of_not_ge $ Ξ» hn, not_lt_of_ge (pow_le_pow_of_le_left hb hn _) h

lemma le_of_pow_le_pow {a b : R} (n : β„•) (hb : 0 ≀ b) (hn : 0 < n) (h : a ^ n ≀ b ^ n) : a ≀ b :=
le_of_not_lt $ Ξ» h1, not_le_of_lt (pow_lt_pow_of_lt_left h1 hb hn) h

@[simp] lemma sq_eq_sq {a b : R} (ha : 0 ≀ a) (hb : 0 ≀ b) : a ^ 2 = b ^ 2 ↔ a = b :=
pow_left_inj ha hb dec_trivial

lemma lt_of_mul_self_lt_mul_self (hb : 0 ≀ b) : a * a < b * b β†’ a < b :=
by { simp_rw ←sq, exact lt_of_pow_lt_pow _ hb }

end linear_ordered_semiring

section linear_ordered_ring

variable [linear_ordered_ring R]

lemma pow_abs (a : R) (n : β„•) : |a| ^ n = |a ^ n| :=
((abs_hom.to_monoid_hom : R β†’* R).map_pow a n).symm

lemma abs_neg_one_pow (n : β„•) : |(-1 : R) ^ n| = 1 :=
by rw [←pow_abs, abs_neg, abs_one, one_pow]

theorem pow_bit0_nonneg (a : R) (n : β„•) : 0 ≀ a ^ bit0 n :=
by { rw pow_bit0, exact mul_self_nonneg _ }

theorem sq_nonneg (a : R) : 0 ≀ a ^ 2 :=
pow_bit0_nonneg a 1

alias sq_nonneg ← pow_two_nonneg

theorem pow_bit0_pos {a : R} (h : a β‰  0) (n : β„•) : 0 < a ^ bit0 n :=
(pow_bit0_nonneg a n).lt_of_ne (pow_ne_zero _ h).symm

theorem sq_pos_of_ne_zero (a : R) (h : a β‰  0) : 0 < a ^ 2 :=
pow_bit0_pos h 1

alias sq_pos_of_ne_zero ← pow_two_pos_of_ne_zero

theorem pow_bit0_pos_iff (a : R) {n : β„•} (hn : n β‰  0) : 0 < a ^ bit0 n ↔ a β‰  0 :=
begin
  refine ⟨λ h, _, λ h, pow_bit0_pos h n⟩,
  rintro rfl,
  rw zero_pow (nat.zero_lt_bit0 hn) at h,
  exact lt_irrefl _ h,
end

theorem sq_pos_iff (a : R) : 0 < a ^ 2 ↔ a β‰  0 :=
pow_bit0_pos_iff a one_ne_zero

variables {x y : R}

theorem sq_abs (x : R) : |x| ^ 2 = x ^ 2 :=
by simpa only [sq] using abs_mul_abs_self x

theorem abs_sq (x : R) : |x ^ 2| = x ^ 2 :=
by simpa only [sq] using abs_mul_self x

theorem sq_lt_sq : x ^ 2 < y ^ 2 ↔ |x| < |y| :=
by simpa only [sq_abs]
  using (@strict_mono_on_pow R _ _ two_pos).lt_iff_lt (abs_nonneg x) (abs_nonneg y)

theorem sq_lt_sq' (h1 : -y < x) (h2 : x < y) : x ^ 2 < y ^ 2 :=
sq_lt_sq.2 (lt_of_lt_of_le (abs_lt.2 ⟨h1, h2⟩) (le_abs_self _))

theorem sq_le_sq : x ^ 2 ≀ y ^ 2 ↔ |x| ≀ |y| :=
by simpa only [sq_abs]
  using (@strict_mono_on_pow R _ _ two_pos).le_iff_le (abs_nonneg x) (abs_nonneg y)

theorem sq_le_sq' (h1 : -y ≀ x) (h2 : x ≀ y) : x ^ 2 ≀ y ^ 2 :=
sq_le_sq.2 (le_trans (abs_le.mpr ⟨h1, h2⟩) (le_abs_self _))

theorem abs_lt_of_sq_lt_sq (h : x^2 < y^2) (hy : 0 ≀ y) : |x| < y :=
by rwa [← abs_of_nonneg hy, ← sq_lt_sq]

theorem abs_lt_of_sq_lt_sq' (h : x^2 < y^2) (hy : 0 ≀ y) : -y < x ∧ x < y :=
abs_lt.mp $ abs_lt_of_sq_lt_sq h hy

theorem abs_le_of_sq_le_sq (h : x^2 ≀ y^2) (hy : 0 ≀ y) : |x| ≀ y :=
by rwa [← abs_of_nonneg hy, ← sq_le_sq]

theorem abs_le_of_sq_le_sq' (h : x^2 ≀ y^2) (hy : 0 ≀ y) : -y ≀ x ∧ x ≀ y :=
abs_le.mp $ abs_le_of_sq_le_sq h hy

lemma sq_eq_sq_iff_abs_eq_abs (x y : R) : x^2 = y^2 ↔ |x| = |y| :=
by simp only [le_antisymm_iff, sq_le_sq]

@[simp] lemma sq_le_one_iff_abs_le_one (x : R) : x^2 ≀ 1 ↔ |x| ≀ 1 :=
by simpa only [one_pow, abs_one] using @sq_le_sq _ _ x 1

@[simp] lemma sq_lt_one_iff_abs_lt_one (x : R) : x^2 < 1 ↔ |x| < 1 :=
by simpa only [one_pow, abs_one] using @sq_lt_sq _ _ x 1

@[simp] lemma one_le_sq_iff_one_le_abs (x : R) : 1 ≀ x^2 ↔ 1 ≀ |x| :=
by simpa only [one_pow, abs_one] using @sq_le_sq _ _ 1 x

@[simp] lemma one_lt_sq_iff_one_lt_abs (x : R) : 1 < x^2 ↔ 1 < |x| :=
by simpa only [one_pow, abs_one] using @sq_lt_sq _ _ 1 x

lemma pow_four_le_pow_two_of_pow_two_le {x y : R} (h : x^2 ≀ y) : x^4 ≀ y^2 :=
(pow_mul x 2 2).symm β–Έ pow_le_pow_of_le_left (sq_nonneg x) h 2

end linear_ordered_ring

section linear_ordered_comm_ring
variables [linear_ordered_comm_ring R]

/-- Arithmetic mean-geometric mean (AM-GM) inequality for linearly ordered commutative rings. -/
lemma two_mul_le_add_sq (a b : R) : 2 * a * b ≀ a ^ 2 + b ^ 2 :=
sub_nonneg.mp ((sub_add_eq_add_sub _ _ _).subst ((sub_sq a b).subst (sq_nonneg _)))

alias two_mul_le_add_sq ← two_mul_le_add_pow_two

end linear_ordered_comm_ring