Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 30,527 Bytes
4365a98 fc5e983 4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 |
/-
Copyright (c) 2021 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import algebra.homology.additive
import tactic.abel
/-!
# Chain homotopies
We define chain homotopies, and prove that homotopic chain maps induce the same map on homology.
-/
universes v u
open_locale classical
noncomputable theory
open category_theory category_theory.limits homological_complex
variables {ι : Type*}
variables {V : Type u} [category.{v} V] [preadditive V]
variables {c : complex_shape ι} {C D E : homological_complex V c}
variables (f g : C ⟶ D) (h k : D ⟶ E) (i : ι)
section
/-- The composition of `C.d i i' ≫ f i' i` if there is some `i'` coming after `i`,
and `0` otherwise. -/
def d_next (i : ι) : (Π i j, C.X i ⟶ D.X j) →+ (C.X i ⟶ D.X i) :=
add_monoid_hom.mk' (λ f, C.d i (c.next i) ≫ f (c.next i) i) $
λ f g, preadditive.comp_add _ _ _ _ _ _
/-- `f i' i` if `i'` comes after `i`, and 0 if there's no such `i'`.
Hopefully there won't be much need for this, except in `d_next_eq_d_from_from_next`
to see that `d_next` factors through `C.d_from i`. -/
def from_next (i : ι) : (Π i j, C.X i ⟶ D.X j) →+ (C.X_next i ⟶ D.X i) :=
add_monoid_hom.mk' (λ f, f (c.next i) i) $ λ f g, rfl
@[simp]
lemma d_next_eq_d_from_from_next (f : Π i j, C.X i ⟶ D.X j) (i : ι) :
d_next i f = C.d_from i ≫ from_next i f := rfl
lemma d_next_eq (f : Π i j, C.X i ⟶ D.X j) {i i' : ι} (w : c.rel i i') :
d_next i f = C.d i i' ≫ f i' i :=
by { obtain rfl := c.next_eq' w, refl }
@[simp] lemma d_next_comp_left (f : C ⟶ D) (g : Π i j, D.X i ⟶ E.X j) (i : ι) :
d_next i (λ i j, f.f i ≫ g i j) = f.f i ≫ d_next i g :=
(f.comm_assoc _ _ _).symm
@[simp] lemma d_next_comp_right (f : Π i j, C.X i ⟶ D.X j) (g : D ⟶ E) (i : ι) :
d_next i (λ i j, f i j ≫ g.f j) = d_next i f ≫ g.f i :=
(category.assoc _ _ _).symm
/-- The composition of `f j j' ≫ D.d j' j` if there is some `j'` coming before `j`,
and `0` otherwise. -/
def prev_d (j : ι) : (Π i j, C.X i ⟶ D.X j) →+ (C.X j ⟶ D.X j) :=
add_monoid_hom.mk' (λ f, f j (c.prev j) ≫ D.d (c.prev j) j) $
λ f g, preadditive.add_comp _ _ _ _ _ _
/-- `f j j'` if `j'` comes after `j`, and 0 if there's no such `j'`.
Hopefully there won't be much need for this, except in `d_next_eq_d_from_from_next`
to see that `d_next` factors through `C.d_from i`. -/
def to_prev (j : ι) : (Π i j, C.X i ⟶ D.X j) →+ (C.X j ⟶ D.X_prev j) :=
add_monoid_hom.mk' (λ f, f j (c.prev j)) $ λ f g, rfl
@[simp]
lemma prev_d_eq_to_prev_d_to (f : Π i j, C.X i ⟶ D.X j) (j : ι) :
prev_d j f = to_prev j f ≫ D.d_to j := rfl
lemma prev_d_eq (f : Π i j, C.X i ⟶ D.X j) {j j' : ι} (w : c.rel j' j) :
prev_d j f = f j j' ≫ D.d j' j :=
by { obtain rfl := c.prev_eq' w, refl }
@[simp] lemma prev_d_comp_left (f : C ⟶ D) (g : Π i j, D.X i ⟶ E.X j) (j : ι) :
prev_d j (λ i j, f.f i ≫ g i j) = f.f j ≫ prev_d j g :=
category.assoc _ _ _
@[simp] lemma prev_d_comp_right (f : Π i j, C.X i ⟶ D.X j) (g : D ⟶ E) (j : ι) :
prev_d j (λ i j, f i j ≫ g.f j) = prev_d j f ≫ g.f j :=
by { dsimp [prev_d], simp only [category.assoc, g.comm] }
lemma d_next_nat (C D : chain_complex V ℕ) (i : ℕ) (f : Π i j, C.X i ⟶ D.X j) :
d_next i f = C.d i (i-1) ≫ f (i-1) i :=
begin
dsimp [d_next],
cases i,
{ simp only [shape, chain_complex.next_nat_zero, complex_shape.down_rel,
nat.one_ne_zero, not_false_iff, zero_comp], },
{ dsimp only [nat.succ_eq_add_one],
have : (complex_shape.down ℕ).next (i + 1) = i + 1 - 1,
{ rw chain_complex.next_nat_succ, refl },
congr' 2, }
end
lemma prev_d_nat (C D : cochain_complex V ℕ) (i : ℕ) (f : Π i j, C.X i ⟶ D.X j) :
prev_d i f = f i (i-1) ≫ D.d (i-1) i :=
begin
dsimp [prev_d],
cases i,
{ simp only [shape, cochain_complex.prev_nat_zero, complex_shape.up_rel,
nat.one_ne_zero, not_false_iff, comp_zero]},
{ dsimp only [nat.succ_eq_add_one],
have : (complex_shape.up ℕ).prev (i + 1) = i + 1 - 1,
{ rw cochain_complex.prev_nat_succ, refl },
congr' 2, },
end
/--
A homotopy `h` between chain maps `f` and `g` consists of components `h i j : C.X i ⟶ D.X j`
which are zero unless `c.rel j i`, satisfying the homotopy condition.
-/
@[ext, nolint has_nonempty_instance]
structure homotopy (f g : C ⟶ D) :=
(hom : Π i j, C.X i ⟶ D.X j)
(zero' : ∀ i j, ¬ c.rel j i → hom i j = 0 . obviously)
(comm : ∀ i, f.f i = d_next i hom + prev_d i hom + g.f i . obviously')
variables {f g}
namespace homotopy
restate_axiom homotopy.zero'
/--
`f` is homotopic to `g` iff `f - g` is homotopic to `0`.
-/
def equiv_sub_zero : homotopy f g ≃ homotopy (f - g) 0 :=
{ to_fun := λ h,
{ hom := λ i j, h.hom i j,
zero' := λ i j w, h.zero _ _ w,
comm := λ i, by simp [h.comm] },
inv_fun := λ h,
{ hom := λ i j, h.hom i j,
zero' := λ i j w, h.zero _ _ w,
comm := λ i, by simpa [sub_eq_iff_eq_add] using h.comm i },
left_inv := by tidy,
right_inv := by tidy, }
/-- Equal chain maps are homotopic. -/
@[simps]
def of_eq (h : f = g) : homotopy f g :=
{ hom := 0,
zero' := λ _ _ _, rfl,
comm := λ _, by simp only [add_monoid_hom.map_zero, zero_add, h] }
/-- Every chain map is homotopic to itself. -/
@[simps, refl]
def refl (f : C ⟶ D) : homotopy f f :=
of_eq (rfl : f = f)
/-- `f` is homotopic to `g` iff `g` is homotopic to `f`. -/
@[simps, symm]
def symm {f g : C ⟶ D} (h : homotopy f g) : homotopy g f :=
{ hom := -h.hom,
zero' := λ i j w, by rw [pi.neg_apply, pi.neg_apply, h.zero i j w, neg_zero],
comm := λ i, by rw [add_monoid_hom.map_neg, add_monoid_hom.map_neg, h.comm, ← neg_add,
← add_assoc, neg_add_self, zero_add] }
/-- homotopy is a transitive relation. -/
@[simps, trans]
def trans {e f g : C ⟶ D} (h : homotopy e f) (k : homotopy f g) : homotopy e g :=
{ hom := h.hom + k.hom,
zero' := λ i j w, by rw [pi.add_apply, pi.add_apply, h.zero i j w, k.zero i j w, zero_add],
comm := λ i, by { rw [add_monoid_hom.map_add, add_monoid_hom.map_add, h.comm, k.comm], abel }, }
/-- the sum of two homotopies is a homotopy between the sum of the respective morphisms. -/
@[simps]
def add {f₁ g₁ f₂ g₂ : C ⟶ D}
(h₁ : homotopy f₁ g₁) (h₂ : homotopy f₂ g₂) : homotopy (f₁+f₂) (g₁+g₂) :=
{ hom := h₁.hom + h₂.hom,
zero' := λ i j hij, by
rw [pi.add_apply, pi.add_apply, h₁.zero' i j hij, h₂.zero' i j hij, add_zero],
comm := λ i, by
{ simp only [homological_complex.add_f_apply, h₁.comm, h₂.comm,
add_monoid_hom.map_add],
abel, }, }
/-- homotopy is closed under composition (on the right) -/
@[simps]
def comp_right {e f : C ⟶ D} (h : homotopy e f) (g : D ⟶ E) : homotopy (e ≫ g) (f ≫ g) :=
{ hom := λ i j, h.hom i j ≫ g.f j,
zero' := λ i j w, by rw [h.zero i j w, zero_comp],
comm := λ i, by simp only [h.comm i, d_next_comp_right, preadditive.add_comp,
prev_d_comp_right, comp_f], }
/-- homotopy is closed under composition (on the left) -/
@[simps]
def comp_left {f g : D ⟶ E} (h : homotopy f g) (e : C ⟶ D) : homotopy (e ≫ f) (e ≫ g) :=
{ hom := λ i j, e.f i ≫ h.hom i j,
zero' := λ i j w, by rw [h.zero i j w, comp_zero],
comm := λ i, by simp only [h.comm i, d_next_comp_left, preadditive.comp_add,
prev_d_comp_left, comp_f], }
/-- homotopy is closed under composition -/
@[simps]
def comp {C₁ C₂ C₃ : homological_complex V c} {f₁ g₁ : C₁ ⟶ C₂} {f₂ g₂ : C₂ ⟶ C₃}
(h₁ : homotopy f₁ g₁) (h₂ : homotopy f₂ g₂) : homotopy (f₁ ≫ f₂) (g₁ ≫ g₂) :=
(h₁.comp_right _).trans (h₂.comp_left _)
/-- a variant of `homotopy.comp_right` useful for dealing with homotopy equivalences. -/
@[simps]
def comp_right_id {f : C ⟶ C} (h : homotopy f (𝟙 C)) (g : C ⟶ D) : homotopy (f ≫ g) g :=
(h.comp_right g).trans (of_eq $ category.id_comp _)
/-- a variant of `homotopy.comp_left` useful for dealing with homotopy equivalences. -/
@[simps]
def comp_left_id {f : D ⟶ D} (h : homotopy f (𝟙 D)) (g : C ⟶ D) : homotopy (g ≫ f) g :=
(h.comp_left g).trans (of_eq $ category.comp_id _)
/-!
Null homotopic maps can be constructed using the formula `hd+dh`. We show that
these morphisms are homotopic to `0` and provide some convenient simplification
lemmas that give a degreewise description of `hd+dh`, depending on whether we have
two differentials going to and from a certain degree, only one, or none.
-/
/-- The null homotopic map associated to a family `hom` of morphisms `C_i ⟶ D_j`.
This is the same datum as for the field `hom` in the structure `homotopy`. For
this definition, we do not need the field `zero` of that structure
as this definition uses only the maps `C_i ⟶ C_j` when `c.rel j i`. -/
def null_homotopic_map (hom : Π i j, C.X i ⟶ D.X j) : C ⟶ D :=
{ f := λ i, d_next i hom + prev_d i hom,
comm' := λ i j hij,
begin
have eq1 : prev_d i hom ≫ D.d i j = 0,
{ simp only [prev_d, add_monoid_hom.mk'_apply, category.assoc, d_comp_d, comp_zero], },
have eq2 : C.d i j ≫ d_next j hom = 0,
{ simp only [d_next, add_monoid_hom.mk'_apply, d_comp_d_assoc, zero_comp], },
rw [d_next_eq hom hij, prev_d_eq hom hij, preadditive.comp_add, preadditive.add_comp,
eq1, eq2, add_zero, zero_add, category.assoc],
end }
/-- Variant of `null_homotopic_map` where the input consists only of the
relevant maps `C_i ⟶ D_j` such that `c.rel j i`. -/
def null_homotopic_map' (h : Π i j, c.rel j i → (C.X i ⟶ D.X j)) : C ⟶ D :=
null_homotopic_map (λ i j, dite (c.rel j i) (h i j) (λ _, 0))
/-- Compatibility of `null_homotopic_map` with the postcomposition by a morphism
of complexes. -/
lemma null_homotopic_map_comp (hom : Π i j, C.X i ⟶ D.X j) (g : D ⟶ E) :
null_homotopic_map hom ≫ g = null_homotopic_map (λ i j, hom i j ≫ g.f j) :=
begin
ext n,
dsimp [null_homotopic_map, from_next, to_prev, add_monoid_hom.mk'_apply],
simp only [preadditive.add_comp, category.assoc, g.comm],
end
/-- Compatibility of `null_homotopic_map'` with the postcomposition by a morphism
of complexes. -/
lemma null_homotopic_map'_comp (hom : Π i j, c.rel j i → (C.X i ⟶ D.X j)) (g : D ⟶ E) :
null_homotopic_map' hom ≫ g = null_homotopic_map' (λ i j hij, hom i j hij ≫ g.f j) :=
begin
ext n,
erw null_homotopic_map_comp,
congr',
ext i j,
split_ifs,
{ refl, },
{ rw zero_comp, },
end
/-- Compatibility of `null_homotopic_map` with the precomposition by a morphism
of complexes. -/
lemma comp_null_homotopic_map (f : C ⟶ D) (hom : Π i j, D.X i ⟶ E.X j) :
f ≫ null_homotopic_map hom = null_homotopic_map (λ i j, f.f i ≫ hom i j) :=
begin
ext n,
dsimp [null_homotopic_map, from_next, to_prev, add_monoid_hom.mk'_apply],
simp only [preadditive.comp_add, category.assoc, f.comm_assoc],
end
/-- Compatibility of `null_homotopic_map'` with the precomposition by a morphism
of complexes. -/
lemma comp_null_homotopic_map' (f : C ⟶ D) (hom : Π i j, c.rel j i → (D.X i ⟶ E.X j)) :
f ≫ null_homotopic_map' hom = null_homotopic_map' (λ i j hij, f.f i ≫ hom i j hij) :=
begin
ext n,
erw comp_null_homotopic_map,
congr',
ext i j,
split_ifs,
{ refl, },
{ rw comp_zero, },
end
/-- Compatibility of `null_homotopic_map` with the application of additive functors -/
lemma map_null_homotopic_map {W : Type*} [category W] [preadditive W]
(G : V ⥤ W) [G.additive] (hom : Π i j, C.X i ⟶ D.X j) :
(G.map_homological_complex c).map (null_homotopic_map hom) =
null_homotopic_map (λ i j, G.map (hom i j)) :=
begin
ext i,
dsimp [null_homotopic_map, d_next, prev_d],
simp only [G.map_comp, functor.map_add],
end
/-- Compatibility of `null_homotopic_map'` with the application of additive functors -/
lemma map_null_homotopic_map' {W : Type*} [category W] [preadditive W]
(G : V ⥤ W) [G.additive] (hom : Π i j, c.rel j i → (C.X i ⟶ D.X j)) :
(G.map_homological_complex c).map (null_homotopic_map' hom) =
null_homotopic_map' (λ i j hij, G.map (hom i j hij)) :=
begin
ext n,
erw map_null_homotopic_map,
congr',
ext i j,
split_ifs,
{ refl, },
{ rw G.map_zero, }
end
/-- Tautological construction of the `homotopy` to zero for maps constructed by
`null_homotopic_map`, at least when we have the `zero'` condition. -/
@[simps]
def null_homotopy (hom : Π i j, C.X i ⟶ D.X j) (zero' : ∀ i j, ¬ c.rel j i → hom i j = 0) :
homotopy (null_homotopic_map hom) 0 :=
{ hom := hom,
zero' := zero',
comm := by { intro i, rw [homological_complex.zero_f_apply, add_zero], refl, }, }
/-- Homotopy to zero for maps constructed with `null_homotopic_map'` -/
@[simps]
def null_homotopy' (h : Π i j, c.rel j i → (C.X i ⟶ D.X j)) :
homotopy (null_homotopic_map' h) 0 :=
begin
apply null_homotopy (λ i j, dite (c.rel j i) (h i j) (λ _, 0)),
intros i j hij,
dsimp,
rw [dite_eq_right_iff],
intro hij',
exfalso,
exact hij hij',
end
/-! This lemma and the following ones can be used in order to compute
the degreewise morphisms induced by the null homotopic maps constructed
with `null_homotopic_map` or `null_homotopic_map'` -/
@[simp]
lemma null_homotopic_map_f {k₂ k₁ k₀ : ι} (r₂₁ : c.rel k₂ k₁) (r₁₀ : c.rel k₁ k₀)
(hom : Π i j, C.X i ⟶ D.X j) :
(null_homotopic_map hom).f k₁ = C.d k₁ k₀ ≫ hom k₀ k₁ + hom k₁ k₂ ≫ D.d k₂ k₁ :=
by { dsimp only [null_homotopic_map], rw [d_next_eq hom r₁₀, prev_d_eq hom r₂₁], }
@[simp]
lemma null_homotopic_map'_f {k₂ k₁ k₀ : ι} (r₂₁ : c.rel k₂ k₁) (r₁₀ : c.rel k₁ k₀)
(h : Π i j, c.rel j i → (C.X i ⟶ D.X j)) :
(null_homotopic_map' h).f k₁ = C.d k₁ k₀ ≫ h k₀ k₁ r₁₀ + h k₁ k₂ r₂₁ ≫ D.d k₂ k₁ :=
begin
simp only [← null_homotopic_map'],
rw null_homotopic_map_f r₂₁ r₁₀ (λ i j, dite (c.rel j i) (h i j) (λ _, 0)),
dsimp,
split_ifs,
refl,
end
@[simp]
lemma null_homotopic_map_f_of_not_rel_left {k₁ k₀ : ι} (r₁₀ : c.rel k₁ k₀)
(hk₀ : ∀ l : ι, ¬c.rel k₀ l)
(hom : Π i j, C.X i ⟶ D.X j) :
(null_homotopic_map hom).f k₀ = hom k₀ k₁ ≫ D.d k₁ k₀ :=
begin
dsimp only [null_homotopic_map],
rw [prev_d_eq hom r₁₀, d_next, add_monoid_hom.mk'_apply, C.shape, zero_comp, zero_add],
exact hk₀ _
end
@[simp]
lemma null_homotopic_map'_f_of_not_rel_left {k₁ k₀ : ι} (r₁₀ : c.rel k₁ k₀)
(hk₀ : ∀ l : ι, ¬c.rel k₀ l)
(h : Π i j, c.rel j i → (C.X i ⟶ D.X j)) :
(null_homotopic_map' h).f k₀ = h k₀ k₁ r₁₀ ≫ D.d k₁ k₀ :=
begin
simp only [← null_homotopic_map'],
rw null_homotopic_map_f_of_not_rel_left r₁₀ hk₀ (λ i j, dite (c.rel j i) (h i j) (λ _, 0)),
dsimp,
split_ifs,
refl,
end
@[simp]
lemma null_homotopic_map_f_of_not_rel_right {k₁ k₀ : ι} (r₁₀ : c.rel k₁ k₀)
(hk₁ : ∀ l : ι, ¬c.rel l k₁)
(hom : Π i j, C.X i ⟶ D.X j) :
(null_homotopic_map hom).f k₁ = C.d k₁ k₀ ≫ hom k₀ k₁ :=
begin
dsimp only [null_homotopic_map],
rw [d_next_eq hom r₁₀, prev_d, add_monoid_hom.mk'_apply, D.shape, comp_zero, add_zero],
exact hk₁ _,
end
@[simp]
lemma null_homotopic_map'_f_of_not_rel_right {k₁ k₀ : ι} (r₁₀ : c.rel k₁ k₀)
(hk₁ : ∀ l : ι, ¬c.rel l k₁)
(h : Π i j, c.rel j i → (C.X i ⟶ D.X j)) :
(null_homotopic_map' h).f k₁ = C.d k₁ k₀ ≫ h k₀ k₁ r₁₀ :=
begin
simp only [← null_homotopic_map'],
rw null_homotopic_map_f_of_not_rel_right r₁₀ hk₁ (λ i j, dite (c.rel j i) (h i j) (λ _, 0)),
dsimp,
split_ifs,
refl,
end
@[simp]
lemma null_homotopic_map_f_eq_zero {k₀ : ι}
(hk₀ : ∀ l : ι, ¬c.rel k₀ l) (hk₀' : ∀ l : ι, ¬c.rel l k₀)
(hom : Π i j, C.X i ⟶ D.X j) :
(null_homotopic_map hom).f k₀ = 0 :=
begin
dsimp [null_homotopic_map, d_next, prev_d],
rw [C.shape, D.shape, zero_comp, comp_zero, add_zero]; apply_assumption,
end
@[simp]
lemma null_homotopic_map'_f_eq_zero {k₀ : ι}
(hk₀ : ∀ l : ι, ¬c.rel k₀ l) (hk₀' : ∀ l : ι, ¬c.rel l k₀)
(h : Π i j, c.rel j i → (C.X i ⟶ D.X j)) :
(null_homotopic_map' h).f k₀ = 0 :=
begin
simp only [← null_homotopic_map'],
exact null_homotopic_map_f_eq_zero hk₀ hk₀'
(λ i j, dite (c.rel j i) (h i j) (λ _, 0)),
end
/-!
`homotopy.mk_inductive` allows us to build a homotopy of chain complexes inductively,
so that as we construct each component, we have available the previous two components,
and the fact that they satisfy the homotopy condition.
To simplify the situation, we only construct homotopies of the form `homotopy e 0`.
`homotopy.equiv_sub_zero` can provide the general case.
Notice however, that this construction does not have particularly good definitional properties:
we have to insert `eq_to_hom` in several places.
Hopefully this is okay in most applications, where we only need to have the existence of some
homotopy.
-/
section mk_inductive
variables {P Q : chain_complex V ℕ}
@[simp] lemma prev_d_chain_complex (f : Π i j, P.X i ⟶ Q.X j) (j : ℕ) :
prev_d j f = f j (j+1) ≫ Q.d _ _ :=
begin
dsimp [prev_d],
have : (complex_shape.down ℕ).prev j = j + 1 := chain_complex.prev ℕ j,
congr' 2,
end
@[simp] lemma d_next_succ_chain_complex (f : Π i j, P.X i ⟶ Q.X j) (i : ℕ) :
d_next (i+1) f = P.d _ _ ≫ f i (i+1) :=
begin
dsimp [d_next],
have : (complex_shape.down ℕ).next (i + 1) = i := chain_complex.next_nat_succ _,
congr' 2,
end
@[simp] lemma d_next_zero_chain_complex (f : Π i j, P.X i ⟶ Q.X j) :
d_next 0 f = 0 :=
begin
dsimp [d_next],
rw [P.shape, zero_comp],
rw chain_complex.next_nat_zero, dsimp, dec_trivial,
end
variables (e : P ⟶ Q)
(zero : P.X 0 ⟶ Q.X 1)
(comm_zero : e.f 0 = zero ≫ Q.d 1 0)
(one : P.X 1 ⟶ Q.X 2)
(comm_one : e.f 1 = P.d 1 0 ≫ zero + one ≫ Q.d 2 1)
(succ : ∀ (n : ℕ)
(p : Σ' (f : P.X n ⟶ Q.X (n+1)) (f' : P.X (n+1) ⟶ Q.X (n+2)),
e.f (n+1) = P.d (n+1) n ≫ f + f' ≫ Q.d (n+2) (n+1)),
Σ' f'' : P.X (n+2) ⟶ Q.X (n+3), e.f (n+2) = P.d (n+2) (n+1) ≫ p.2.1 + f'' ≫ Q.d (n+3) (n+2))
include comm_one comm_zero
/--
An auxiliary construction for `mk_inductive`.
Here we build by induction a family of diagrams,
but don't require at the type level that these successive diagrams actually agree.
They do in fact agree, and we then capture that at the type level (i.e. by constructing a homotopy)
in `mk_inductive`.
At this stage, we don't check the homotopy condition in degree 0,
because it "falls off the end", and is easier to treat using `X_next` and `X_prev`,
which we do in `mk_inductive_aux₂`.
-/
@[simp, nolint unused_arguments]
def mk_inductive_aux₁ :
Π n, Σ' (f : P.X n ⟶ Q.X (n+1)) (f' : P.X (n+1) ⟶ Q.X (n+2)),
e.f (n+1) = P.d (n+1) n ≫ f + f' ≫ Q.d (n+2) (n+1)
| 0 := ⟨zero, one, comm_one⟩
| 1 := ⟨one, (succ 0 ⟨zero, one, comm_one⟩).1, (succ 0 ⟨zero, one, comm_one⟩).2⟩
| (n+2) :=
⟨(mk_inductive_aux₁ (n+1)).2.1,
(succ (n+1) (mk_inductive_aux₁ (n+1))).1,
(succ (n+1) (mk_inductive_aux₁ (n+1))).2⟩
section
/--
An auxiliary construction for `mk_inductive`.
-/
@[simp]
def mk_inductive_aux₂ :
Π n, Σ' (f : P.X_next n ⟶ Q.X n) (f' : P.X n ⟶ Q.X_prev n), e.f n = P.d_from n ≫ f + f' ≫ Q.d_to n
| 0 := ⟨0, zero ≫ (Q.X_prev_iso rfl).inv, by simpa using comm_zero⟩
| (n+1) := let I := mk_inductive_aux₁ e zero comm_zero one comm_one succ n in
⟨(P.X_next_iso rfl).hom ≫ I.1, I.2.1 ≫ (Q.X_prev_iso rfl).inv, by simpa using I.2.2⟩
lemma mk_inductive_aux₃ (i j : ℕ) (h : i+1 = j) :
(mk_inductive_aux₂ e zero comm_zero one comm_one succ i).2.1 ≫ (Q.X_prev_iso h).hom
= (P.X_next_iso h).inv ≫ (mk_inductive_aux₂ e zero comm_zero one comm_one succ j).1 :=
by subst j; rcases i with (_|_|i); { dsimp, simp, }
/--
A constructor for a `homotopy e 0`, for `e` a chain map between `ℕ`-indexed chain complexes,
working by induction.
You need to provide the components of the homotopy in degrees 0 and 1,
show that these satisfy the homotopy condition,
and then give a construction of each component,
and the fact that it satisfies the homotopy condition,
using as an inductive hypothesis the data and homotopy condition for the previous two components.
-/
def mk_inductive : homotopy e 0 :=
{ hom := λ i j, if h : i + 1 = j then
(mk_inductive_aux₂ e zero comm_zero one comm_one succ i).2.1 ≫ (Q.X_prev_iso h).hom
else
0,
zero' := λ i j w, by rwa dif_neg,
comm := λ i, begin
dsimp, simp only [add_zero],
convert (mk_inductive_aux₂ e zero comm_zero one comm_one succ i).2.2,
{ cases i,
{ dsimp [from_next], rw dif_neg,
simp only [chain_complex.next_nat_zero, nat.one_ne_zero, not_false_iff], },
{ dsimp [from_next], rw dif_pos, swap, { simp only [chain_complex.next_nat_succ] },
have aux : (complex_shape.down ℕ).next i.succ = i := chain_complex.next_nat_succ i,
rw mk_inductive_aux₃ e zero comm_zero one comm_one succ
((complex_shape.down ℕ).next i.succ) (i+1) (by rw aux),
dsimp [X_next_iso], erw category.id_comp, } },
{ dsimp [to_prev], rw dif_pos, swap, { simp only [chain_complex.prev] },
dsimp [X_prev_iso], erw category.comp_id, },
end, }
end
end mk_inductive
/-!
`homotopy.mk_coinductive` allows us to build a homotopy of cochain complexes inductively,
so that as we construct each component, we have available the previous two components,
and the fact that they satisfy the homotopy condition.
-/
section mk_coinductive
variables {P Q : cochain_complex V ℕ}
@[simp] lemma d_next_cochain_complex (f : Π i j, P.X i ⟶ Q.X j) (j : ℕ) :
d_next j f = P.d _ _ ≫ f (j+1) j :=
begin
dsimp [d_next],
have : (complex_shape.up ℕ).next j = j + 1 := cochain_complex.next ℕ j,
congr' 2,
end
@[simp] lemma prev_d_succ_cochain_complex (f : Π i j, P.X i ⟶ Q.X j) (i : ℕ) :
prev_d (i+1) f = f (i+1) _ ≫ Q.d i (i+1) :=
begin
dsimp [prev_d],
have : (complex_shape.up ℕ).prev (i+1) = i := cochain_complex.prev_nat_succ i,
congr' 2,
end
@[simp] lemma prev_d_zero_cochain_complex (f : Π i j, P.X i ⟶ Q.X j) :
prev_d 0 f = 0 :=
begin
dsimp [prev_d],
rw [Q.shape, comp_zero],
rw [cochain_complex.prev_nat_zero], dsimp, dec_trivial,
end
variables (e : P ⟶ Q)
(zero : P.X 1 ⟶ Q.X 0)
(comm_zero : e.f 0 = P.d 0 1 ≫ zero)
(one : P.X 2 ⟶ Q.X 1)
(comm_one : e.f 1 = zero ≫ Q.d 0 1 + P.d 1 2 ≫ one)
(succ : ∀ (n : ℕ)
(p : Σ' (f : P.X (n+1) ⟶ Q.X n) (f' : P.X (n+2) ⟶ Q.X (n+1)),
e.f (n+1) = f ≫ Q.d n (n+1) + P.d (n+1) (n+2) ≫ f'),
Σ' f'' : P.X (n+3) ⟶ Q.X (n+2), e.f (n+2) = p.2.1 ≫ Q.d (n+1) (n+2) + P.d (n+2) (n+3) ≫ f'')
include comm_one comm_zero succ
/--
An auxiliary construction for `mk_coinductive`.
Here we build by induction a family of diagrams,
but don't require at the type level that these successive diagrams actually agree.
They do in fact agree, and we then capture that at the type level (i.e. by constructing a homotopy)
in `mk_coinductive`.
At this stage, we don't check the homotopy condition in degree 0,
because it "falls off the end", and is easier to treat using `X_next` and `X_prev`,
which we do in `mk_inductive_aux₂`.
-/
@[simp, nolint unused_arguments]
def mk_coinductive_aux₁ :
Π n, Σ' (f : P.X (n+1) ⟶ Q.X n) (f' : P.X (n+2) ⟶ Q.X (n+1)),
e.f (n+1) = f ≫ Q.d n (n+1) + P.d (n+1) (n+2) ≫ f'
| 0 := ⟨zero, one, comm_one⟩
| 1 := ⟨one, (succ 0 ⟨zero, one, comm_one⟩).1, (succ 0 ⟨zero, one, comm_one⟩).2⟩
| (n+2) :=
⟨(mk_coinductive_aux₁ (n+1)).2.1,
(succ (n+1) (mk_coinductive_aux₁ (n+1))).1,
(succ (n+1) (mk_coinductive_aux₁ (n+1))).2⟩
section
/--
An auxiliary construction for `mk_inductive`.
-/
@[simp]
def mk_coinductive_aux₂ :
Π n, Σ' (f : P.X n ⟶ Q.X_prev n) (f' : P.X_next n ⟶ Q.X n),
e.f n = f ≫ Q.d_to n + P.d_from n ≫ f'
| 0 := ⟨0, (P.X_next_iso rfl).hom ≫ zero, by simpa using comm_zero⟩
| (n+1) := let I := mk_coinductive_aux₁ e zero comm_zero one comm_one succ n in
⟨I.1 ≫ (Q.X_prev_iso rfl).inv, (P.X_next_iso rfl).hom ≫ I.2.1, by simpa using I.2.2⟩
lemma mk_coinductive_aux₃ (i j : ℕ) (h : i + 1 = j) :
(P.X_next_iso h).inv ≫ (mk_coinductive_aux₂ e zero comm_zero one comm_one succ i).2.1
= (mk_coinductive_aux₂ e zero comm_zero one comm_one succ j).1 ≫ (Q.X_prev_iso h).hom :=
by subst j; rcases i with (_|_|i); { dsimp, simp, }
/--
A constructor for a `homotopy e 0`, for `e` a chain map between `ℕ`-indexed cochain complexes,
working by induction.
You need to provide the components of the homotopy in degrees 0 and 1,
show that these satisfy the homotopy condition,
and then give a construction of each component,
and the fact that it satisfies the homotopy condition,
using as an inductive hypothesis the data and homotopy condition for the previous two components.
-/
def mk_coinductive : homotopy e 0 :=
{ hom := λ i j, if h : j + 1 = i then
(P.X_next_iso h).inv ≫ (mk_coinductive_aux₂ e zero comm_zero one comm_one succ j).2.1
else
0,
zero' := λ i j w, by rwa dif_neg,
comm := λ i, begin
dsimp,
rw [add_zero, add_comm],
convert (mk_coinductive_aux₂ e zero comm_zero one comm_one succ i).2.2 using 2,
{ cases i,
{ dsimp [to_prev], rw dif_neg,
simp only [cochain_complex.prev_nat_zero, nat.one_ne_zero, not_false_iff], },
{ dsimp [to_prev], rw dif_pos, swap, { simp only [cochain_complex.prev_nat_succ] },
have aux : (complex_shape.up ℕ).prev i.succ = i := cochain_complex.prev_nat_succ i,
rw mk_coinductive_aux₃ e zero comm_zero one comm_one succ
((complex_shape.up ℕ).prev i.succ) (i+1) (by rw aux),
dsimp [X_prev_iso], erw category.comp_id, } },
{ dsimp [from_next], rw dif_pos, swap, { simp only [cochain_complex.next] },
dsimp [X_next_iso], erw category.id_comp, },
end }
end
end mk_coinductive
end homotopy
/--
A homotopy equivalence between two chain complexes consists of a chain map each way,
and homotopies from the compositions to the identity chain maps.
Note that this contains data;
arguably it might be more useful for many applications if we truncated it to a Prop.
-/
structure homotopy_equiv (C D : homological_complex V c) :=
(hom : C ⟶ D)
(inv : D ⟶ C)
(homotopy_hom_inv_id : homotopy (hom ≫ inv) (𝟙 C))
(homotopy_inv_hom_id : homotopy (inv ≫ hom) (𝟙 D))
namespace homotopy_equiv
/-- Any complex is homotopy equivalent to itself. -/
@[refl] def refl (C : homological_complex V c) : homotopy_equiv C C :=
{ hom := 𝟙 C,
inv := 𝟙 C,
homotopy_hom_inv_id := by simp,
homotopy_inv_hom_id := by simp, }
instance : inhabited (homotopy_equiv C C) := ⟨refl C⟩
/-- Being homotopy equivalent is a symmetric relation. -/
@[symm] def symm
{C D : homological_complex V c} (f : homotopy_equiv C D) :
homotopy_equiv D C :=
{ hom := f.inv,
inv := f.hom,
homotopy_hom_inv_id := f.homotopy_inv_hom_id,
homotopy_inv_hom_id := f.homotopy_hom_inv_id, }
/-- Homotopy equivalence is a transitive relation. -/
@[trans] def trans
{C D E : homological_complex V c} (f : homotopy_equiv C D) (g : homotopy_equiv D E) :
homotopy_equiv C E :=
{ hom := f.hom ≫ g.hom,
inv := g.inv ≫ f.inv,
homotopy_hom_inv_id := by simpa using
((g.homotopy_hom_inv_id.comp_right_id f.inv).comp_left f.hom).trans f.homotopy_hom_inv_id,
homotopy_inv_hom_id := by simpa using
((f.homotopy_inv_hom_id.comp_right_id g.hom).comp_left g.inv).trans g.homotopy_inv_hom_id, }
end homotopy_equiv
variables [has_equalizers V] [has_cokernels V] [has_images V] [has_image_maps V]
/--
Homotopic maps induce the same map on homology.
-/
theorem homology_map_eq_of_homotopy (h : homotopy f g) (i : ι) :
(homology_functor V c i).map f = (homology_functor V c i).map g :=
begin
dsimp [homology_functor],
apply eq_of_sub_eq_zero,
ext,
simp only [homology.π_map, comp_zero, preadditive.comp_sub],
dsimp [kernel_subobject_map],
simp_rw [h.comm i],
simp only [zero_add, zero_comp, d_next_eq_d_from_from_next, kernel_subobject_arrow_comp_assoc,
preadditive.comp_add],
rw [←preadditive.sub_comp],
simp only [category_theory.subobject.factor_thru_add_sub_factor_thru_right],
erw [subobject.factor_thru_of_le (D.boundaries_le_cycles i)],
{ simp, },
{ rw [prev_d_eq_to_prev_d_to, ←category.assoc],
apply image_subobject_factors_comp_self, },
end
/-- Homotopy equivalent complexes have isomorphic homologies. -/
def homology_obj_iso_of_homotopy_equiv (f : homotopy_equiv C D) (i : ι) :
(homology_functor V c i).obj C ≅ (homology_functor V c i).obj D :=
{ hom := (homology_functor V c i).map f.hom,
inv := (homology_functor V c i).map f.inv,
hom_inv_id' := begin
rw [←functor.map_comp, homology_map_eq_of_homotopy f.homotopy_hom_inv_id,
category_theory.functor.map_id],
end,
inv_hom_id' := begin
rw [←functor.map_comp, homology_map_eq_of_homotopy f.homotopy_inv_hom_id,
category_theory.functor.map_id],
end, }
end
namespace category_theory
variables {W : Type*} [category W] [preadditive W]
/-- An additive functor takes homotopies to homotopies. -/
@[simps]
def functor.map_homotopy (F : V ⥤ W) [F.additive] {f g : C ⟶ D} (h : homotopy f g) :
homotopy ((F.map_homological_complex c).map f) ((F.map_homological_complex c).map g) :=
{ hom := λ i j, F.map (h.hom i j),
zero' := λ i j w, by { rw [h.zero i j w, F.map_zero], },
comm := λ i, begin
dsimp [d_next, prev_d] at *,
rw h.comm i,
simp only [F.map_add, ← F.map_comp],
refl
end, }
/-- An additive functor preserves homotopy equivalences. -/
@[simps]
def functor.map_homotopy_equiv (F : V ⥤ W) [F.additive] (h : homotopy_equiv C D) :
homotopy_equiv ((F.map_homological_complex c).obj C) ((F.map_homological_complex c).obj D) :=
{ hom := (F.map_homological_complex c).map h.hom,
inv := (F.map_homological_complex c).map h.inv,
homotopy_hom_inv_id := begin
rw [←(F.map_homological_complex c).map_comp, ←(F.map_homological_complex c).map_id],
exact F.map_homotopy h.homotopy_hom_inv_id,
end,
homotopy_inv_hom_id := begin
rw [←(F.map_homological_complex c).map_comp, ←(F.map_homological_complex c).map_id],
exact F.map_homotopy h.homotopy_inv_hom_id,
end }
end category_theory
|