Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 10,411 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
/-
Copyright (c) 2020 Anne Baanen. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Anne Baanen
-/
import algebra.group.units
import algebra.ring.basic
/-!
# Invertible elements
This file defines a typeclass `invertible a` for elements `a` with a two-sided
multiplicative inverse.
The intent of the typeclass is to provide a way to write e.g. `⅟2` in a ring
like `ℤ[1/2]` where some inverses exist but there is no general `⁻¹` operator;
or to specify that a field has characteristic `≠ 2`.
It is the `Type`-valued analogue to the `Prop`-valued `is_unit`.
For constructions of the invertible element given a characteristic, see
`algebra/char_p/invertible` and other lemmas in that file.
## Notation
* `⅟a` is `invertible.inv_of a`, the inverse of `a`
## Implementation notes
The `invertible` class lives in `Type`, not `Prop`, to make computation easier.
If multiplication is associative, `invertible` is a subsingleton anyway.
The `simp` normal form tries to normalize `⅟a` to `a ⁻¹`. Otherwise, it pushes
`⅟` inside the expression as much as possible.
Since `invertible a` is not a `Prop` (but it is a `subsingleton`), we have to be careful about
coherence issues: we should avoid having multiple non-defeq instances for `invertible a` in the
same context. This file plays it safe and uses `def` rather than `instance` for most definitions,
users can choose which instances to use at the point of use.
For example, here's how you can use an `invertible 1` instance:
```lean
variables {α : Type*} [monoid α]
def something_that_needs_inverses (x : α) [invertible x] := sorry
section
local attribute [instance] invertible_one
def something_one := something_that_needs_inverses 1
end
```
## Tags
invertible, inverse element, inv_of, a half, one half, a third, one third, ½, ⅓
-/
universes u
variables {α : Type u}
/-- `invertible a` gives a two-sided multiplicative inverse of `a`. -/
class invertible [has_mul α] [has_one α] (a : α) : Type u :=
(inv_of : α) (inv_of_mul_self : inv_of * a = 1) (mul_inv_of_self : a * inv_of = 1)
-- This notation has the same precedence as `has_inv.inv`.
notation `⅟`:1034 := invertible.inv_of
@[simp]
lemma inv_of_mul_self [has_mul α] [has_one α] (a : α) [invertible a] : ⅟a * a = 1 :=
invertible.inv_of_mul_self
@[simp]
lemma mul_inv_of_self [has_mul α] [has_one α] (a : α) [invertible a] : a * ⅟a = 1 :=
invertible.mul_inv_of_self
@[simp]
lemma inv_of_mul_self_assoc [monoid α] (a b : α) [invertible a] : ⅟a * (a * b) = b :=
by rw [←mul_assoc, inv_of_mul_self, one_mul]
@[simp]
lemma mul_inv_of_self_assoc [monoid α] (a b : α) [invertible a] : a * (⅟a * b) = b :=
by rw [←mul_assoc, mul_inv_of_self, one_mul]
@[simp]
lemma mul_inv_of_mul_self_cancel [monoid α] (a b : α) [invertible b] : a * ⅟b * b = a :=
by simp [mul_assoc]
@[simp]
lemma mul_mul_inv_of_self_cancel [monoid α] (a b : α) [invertible b] : a * b * ⅟b = a :=
by simp [mul_assoc]
lemma inv_of_eq_right_inv [monoid α] {a b : α} [invertible a] (hac : a * b = 1) : ⅟a = b :=
left_inv_eq_right_inv (inv_of_mul_self _) hac
lemma inv_of_eq_left_inv [monoid α] {a b : α} [invertible a] (hac : b * a = 1) : ⅟a = b :=
(left_inv_eq_right_inv hac (mul_inv_of_self _)).symm
lemma invertible_unique {α : Type u} [monoid α] (a b : α) [invertible a] [invertible b]
(h : a = b) :
⅟a = ⅟b :=
by { apply inv_of_eq_right_inv, rw [h, mul_inv_of_self], }
instance [monoid α] (a : α) : subsingleton (invertible a) :=
⟨ λ ⟨b, hba, hab⟩ ⟨c, hca, hac⟩, by { congr, exact left_inv_eq_right_inv hba hac } ⟩
/-- If `r` is invertible and `s = r`, then `s` is invertible. -/
def invertible.copy [monoid α] {r : α} (hr : invertible r) (s : α) (hs : s = r) : invertible s :=
{ inv_of := ⅟r,
inv_of_mul_self := by rw [hs, inv_of_mul_self],
mul_inv_of_self := by rw [hs, mul_inv_of_self] }
/-- An `invertible` element is a unit. -/
@[simps]
def unit_of_invertible [monoid α] (a : α) [invertible a] : αˣ :=
{ val := a,
inv := ⅟a,
val_inv := by simp,
inv_val := by simp, }
lemma is_unit_of_invertible [monoid α] (a : α) [invertible a] : is_unit a :=
⟨unit_of_invertible a, rfl⟩
/-- Units are invertible in their associated monoid. -/
def units.invertible [monoid α] (u : αˣ) : invertible (u : α) :=
{ inv_of := ↑(u⁻¹), inv_of_mul_self := u.inv_mul, mul_inv_of_self := u.mul_inv }
@[simp] lemma inv_of_units [monoid α] (u : αˣ) [invertible (u : α)] : ⅟(u : α) = ↑(u⁻¹) :=
inv_of_eq_right_inv u.mul_inv
lemma is_unit.nonempty_invertible [monoid α] {a : α} (h : is_unit a) : nonempty (invertible a) :=
let ⟨x, hx⟩ := h in ⟨x.invertible.copy _ hx.symm⟩
/-- Convert `is_unit` to `invertible` using `classical.choice`.
Prefer `casesI h.nonempty_invertible` over `letI := h.invertible` if you want to avoid choice. -/
noncomputable def is_unit.invertible [monoid α] {a : α} (h : is_unit a) : invertible a :=
classical.choice h.nonempty_invertible
@[simp] lemma nonempty_invertible_iff_is_unit [monoid α] (a : α) :
nonempty (invertible a) ↔ is_unit a :=
⟨nonempty.rec $ @is_unit_of_invertible _ _ _, is_unit.nonempty_invertible⟩
/-- Each element of a group is invertible. -/
def invertible_of_group [group α] (a : α) : invertible a :=
⟨a⁻¹, inv_mul_self a, mul_inv_self a⟩
@[simp] lemma inv_of_eq_group_inv [group α] (a : α) [invertible a] : ⅟a = a⁻¹ :=
inv_of_eq_right_inv (mul_inv_self a)
/-- `1` is the inverse of itself -/
def invertible_one [monoid α] : invertible (1 : α) :=
⟨1, mul_one _, one_mul _⟩
@[simp] lemma inv_of_one [monoid α] [invertible (1 : α)] : ⅟(1 : α) = 1 :=
inv_of_eq_right_inv (mul_one _)
/-- `-⅟a` is the inverse of `-a` -/
def invertible_neg [has_mul α] [has_one α] [has_distrib_neg α] (a : α) [invertible a] :
invertible (-a) := ⟨-⅟a, by simp, by simp ⟩
@[simp] lemma inv_of_neg [monoid α] [has_distrib_neg α] (a : α) [invertible a] [invertible (-a)] :
⅟(-a) = -⅟a :=
inv_of_eq_right_inv (by simp)
@[simp] lemma one_sub_inv_of_two [ring α] [invertible (2:α)] : 1 - (⅟2:α) = ⅟2 :=
(is_unit_of_invertible (2:α)).mul_right_inj.1 $
by rw [mul_sub, mul_inv_of_self, mul_one, bit0, add_sub_cancel]
@[simp] lemma inv_of_two_add_inv_of_two [non_assoc_semiring α] [invertible (2 : α)] :
(⅟2 : α) + (⅟2 : α) = 1 :=
by rw [←two_mul, mul_inv_of_self]
/-- `a` is the inverse of `⅟a`. -/
instance invertible_inv_of [has_one α] [has_mul α] {a : α} [invertible a] : invertible (⅟a) :=
⟨ a, mul_inv_of_self a, inv_of_mul_self a ⟩
@[simp] lemma inv_of_inv_of [monoid α] (a : α) [invertible a] [invertible (⅟a)] : ⅟(⅟a) = a :=
inv_of_eq_right_inv (inv_of_mul_self _)
@[simp] lemma inv_of_inj [monoid α] {a b : α} [invertible a] [invertible b] :
⅟ a = ⅟ b ↔ a = b :=
⟨invertible_unique _ _, invertible_unique _ _⟩
/-- `⅟b * ⅟a` is the inverse of `a * b` -/
def invertible_mul [monoid α] (a b : α) [invertible a] [invertible b] : invertible (a * b) :=
⟨ ⅟b * ⅟a, by simp [←mul_assoc], by simp [←mul_assoc] ⟩
@[simp] lemma inv_of_mul [monoid α] (a b : α) [invertible a] [invertible b] [invertible (a * b)] :
⅟(a * b) = ⅟b * ⅟a :=
inv_of_eq_right_inv (by simp [←mul_assoc])
theorem commute.inv_of_right [monoid α] {a b : α} [invertible b] (h : commute a b) :
commute a (⅟b) :=
calc a * (⅟b) = (⅟b) * (b * a * (⅟b)) : by simp [mul_assoc]
... = (⅟b) * (a * b * ((⅟b))) : by rw h.eq
... = (⅟b) * a : by simp [mul_assoc]
theorem commute.inv_of_left [monoid α] {a b : α} [invertible b] (h : commute b a) :
commute (⅟b) a :=
calc (⅟b) * a = (⅟b) * (a * b * (⅟b)) : by simp [mul_assoc]
... = (⅟b) * (b * a * (⅟b)) : by rw h.eq
... = a * (⅟b) : by simp [mul_assoc]
lemma commute_inv_of {M : Type*} [has_one M] [has_mul M] (m : M) [invertible m] :
commute m (⅟m) :=
calc m * ⅟m = 1 : mul_inv_of_self m
... = ⅟ m * m : (inv_of_mul_self m).symm
lemma nonzero_of_invertible [mul_zero_one_class α] (a : α) [nontrivial α] [invertible a] : a ≠ 0 :=
λ ha, zero_ne_one $ calc 0 = ⅟a * a : by simp [ha]
... = 1 : inv_of_mul_self a
section monoid_with_zero
variable [monoid_with_zero α]
/-- A variant of `ring.inverse_unit`. -/
@[simp] lemma ring.inverse_invertible (x : α) [invertible x] : ring.inverse x = ⅟x :=
ring.inverse_unit (unit_of_invertible _)
end monoid_with_zero
section group_with_zero
variable [group_with_zero α]
/-- `a⁻¹` is an inverse of `a` if `a ≠ 0` -/
def invertible_of_nonzero {a : α} (h : a ≠ 0) : invertible a :=
⟨ a⁻¹, inv_mul_cancel h, mul_inv_cancel h ⟩
@[simp] lemma inv_of_eq_inv (a : α) [invertible a] : ⅟a = a⁻¹ :=
inv_of_eq_right_inv (mul_inv_cancel (nonzero_of_invertible a))
@[simp] lemma inv_mul_cancel_of_invertible (a : α) [invertible a] : a⁻¹ * a = 1 :=
inv_mul_cancel (nonzero_of_invertible a)
@[simp] lemma mul_inv_cancel_of_invertible (a : α) [invertible a] : a * a⁻¹ = 1 :=
mul_inv_cancel (nonzero_of_invertible a)
@[simp] lemma div_mul_cancel_of_invertible (a b : α) [invertible b] : a / b * b = a :=
div_mul_cancel a (nonzero_of_invertible b)
@[simp] lemma mul_div_cancel_of_invertible (a b : α) [invertible b] : a * b / b = a :=
mul_div_cancel a (nonzero_of_invertible b)
@[simp] lemma div_self_of_invertible (a : α) [invertible a] : a / a = 1 :=
div_self (nonzero_of_invertible a)
/-- `b / a` is the inverse of `a / b` -/
def invertible_div (a b : α) [invertible a] [invertible b] : invertible (a / b) :=
⟨b / a, by simp [←mul_div_assoc], by simp [←mul_div_assoc]⟩
@[simp] lemma inv_of_div (a b : α) [invertible a] [invertible b] [invertible (a / b)] :
⅟(a / b) = b / a :=
inv_of_eq_right_inv (by simp [←mul_div_assoc])
/-- `a` is the inverse of `a⁻¹` -/
def invertible_inv {a : α} [invertible a] : invertible (a⁻¹) :=
⟨ a, by simp, by simp ⟩
end group_with_zero
/-- Monoid homs preserve invertibility. -/
def invertible.map {R : Type*} {S : Type*} {F : Type*} [mul_one_class R] [mul_one_class S]
[monoid_hom_class F R S] (f : F) (r : R) [invertible r] :
invertible (f r) :=
{ inv_of := f (⅟r),
inv_of_mul_self := by rw [←map_mul, inv_of_mul_self, map_one],
mul_inv_of_self := by rw [←map_mul, mul_inv_of_self, map_one] }
|