Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 10,411 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
/-
Copyright (c) 2020 Anne Baanen. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Anne Baanen
-/

import algebra.group.units
import algebra.ring.basic

/-!
# Invertible elements

This file defines a typeclass `invertible a` for elements `a` with a two-sided
multiplicative inverse.

The intent of the typeclass is to provide a way to write e.g. `⅟2` in a ring
like `ℤ[1/2]` where some inverses exist but there is no general `⁻¹` operator;
or to specify that a field has characteristic `≠ 2`.
It is the `Type`-valued analogue to the `Prop`-valued `is_unit`.

For constructions of the invertible element given a characteristic, see
`algebra/char_p/invertible` and other lemmas in that file.

## Notation

 * `⅟a` is `invertible.inv_of a`, the inverse of `a`

## Implementation notes

The `invertible` class lives in `Type`, not `Prop`, to make computation easier.
If multiplication is associative, `invertible` is a subsingleton anyway.

The `simp` normal form tries to normalize `⅟a` to `a ⁻¹`. Otherwise, it pushes
`⅟` inside the expression as much as possible.

Since `invertible a` is not a `Prop` (but it is a `subsingleton`), we have to be careful about
coherence issues: we should avoid having multiple non-defeq instances for `invertible a` in the
same context.  This file plays it safe and uses `def` rather than `instance` for most definitions,
users can choose which instances to use at the point of use.

For example, here's how you can use an `invertible 1` instance:
```lean
variables {α : Type*} [monoid α]

def something_that_needs_inverses (x : α) [invertible x] := sorry

section
local attribute [instance] invertible_one
def something_one := something_that_needs_inverses 1
end
```

## Tags

invertible, inverse element, inv_of, a half, one half, a third, one third, ½, ⅓

-/

universes u

variables {α : Type u}

/-- `invertible a` gives a two-sided multiplicative inverse of `a`. -/
class invertible [has_mul α] [has_one α] (a : α) : Type u :=
(inv_of : α) (inv_of_mul_self : inv_of * a = 1) (mul_inv_of_self : a * inv_of = 1)

-- This notation has the same precedence as `has_inv.inv`.
notation `⅟`:1034 := invertible.inv_of

@[simp]
lemma inv_of_mul_self [has_mul α] [has_one α] (a : α) [invertible a] : ⅟a * a = 1 :=
invertible.inv_of_mul_self

@[simp]
lemma mul_inv_of_self [has_mul α] [has_one α] (a : α) [invertible a] : a * ⅟a = 1 :=
invertible.mul_inv_of_self

@[simp]
lemma inv_of_mul_self_assoc [monoid α] (a b : α) [invertible a] : ⅟a * (a * b) = b :=
by rw [←mul_assoc, inv_of_mul_self, one_mul]

@[simp]
lemma mul_inv_of_self_assoc [monoid α] (a b : α) [invertible a] : a * (⅟a * b) = b :=
by rw [←mul_assoc, mul_inv_of_self, one_mul]

@[simp]
lemma mul_inv_of_mul_self_cancel [monoid α] (a b : α) [invertible b] : a * ⅟b * b = a :=
by simp [mul_assoc]

@[simp]
lemma mul_mul_inv_of_self_cancel [monoid α] (a b : α) [invertible b] : a * b * ⅟b = a :=
by simp [mul_assoc]

lemma inv_of_eq_right_inv [monoid α] {a b : α} [invertible a] (hac : a * b = 1) : ⅟a = b :=
left_inv_eq_right_inv (inv_of_mul_self _) hac

lemma inv_of_eq_left_inv [monoid α] {a b : α} [invertible a] (hac : b * a = 1) : ⅟a = b :=
(left_inv_eq_right_inv hac (mul_inv_of_self _)).symm

lemma invertible_unique {α : Type u} [monoid α] (a b : α) [invertible a] [invertible b]
  (h : a = b) :
  ⅟a = ⅟b :=
by { apply inv_of_eq_right_inv, rw [h, mul_inv_of_self], }

instance [monoid α] (a : α) : subsingleton (invertible a) :=
⟨ λ ⟨b, hba, hab⟩ ⟨c, hca, hac⟩, by { congr, exact left_inv_eq_right_inv hba hac } ⟩

/-- If `r` is invertible and `s = r`, then `s` is invertible. -/
def invertible.copy [monoid α] {r : α} (hr : invertible r) (s : α) (hs : s = r) : invertible s :=
{ inv_of := ⅟r,
  inv_of_mul_self := by rw [hs, inv_of_mul_self],
  mul_inv_of_self := by rw [hs, mul_inv_of_self] }

/-- An `invertible` element is a unit. -/
@[simps]
def unit_of_invertible [monoid α] (a : α) [invertible a] : αˣ :=
{ val     := a,
  inv     := ⅟a,
  val_inv := by simp,
  inv_val := by simp, }

lemma is_unit_of_invertible [monoid α] (a : α) [invertible a] : is_unit a :=
⟨unit_of_invertible a, rfl⟩

/-- Units are invertible in their associated monoid. -/
def units.invertible [monoid α] (u : αˣ) : invertible (u : α) :=
{ inv_of := ↑(u⁻¹), inv_of_mul_self := u.inv_mul, mul_inv_of_self := u.mul_inv }

@[simp] lemma inv_of_units [monoid α] (u : αˣ) [invertible (u : α)] : ⅟(u : α) = ↑(u⁻¹) :=
inv_of_eq_right_inv u.mul_inv

lemma is_unit.nonempty_invertible [monoid α] {a : α} (h : is_unit a) : nonempty (invertible a) :=
let ⟨x, hx⟩ := h in ⟨x.invertible.copy _ hx.symm⟩

/-- Convert `is_unit` to `invertible` using `classical.choice`.

Prefer `casesI h.nonempty_invertible` over `letI := h.invertible` if you want to avoid choice. -/
noncomputable def is_unit.invertible [monoid α] {a : α} (h : is_unit a) : invertible a :=
classical.choice h.nonempty_invertible

@[simp] lemma nonempty_invertible_iff_is_unit [monoid α] (a : α) :
  nonempty (invertible a) ↔ is_unit a :=
⟨nonempty.rec $ @is_unit_of_invertible _ _ _, is_unit.nonempty_invertible⟩

/-- Each element of a group is invertible. -/
def invertible_of_group [group α] (a : α) : invertible a :=
⟨a⁻¹, inv_mul_self a, mul_inv_self a⟩

@[simp] lemma inv_of_eq_group_inv [group α] (a : α) [invertible a] : ⅟a = a⁻¹ :=
inv_of_eq_right_inv (mul_inv_self a)

/-- `1` is the inverse of itself -/
def invertible_one [monoid α] : invertible (1 : α) :=
⟨1, mul_one _, one_mul _⟩

@[simp] lemma inv_of_one [monoid α] [invertible (1 : α)] : ⅟(1 : α) = 1 :=
inv_of_eq_right_inv (mul_one _)

/-- `-⅟a` is the inverse of `-a` -/
def invertible_neg [has_mul α] [has_one α] [has_distrib_neg α] (a : α) [invertible a] :
  invertible (-a) := ⟨-⅟a, by simp, by simp ⟩

@[simp] lemma inv_of_neg [monoid α] [has_distrib_neg α] (a : α) [invertible a] [invertible (-a)] :
  ⅟(-a) = -⅟a :=
inv_of_eq_right_inv (by simp)

@[simp] lemma one_sub_inv_of_two [ring α] [invertible (2:α)] : 1 - (⅟2:α) = ⅟2 :=
(is_unit_of_invertible (2:α)).mul_right_inj.1 $
  by rw [mul_sub, mul_inv_of_self, mul_one, bit0, add_sub_cancel]

@[simp] lemma inv_of_two_add_inv_of_two [non_assoc_semiring α] [invertible (2 : α)] :
  (⅟2 : α) + (⅟2 : α) = 1 :=
by rw [←two_mul, mul_inv_of_self]

/-- `a` is the inverse of `⅟a`. -/
instance invertible_inv_of [has_one α] [has_mul α] {a : α} [invertible a] : invertible (⅟a) :=
⟨ a, mul_inv_of_self a, inv_of_mul_self a ⟩

@[simp] lemma inv_of_inv_of [monoid α] (a : α) [invertible a] [invertible (⅟a)] : ⅟(⅟a) = a :=
inv_of_eq_right_inv (inv_of_mul_self _)

@[simp] lemma inv_of_inj [monoid α] {a b : α} [invertible a] [invertible b] :
  ⅟ a = ⅟ b ↔ a = b :=
⟨invertible_unique _ _, invertible_unique _ _⟩

/-- `⅟b * ⅟a` is the inverse of `a * b` -/
def invertible_mul [monoid α] (a b : α) [invertible a] [invertible b] : invertible (a * b) :=
⟨ ⅟b * ⅟a, by simp [←mul_assoc], by simp [←mul_assoc] ⟩

@[simp] lemma inv_of_mul [monoid α] (a b : α) [invertible a] [invertible b] [invertible (a * b)] :
  ⅟(a * b) = ⅟b * ⅟a :=
inv_of_eq_right_inv (by simp [←mul_assoc])

theorem commute.inv_of_right [monoid α] {a b : α} [invertible b] (h : commute a b) :
  commute a (⅟b) :=
calc a * (⅟b) = (⅟b) * (b * a * (⅟b)) : by simp [mul_assoc]
... = (⅟b) * (a * b * ((⅟b))) : by rw h.eq
... = (⅟b) * a : by simp [mul_assoc]

theorem commute.inv_of_left [monoid α] {a b : α} [invertible b] (h : commute b a) :
  commute (⅟b) a :=
calc (⅟b) * a = (⅟b) * (a * b * (⅟b)) : by simp [mul_assoc]
... = (⅟b) * (b * a * (⅟b)) : by rw h.eq
... = a * (⅟b) : by simp [mul_assoc]

lemma commute_inv_of {M : Type*} [has_one M] [has_mul M] (m : M) [invertible m] :
  commute m (⅟m) :=
calc m * ⅟m = 1       : mul_inv_of_self m
        ... = ⅟ m * m : (inv_of_mul_self m).symm

lemma nonzero_of_invertible [mul_zero_one_class α] (a : α) [nontrivial α] [invertible a] : a ≠ 0 :=
λ ha, zero_ne_one $ calc   0 = ⅟a * a : by simp [ha]
                         ... = 1 : inv_of_mul_self a

section monoid_with_zero
variable [monoid_with_zero α]

/-- A variant of `ring.inverse_unit`. -/
@[simp] lemma ring.inverse_invertible (x : α) [invertible x] : ring.inverse x = ⅟x :=
ring.inverse_unit (unit_of_invertible _)

end monoid_with_zero

section group_with_zero

variable [group_with_zero α]

/-- `a⁻¹` is an inverse of `a` if `a ≠ 0` -/
def invertible_of_nonzero {a : α} (h : a ≠ 0) : invertible a :=
⟨ a⁻¹, inv_mul_cancel h, mul_inv_cancel h ⟩

@[simp] lemma inv_of_eq_inv (a : α) [invertible a] : ⅟a = a⁻¹ :=
inv_of_eq_right_inv (mul_inv_cancel (nonzero_of_invertible a))

@[simp] lemma inv_mul_cancel_of_invertible (a : α) [invertible a] : a⁻¹ * a = 1 :=
inv_mul_cancel (nonzero_of_invertible a)

@[simp] lemma mul_inv_cancel_of_invertible (a : α) [invertible a] : a * a⁻¹ = 1 :=
mul_inv_cancel (nonzero_of_invertible a)

@[simp] lemma div_mul_cancel_of_invertible (a b : α) [invertible b] : a / b * b = a :=
div_mul_cancel a (nonzero_of_invertible b)

@[simp] lemma mul_div_cancel_of_invertible (a b : α) [invertible b] : a * b / b = a :=
mul_div_cancel a (nonzero_of_invertible b)

@[simp] lemma div_self_of_invertible (a : α) [invertible a] : a / a = 1 :=
div_self (nonzero_of_invertible a)

/-- `b / a` is the inverse of `a / b` -/
def invertible_div (a b : α) [invertible a] [invertible b] : invertible (a / b) :=
⟨b / a, by simp [←mul_div_assoc], by simp [←mul_div_assoc]⟩

@[simp] lemma inv_of_div (a b : α) [invertible a] [invertible b] [invertible (a / b)] :
  ⅟(a / b) = b / a :=
inv_of_eq_right_inv (by simp [←mul_div_assoc])

/-- `a` is the inverse of `a⁻¹` -/
def invertible_inv {a : α} [invertible a] : invertible (a⁻¹) :=
⟨ a, by simp, by simp ⟩

end group_with_zero

/-- Monoid homs preserve invertibility. -/
def invertible.map {R : Type*} {S : Type*} {F : Type*} [mul_one_class R] [mul_one_class S]
  [monoid_hom_class F R S] (f : F) (r : R) [invertible r] :
  invertible (f r) :=
{ inv_of := f (⅟r),
  inv_of_mul_self := by rw [←map_mul, inv_of_mul_self, map_one],
  mul_inv_of_self := by rw [←map_mul, mul_inv_of_self, map_one] }