Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 4,916 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import algebra.group_ring_action
import algebra.hom.group_action
import data.polynomial.algebra_map
import data.polynomial.monic
import group_theory.group_action.quotient


/-!
# Group action on rings applied to polynomials

This file contains instances and definitions relating `mul_semiring_action` to `polynomial`.
-/

variables (M : Type*) [monoid M]

open_locale polynomial
namespace polynomial

variables (R : Type*) [semiring R]

variables {M}

lemma smul_eq_map [mul_semiring_action M R] (m : M) :
  ((•) m) = map (mul_semiring_action.to_ring_hom M R m) :=
begin
  suffices :
    distrib_mul_action.to_add_monoid_hom R[X] m =
      (map_ring_hom (mul_semiring_action.to_ring_hom M R m)).to_add_monoid_hom,
  { ext1 r, exact add_monoid_hom.congr_fun this r, },
  ext n r : 2,
  change mmonomial n r = map (mul_semiring_action.to_ring_hom M R m) (monomial n r),
  simpa only [polynomial.map_monomial, polynomial.smul_monomial],
end

variables (M)

noncomputable instance [mul_semiring_action M R] : mul_semiring_action M R[X] :=
{ smul := (),
  smul_one := λ m,
    (smul_eq_map R m).symmpolynomial.map_one (mul_semiring_action.to_ring_hom M R m),
  smul_mul := λ m p q,
    (smul_eq_map R m).symmpolynomial.map_mul (mul_semiring_action.to_ring_hom M R m),
  ..polynomial.distrib_mul_action }

variables {M R}

variables [mul_semiring_action M R]

@[simp] lemma smul_X (m : M) : (mX : R[X]) = X :=
(smul_eq_map R m).symmmap_X _

variables (S : Type*) [comm_semiring S] [mul_semiring_action M S]

theorem smul_eval_smul (m : M) (f : S[X]) (x : S) :
  (m • f).eval (mx) = mf.eval x :=
polynomial.induction_on f
  (λ r, by rw [smul_C, eval_C, eval_C])
  (λ f g ihf ihg, by rw [smul_add, eval_add, ihf, ihg, eval_add, smul_add])
  (λ n r ih, by rw [smul_mul', smul_pow', smul_C, smul_X, eval_mul, eval_C, eval_pow, eval_X,
      eval_mul, eval_C, eval_pow, eval_X, smul_mul', smul_pow'])

variables (G : Type*) [group G]

theorem eval_smul' [mul_semiring_action G S] (g : G) (f : S[X]) (x : S) :
  f.eval (g • x) = g • (g⁻¹ • f).eval x :=
by rw [← smul_eval_smul, smul_inv_smul]

theorem smul_eval [mul_semiring_action G S] (g : G) (f : S[X]) (x : S) :
  (g • f).eval x = g • f.eval (g⁻¹ • x) :=
by rw [← smul_eval_smul, smul_inv_smul]

end polynomial

section comm_ring

variables (G : Type*) [group G] [fintype G]
variables (R : Type*) [comm_ring R] [mul_semiring_action G R]
open mul_action
open_locale classical

/-- the product of `(X - g • x)` over distinct `g • x`. -/
noncomputable def prod_X_sub_smul (x : R) : R[X] :=
(finset.univ : finset (G ⧸ mul_action.stabilizer G x)).prod $
λ g, polynomial.X - polynomial.C (of_quotient_stabilizer G x g)

theorem prod_X_sub_smul.monic (x : R) : (prod_X_sub_smul G R x).monic :=
polynomial.monic_prod_of_monic _ _ $ λ g _, polynomial.monic_X_sub_C _

theorem prod_X_sub_smul.eval (x : R) : (prod_X_sub_smul G R x).eval x = 0 :=
(monoid_hom.map_prod
  ((polynomial.aeval x).to_ring_hom.to_monoid_hom : R[X] →* R) _ _).trans $
  finset.prod_eq_zero (finset.mem_univ $ quotient_group.mk 1) $
  by simp

theorem prod_X_sub_smul.smul (x : R) (g : G) :
  g • prod_X_sub_smul G R x = prod_X_sub_smul G R x :=
finset.smul_prod.trans $ fintype.prod_bijective _ (mul_action.bijective g) _ _
  (λ g', by rw [of_quotient_stabilizer_smul, smul_sub, polynomial.smul_X, polynomial.smul_C])

theorem prod_X_sub_smul.coeff (x : R) (g : G) (n :) :
  g • (prod_X_sub_smul G R x).coeff n =
  (prod_X_sub_smul G R x).coeff n :=
by rw [polynomial.coeff_smul, prod_X_sub_smul.smul]

end comm_ring

namespace mul_semiring_action_hom
variables {M}
variables {P : Type*} [comm_semiring P] [mul_semiring_action M P]
variables {Q : Type*} [comm_semiring Q] [mul_semiring_action M Q]
open polynomial

/-- An equivariant map induces an equivariant map on polynomials. -/
protected noncomputable def polynomial (g : P+*[M] Q) : P[X]+*[M] Q[X] :=
{ to_fun := map g,
  map_smul' := λ m p, polynomial.induction_on p
    (λ b, by rw [smul_C, map_C, coe_fn_coe, g.map_smul, map_C, coe_fn_coe, smul_C])
    (λ p q ihp ihq, by rw [smul_add, polynomial.map_add, ihp, ihq, polynomial.map_add, smul_add])
    (λ n b ih, by rw [smul_mul', smul_C, smul_pow', smul_X, polynomial.map_mul, map_C,
        polynomial.map_pow, map_X, coe_fn_coe, g.map_smul, polynomial.map_mul, map_C,
        polynomial.map_pow, map_X, smul_mul', smul_C, smul_pow', smul_X, coe_fn_coe]),
  map_zero' := polynomial.map_zero g,
  map_add' := λ p q, polynomial.map_add g,
  map_one' := polynomial.map_one g,
  map_mul' := λ p q, polynomial.map_mul g }

@[simp] theorem coe_polynomial (g : P →+*[M] Q) :
  (g.polynomial : P[X] → Q[X]) = map g :=
rfl

end mul_semiring_action_hom