Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 11,980 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
/-
Copyright (c) 2021 Frédéric Dupuis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Frédéric Dupuis
-/
import algebra.star.basic
import group_theory.subgroup.basic
/-!
# Self-adjoint, skew-adjoint and normal elements of a star additive group
This file defines `self_adjoint R` (resp. `skew_adjoint R`), where `R` is a star additive group,
as the additive subgroup containing the elements that satisfy `star x = x` (resp. `star x = -x`).
This includes, for instance, (skew-)Hermitian operators on Hilbert spaces.
We also define `is_star_normal R`, a `Prop` that states that an element `x` satisfies
`star x * x = x * star x`.
## Implementation notes
* When `R` is a `star_module R₂ R`, then `self_adjoint R` has a natural
`module (self_adjoint R₂) (self_adjoint R)` structure. However, doing this literally would be
undesirable since in the main case of interest (`R₂ = ℂ`) we want `module ℝ (self_adjoint R)`
and not `module (self_adjoint ℂ) (self_adjoint R)`. We solve this issue by adding the typeclass
`[has_trivial_star R₃]`, of which `ℝ` is an instance (registered in `data/real/basic`), and then
add a `[module R₃ (self_adjoint R)]` instance whenever we have
`[module R₃ R] [has_trivial_star R₃]`. (Another approach would have been to define
`[star_invariant_scalars R₃ R]` to express the fact that `star (x • v) = x • star v`, but
this typeclass would have the disadvantage of taking two type arguments.)
## TODO
* Define `λ z x, z * x * star z` (i.e. conjugation by `z`) as a monoid action of `R` on `R`
(similar to the existing `conj_act` for groups), and then state the fact that `self_adjoint R` is
invariant under it.
-/
variables (R : Type*) {A : Type*}
/-- The self-adjoint elements of a star additive group, as an additive subgroup. -/
def self_adjoint [add_group R] [star_add_monoid R] : add_subgroup R :=
{ carrier := {x | star x = x},
zero_mem' := star_zero R,
add_mem' := λ x y (hx : star x = x) (hy : star y = y),
show star (x + y) = x + y, by simp only [star_add x y, hx, hy],
neg_mem' := λ x (hx : star x = x), show star (-x) = -x, by simp only [hx, star_neg] }
/-- The skew-adjoint elements of a star additive group, as an additive subgroup. -/
def skew_adjoint [add_comm_group R] [star_add_monoid R] : add_subgroup R :=
{ carrier := {x | star x = -x},
zero_mem' := show star (0 : R) = -0, by simp only [star_zero, neg_zero],
add_mem' := λ x y (hx : star x = -x) (hy : star y = -y),
show star (x + y) = -(x + y), by rw [star_add x y, hx, hy, neg_add],
neg_mem' := λ x (hx : star x = -x), show star (-x) = (- -x), by simp only [hx, star_neg] }
variables {R}
/-- An element of a star monoid is normal if it commutes with its adjoint. -/
class is_star_normal [has_mul R] [has_star R] (x : R) : Prop :=
(star_comm_self : commute (star x) x)
export is_star_normal (star_comm_self)
lemma star_comm_self' [has_mul R] [has_star R] (x : R) [is_star_normal x] :
(star x) * x = x * star x :=
is_star_normal.star_comm_self
namespace self_adjoint
section add_group
variables [add_group R] [star_add_monoid R]
lemma mem_iff {x : R} : x ∈ self_adjoint R ↔ star x = x :=
by { rw [←add_subgroup.mem_carrier], exact iff.rfl }
@[simp, norm_cast] lemma star_coe_eq {x : self_adjoint R} : star (x : R) = x := x.prop
instance : inhabited (self_adjoint R) := ⟨0⟩
lemma bit0_mem {x : R} (hx : x ∈ self_adjoint R) : bit0 x ∈ self_adjoint R :=
by simp only [mem_iff, star_bit0, mem_iff.mp hx]
end add_group
section ring
variables [ring R] [star_ring R]
instance : has_one (self_adjoint R) := ⟨⟨1, by rw [mem_iff, star_one]⟩⟩
@[simp, norm_cast] lemma coe_one : ↑(1 : self_adjoint R) = (1 : R) := rfl
instance [nontrivial R] : nontrivial (self_adjoint R) := ⟨⟨0, 1, subtype.ne_of_val_ne zero_ne_one⟩⟩
lemma one_mem : (1 : R) ∈ self_adjoint R := by simp only [mem_iff, star_one]
instance : has_nat_cast (self_adjoint R) :=
⟨λ n, ⟨n, by induction n; simp [zero_mem, add_mem, one_mem, *]⟩⟩
instance : has_int_cast (self_adjoint R) :=
⟨λ n, ⟨n, by cases n; simp [add_mem, one_mem,
show ↑n ∈ self_adjoint R, from (n : self_adjoint R).2]⟩⟩
lemma bit1_mem {x : R} (hx : x ∈ self_adjoint R) : bit1 x ∈ self_adjoint R :=
by simp only [mem_iff, star_bit1, mem_iff.mp hx]
lemma conjugate {x : R} (hx : x ∈ self_adjoint R) (z : R) : z * x * star z ∈ self_adjoint R :=
by simp only [mem_iff, star_mul, star_star, mem_iff.mp hx, mul_assoc]
lemma conjugate' {x : R} (hx : x ∈ self_adjoint R) (z : R) : star z * x * z ∈ self_adjoint R :=
by simp only [mem_iff, star_mul, star_star, mem_iff.mp hx, mul_assoc]
lemma is_star_normal_of_mem {x : R} (hx : x ∈ self_adjoint R) : is_star_normal x :=
⟨by { simp only [mem_iff] at hx, simp only [hx] }⟩
instance (x : self_adjoint R) : is_star_normal (x : R) :=
is_star_normal_of_mem (set_like.coe_mem _)
instance : has_pow (self_adjoint R) ℕ :=
⟨λ x n, ⟨(x : R) ^ n, by simp only [mem_iff, star_pow, star_coe_eq]⟩⟩
@[simp, norm_cast] lemma coe_pow (x : self_adjoint R) (n : ℕ) : ↑(x ^ n) = (x : R) ^ n := rfl
end ring
section comm_ring
variables [comm_ring R] [star_ring R]
lemma mul_mem {x y : R} (hx : x ∈ self_adjoint R) (hy : y ∈ self_adjoint R) :
x * y ∈ self_adjoint R :=
begin
rw mem_iff at ⊢ hx hy,
rw [star_mul', hx, hy]
end
instance : has_mul (self_adjoint R) :=
⟨λ x y, ⟨(x : R) * y, mul_mem x.prop y.prop⟩⟩
@[simp, norm_cast] lemma coe_mul (x y : self_adjoint R) : ↑(x * y) = (x : R) * y := rfl
instance : comm_ring (self_adjoint R) :=
function.injective.comm_ring _ subtype.coe_injective
(self_adjoint R).coe_zero coe_one (self_adjoint R).coe_add coe_mul (self_adjoint R).coe_neg
(self_adjoint R).coe_sub (self_adjoint R).coe_nsmul (self_adjoint R).coe_zsmul coe_pow
(λ _, rfl) (λ _, rfl)
end comm_ring
section field
variables [field R] [star_ring R]
instance : has_inv (self_adjoint R) :=
{ inv := λ x, ⟨(x.val)⁻¹, by simp only [mem_iff, star_inv', star_coe_eq, subtype.val_eq_coe]⟩ }
@[simp, norm_cast] lemma coe_inv (x : self_adjoint R) : ↑(x⁻¹) = (x : R)⁻¹ := rfl
instance : has_div (self_adjoint R) :=
{ div := λ x y, ⟨x / y, by simp only [mem_iff, star_div', star_coe_eq, subtype.val_eq_coe]⟩ }
@[simp, norm_cast] lemma coe_div (x y : self_adjoint R) : ↑(x / y) = (x / y : R) := rfl
instance : has_pow (self_adjoint R) ℤ :=
{ pow := λ x z, ⟨x ^ z, by simp only [mem_iff, star_zpow₀, star_coe_eq, subtype.val_eq_coe]⟩ }
@[simp, norm_cast] lemma coe_zpow (x : self_adjoint R) (z : ℤ) : ↑(x ^ z) = (x : R) ^ z := rfl
lemma rat_cast_mem : ∀ (x : ℚ), (x : R) ∈ self_adjoint R
| ⟨a, b, h1, h2⟩ :=
by rw [mem_iff, rat.cast_mk', star_mul', star_inv', star_nat_cast, star_int_cast]
instance : has_rat_cast (self_adjoint R) :=
⟨λ n, ⟨n, rat_cast_mem n⟩⟩
@[simp, norm_cast] lemma coe_rat_cast (x : ℚ) : ↑(x : self_adjoint R) = (x : R) :=
rfl
instance has_qsmul : has_smul ℚ (self_adjoint R) :=
⟨λ a x, ⟨a • x, by rw rat.smul_def; exact mul_mem (rat_cast_mem a) x.prop⟩⟩
@[simp, norm_cast] lemma coe_rat_smul (x : self_adjoint R) (a : ℚ) : ↑(a • x) = a • (x : R) :=
rfl
instance : field (self_adjoint R) :=
function.injective.field _ subtype.coe_injective
(self_adjoint R).coe_zero coe_one (self_adjoint R).coe_add coe_mul (self_adjoint R).coe_neg
(self_adjoint R).coe_sub coe_inv coe_div (self_adjoint R).coe_nsmul (self_adjoint R).coe_zsmul
coe_rat_smul coe_pow coe_zpow (λ _, rfl) (λ _, rfl) coe_rat_cast
end field
section has_smul
variables [has_star R] [has_trivial_star R] [add_group A] [star_add_monoid A]
lemma smul_mem [has_smul R A] [star_module R A] (r : R) {x : A}
(h : x ∈ self_adjoint A) : r • x ∈ self_adjoint A :=
by rw [mem_iff, star_smul, star_trivial, mem_iff.mp h]
instance [has_smul R A] [star_module R A] : has_smul R (self_adjoint A) :=
⟨λ r x, ⟨r • x, smul_mem r x.prop⟩⟩
@[simp, norm_cast] lemma coe_smul [has_smul R A] [star_module R A] (r : R) (x : self_adjoint A) :
↑(r • x) = r • (x : A) := rfl
instance [monoid R] [mul_action R A] [star_module R A] : mul_action R (self_adjoint A) :=
function.injective.mul_action coe subtype.coe_injective coe_smul
instance [monoid R] [distrib_mul_action R A] [star_module R A] :
distrib_mul_action R (self_adjoint A) :=
function.injective.distrib_mul_action (self_adjoint A).subtype subtype.coe_injective coe_smul
end has_smul
section module
variables [has_star R] [has_trivial_star R] [add_comm_group A] [star_add_monoid A]
instance [semiring R] [module R A] [star_module R A] : module R (self_adjoint A) :=
function.injective.module R (self_adjoint A).subtype subtype.coe_injective coe_smul
end module
end self_adjoint
namespace skew_adjoint
section add_group
variables [add_comm_group R] [star_add_monoid R]
lemma mem_iff {x : R} : x ∈ skew_adjoint R ↔ star x = -x :=
by { rw [←add_subgroup.mem_carrier], exact iff.rfl }
@[simp, norm_cast] lemma star_coe_eq {x : skew_adjoint R} : star (x : R) = -x := x.prop
instance : inhabited (skew_adjoint R) := ⟨0⟩
lemma bit0_mem {x : R} (hx : x ∈ skew_adjoint R) : bit0 x ∈ skew_adjoint R :=
by rw [mem_iff, star_bit0, mem_iff.mp hx, bit0, bit0, neg_add]
end add_group
section ring
variables [ring R] [star_ring R]
lemma conjugate {x : R} (hx : x ∈ skew_adjoint R) (z : R) : z * x * star z ∈ skew_adjoint R :=
by simp only [mem_iff, star_mul, star_star, mem_iff.mp hx, neg_mul, mul_neg, mul_assoc]
lemma conjugate' {x : R} (hx : x ∈ skew_adjoint R) (z : R) : star z * x * z ∈ skew_adjoint R :=
by simp only [mem_iff, star_mul, star_star, mem_iff.mp hx, neg_mul, mul_neg, mul_assoc]
lemma is_star_normal_of_mem {x : R} (hx : x ∈ skew_adjoint R) : is_star_normal x :=
⟨by { simp only [mem_iff] at hx, simp only [hx, commute.neg_left] }⟩
instance (x : skew_adjoint R) : is_star_normal (x : R) :=
is_star_normal_of_mem (set_like.coe_mem _)
end ring
section has_smul
variables [has_star R] [has_trivial_star R] [add_comm_group A] [star_add_monoid A]
lemma smul_mem [monoid R] [distrib_mul_action R A] [star_module R A] (r : R) {x : A}
(h : x ∈ skew_adjoint A) : r • x ∈ skew_adjoint A :=
by rw [mem_iff, star_smul, star_trivial, mem_iff.mp h, smul_neg r]
instance [monoid R] [distrib_mul_action R A] [star_module R A] : has_smul R (skew_adjoint A) :=
⟨λ r x, ⟨r • x, smul_mem r x.prop⟩⟩
@[simp, norm_cast] lemma coe_smul [monoid R] [distrib_mul_action R A] [star_module R A]
(r : R) (x : skew_adjoint A) : ↑(r • x) = r • (x : A) := rfl
instance [monoid R] [distrib_mul_action R A] [star_module R A] :
distrib_mul_action R (skew_adjoint A) :=
function.injective.distrib_mul_action (skew_adjoint A).subtype subtype.coe_injective coe_smul
instance [semiring R] [module R A] [star_module R A] : module R (skew_adjoint A) :=
function.injective.module R (skew_adjoint A).subtype subtype.coe_injective coe_smul
end has_smul
end skew_adjoint
instance is_star_normal_zero [semiring R] [star_ring R] : is_star_normal (0 : R) :=
⟨by simp only [star_comm_self, star_zero]⟩
instance is_star_normal_one [monoid R] [star_semigroup R] : is_star_normal (1 : R) :=
⟨by simp only [star_comm_self, star_one]⟩
instance is_star_normal_star_self [monoid R] [star_semigroup R] {x : R} [is_star_normal x] :
is_star_normal (star x) :=
⟨show star (star x) * (star x) = (star x) * star (star x), by rw [star_star, star_comm_self']⟩
@[priority 100] -- see Note [lower instance priority]
instance has_trivial_star.is_star_normal [monoid R] [star_semigroup R]
[has_trivial_star R] {x : R} : is_star_normal x :=
⟨by rw [star_trivial]⟩
@[priority 100] -- see Note [lower instance priority]
instance comm_monoid.is_star_normal [comm_monoid R] [star_semigroup R] {x : R} :
is_star_normal x :=
⟨mul_comm _ _⟩
|