Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 22,438 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
/-
Copyright (c) 2022 Yaël Dillies, Bhavik Mehta. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies, Bhavik Mehta
-/
import analysis.inner_product_space.pi_L2
import combinatorics.additive.salem_spencer
import combinatorics.pigeonhole
import data.complex.exponential_bounds
/-!
# Behrend's bound on Roth numbers
This file proves Behrend's lower bound on Roth numbers. This says that we can find a subset of
`{1, ..., n}` of size `n / exp (O (sqrt (log n)))` which does not contain arithmetic progressions of
length `3`.
The idea is that the sphere (in the `n` dimensional Euclidean space) doesn't contain arithmetic
progressions (literally) because the corresponding ball is strictly convex. Thus we can take
integer points on that sphere and map them onto `ℕ` in a way that preserves arithmetic progressions
(`behrend.map`).
## Main declarations
* `behrend.sphere`: The intersection of the Euclidean sphere with the positive integer quadrant.
This is the set that we will map on `ℕ`.
* `behrend.map`: Given a natural number `d`, `behrend.map d : ℕⁿ → ℕ` reads off the coordinates as
digits in base `d`.
* `behrend.card_sphere_le_roth_number_nat`: Implicit lower bound on Roth numbers in terms of
`behrend.sphere`.
* `behrend.roth_lower_bound`: Behrend's explicit lower bound on Roth numbers.
## References
* [Bryan Gillespie, *Behrend’s Construction*]
(http://www.epsilonsmall.com/resources/behrends-construction/behrend.pdf)
* Behrend, F. A., "On sets of integers which contain no three terms in arithmetical progression"
* [Wikipedia, *Salem-Spencer set*](https://en.wikipedia.org/wiki/Salem–Spencer_set)
## Tags
Salem-Spencer, Behrend construction, arithmetic progression, sphere, strictly convex
-/
open finset nat real
open_locale big_operators pointwise
namespace behrend
variables {α β : Type*} {n d k N : ℕ} {x : fin n → ℕ}
/-!
### Turning the sphere into a Salem-Spencer set
We define `behrend.sphere`, the intersection of the $$L^2$$ sphere with the positive quadrant of
integer points. Because the $$L^2$$ closed ball is strictly convex, the $$L^2$$ sphere and
`behrend.sphere` are Salem-Spencer (`add_salem_spencer_sphere`). Then we can turn this set in
`fin n → ℕ` into a set in `ℕ` using `behrend.map`, which preserves `add_salem_spencer` because it is
an additive monoid homomorphism.
-/
/-- The box `{0, ..., d - 1}^n` as a finset. -/
def box (n d : ℕ) : finset (fin n → ℕ) := fintype.pi_finset $ λ _, range d
lemma mem_box : x ∈ box n d ↔ ∀ i, x i < d := by simp only [box, fintype.mem_pi_finset, mem_range]
@[simp] lemma card_box : (box n d).card = d ^ n := by simp [box]
@[simp] lemma box_zero : box (n + 1) 0 = ∅ := by simp [box]
/-- The intersection of the sphere of radius `sqrt k` with the integer points in the positive
quadrant. -/
def sphere (n d k : ℕ) : finset (fin n → ℕ) := (box n d).filter $ λ x, ∑ i, x i^2 = k
lemma sphere_zero_subset : sphere n d 0 ⊆ 0 :=
λ x, by simp [sphere, function.funext_iff] {contextual := tt}
@[simp] lemma sphere_zero_right (n k : ℕ) : sphere (n + 1) 0 k = ∅ := by simp [sphere]
lemma sphere_subset_box : sphere n d k ⊆ box n d := filter_subset _ _
lemma norm_of_mem_sphere {x : fin n → ℕ} (hx : x ∈ sphere n d k) :
∥(pi_Lp.equiv 2 _).symm (coe ∘ x : fin n → ℝ)∥ = sqrt k :=
begin
rw euclidean_space.norm_eq,
dsimp,
simp_rw [abs_cast, ←cast_pow, ←cast_sum, (mem_filter.1 hx).2],
end
lemma sphere_subset_preimage_metric_sphere :
(sphere n d k : set (fin n → ℕ)) ⊆
(λ x : fin n → ℕ, (pi_Lp.equiv 2 _).symm (coe ∘ x : fin n → ℝ)) ⁻¹'
metric.sphere (0 : pi_Lp 2 (λ _ : fin n, ℝ)) (sqrt k) :=
λ x hx, by rw [set.mem_preimage, mem_sphere_zero_iff_norm, norm_of_mem_sphere hx]
/-- The map that appears in Behrend's bound on Roth numbers. -/
@[simps] def map (d : ℕ) : (fin n → ℕ) →+ ℕ :=
{ to_fun := λ a, ∑ i, a i * d ^ (i : ℕ),
map_zero' := by simp_rw [pi.zero_apply, zero_mul, sum_const_zero],
map_add' := λ a b, by simp_rw [pi.add_apply, add_mul, sum_add_distrib] }
@[simp] lemma map_zero (d : ℕ) (a : fin 0 → ℕ) : map d a = 0 := by simp [map]
lemma map_succ (a : fin (n + 1) → ℕ) : map d a = a 0 + (∑ x : fin n, a x.succ * d ^ (x : ℕ)) * d :=
by simp [map, fin.sum_univ_succ, pow_succ', ←mul_assoc, ←sum_mul]
lemma map_succ' (a : fin (n + 1) → ℕ) : map d a = a 0 + map d (a ∘ fin.succ) * d := map_succ _
lemma map_monotone (d : ℕ) : monotone (map d : (fin n → ℕ) → ℕ) :=
λ x y h, by { dsimp, exact sum_le_sum (λ i _, nat.mul_le_mul_right _ $ h i) }
lemma map_mod (a : fin n.succ → ℕ) : map d a % d = a 0 % d :=
by rw [map_succ, nat.add_mul_mod_self_right]
lemma map_eq_iff {x₁ x₂ : fin n.succ → ℕ} (hx₁ : ∀ i, x₁ i < d) (hx₂ : ∀ i, x₂ i < d) :
map d x₁ = map d x₂ ↔ x₁ 0 = x₂ 0 ∧ map d (x₁ ∘ fin.succ) = map d (x₂ ∘ fin.succ) :=
begin
refine ⟨λ h, _, λ h, by rw [map_succ', map_succ', h.1, h.2]⟩,
have : x₁ 0 = x₂ 0,
{ rw [←mod_eq_of_lt (hx₁ _), ←map_mod, ←mod_eq_of_lt (hx₂ _), ←map_mod, h] },
rw [map_succ, map_succ, this, add_right_inj, mul_eq_mul_right_iff] at h,
exact ⟨this, h.resolve_right (pos_of_gt (hx₁ 0)).ne'⟩,
end
lemma map_inj_on : {x : fin n → ℕ | ∀ i, x i < d}.inj_on (map d) :=
begin
intros x₁ hx₁ x₂ hx₂ h,
induction n with n ih,
{ simp },
ext i,
have x := (map_eq_iff hx₁ hx₂).1 h,
refine fin.cases x.1 (congr_fun $ ih (λ _, _) (λ _, _) x.2) i,
{ exact hx₁ _ },
{ exact hx₂ _ }
end
lemma map_le_of_mem_box (hx : x ∈ box n d) :
map (2 * d - 1) x ≤ ∑ i : fin n, (d - 1) * (2 * d - 1) ^ (i : ℕ) :=
map_monotone (2 * d - 1) $ λ _, nat.le_pred_of_lt $ mem_box.1 hx _
lemma add_salem_spencer_sphere : add_salem_spencer (sphere n d k : set (fin n → ℕ)) :=
begin
set f : (fin n → ℕ) →+ euclidean_space ℝ (fin n) :=
{ to_fun := λ f, (coe : ℕ → ℝ) ∘ f,
map_zero' := funext $ λ _, cast_zero,
map_add' := λ _ _, funext $ λ _, cast_add _ _ },
refine add_salem_spencer.of_image (f.to_add_freiman_hom (sphere n d k) 2) _ _,
{ exact cast_injective.comp_left.inj_on _ },
refine (add_salem_spencer_sphere 0 $ sqrt k).mono (set.image_subset_iff.2 $ λ x, _),
rw [set.mem_preimage, mem_sphere_zero_iff_norm],
exact norm_of_mem_sphere,
end
lemma add_salem_spencer_image_sphere :
add_salem_spencer ((sphere n d k).image (map (2 * d - 1)) : set ℕ) :=
begin
rw coe_image,
refine @add_salem_spencer.image _ (fin n → ℕ) ℕ _ _ (sphere n d k) _ (map (2 * d - 1))
(map_inj_on.mono _) add_salem_spencer_sphere,
rw set.add_subset_iff,
rintro a ha b hb i,
have hai := mem_box.1 (sphere_subset_box ha) i,
have hbi := mem_box.1 (sphere_subset_box hb) i,
rw [lt_tsub_iff_right, ←succ_le_iff, two_mul],
exact (add_add_add_comm _ _ 1 1).trans_le (add_le_add hai hbi),
end
lemma sum_sq_le_of_mem_box (hx : x ∈ box n d) : ∑ i : fin n, (x i)^2 ≤ n * (d - 1)^2 :=
begin
rw mem_box at hx,
have : ∀ i, x i ^ 2 ≤ (d - 1) ^ 2 := λ i, nat.pow_le_pow_of_le_left (nat.le_pred_of_lt (hx i)) _,
exact (sum_le_card_nsmul univ _ _ $ λ i _, this i).trans (by rw [card_fin, smul_eq_mul]),
end
lemma sum_eq : ∑ i : fin n, d * (2 * d + 1) ^ (i : ℕ) = ((2 * d + 1) ^ n - 1) / 2 :=
begin
refine (nat.div_eq_of_eq_mul_left zero_lt_two _).symm,
rw [←sum_range (λ i, d * (2 * d + 1) ^ (i : ℕ)), ←mul_sum, mul_right_comm, mul_comm d,
←geom_sum_mul_add, add_tsub_cancel_right, mul_comm],
end
lemma sum_lt : ∑ i : fin n, d * (2 * d + 1) ^ (i : ℕ) < (2 * d + 1) ^ n :=
sum_eq.trans_lt $ (nat.div_le_self _ 2).trans_lt $ pred_lt (pow_pos (succ_pos _) _).ne'
lemma card_sphere_le_roth_number_nat (n d k : ℕ) :
(sphere n d k).card ≤ roth_number_nat ((2 * d - 1) ^ n) :=
begin
cases n,
{ refine (card_le_univ _).trans_eq _,
rw pow_zero,
exact fintype.card_unique },
cases d,
{ simp },
refine add_salem_spencer_image_sphere.le_roth_number_nat _ _ (card_image_of_inj_on _),
{ simp only [subset_iff, mem_image, and_imp, forall_exists_index, mem_range,
forall_apply_eq_imp_iff₂, sphere, mem_filter],
rintro _ x hx _ rfl,
exact (map_le_of_mem_box hx).trans_lt sum_lt },
refine map_inj_on.mono (λ x, _),
simp only [mem_coe, sphere, mem_filter, mem_box, and_imp, two_mul],
exact λ h _ i, (h i).trans_le le_self_add,
end
/-!
### Optimization
Now that we know how to turn the integer points of any sphere into a Salem-Spencer set, we find a
sphere containing many integer points by the pigeonhole principle. This gives us an implicit bound
that we then optimize by tweaking the parameters. The (almost) optimal parameters are
`behrend.n_value` and `behrend.d_value`.
-/
lemma exists_large_sphere_aux (n d : ℕ) :
∃ k ∈ range (n * (d - 1)^2 + 1), (↑(d ^ n) / (↑(n * (d - 1)^2) + 1) : ℝ) ≤ (sphere n d k).card :=
begin
refine exists_le_card_fiber_of_nsmul_le_card_of_maps_to (λ x hx, _) nonempty_range_succ _,
{ rw [mem_range, lt_succ_iff],
exact sum_sq_le_of_mem_box hx },
{ rw [card_range, _root_.nsmul_eq_mul, mul_div_assoc', cast_add_one, mul_div_cancel_left,
card_box],
exact (cast_add_one_pos _).ne' }
end
lemma exists_large_sphere (n d : ℕ) : ∃ k, (d ^ n / ↑(n * d^2) : ℝ) ≤ (sphere n d k).card :=
begin
obtain ⟨k, -, hk⟩ := exists_large_sphere_aux n d,
refine ⟨k, _⟩,
obtain rfl | hn := n.eq_zero_or_pos,
{ simp },
obtain rfl | hd := d.eq_zero_or_pos,
{ simp },
rw ←cast_pow,
refine (div_le_div_of_le_left _ _ _).trans hk,
{ exact cast_nonneg _ },
{ exact cast_add_one_pos _ },
simp only [←le_sub_iff_add_le', cast_mul, ←mul_sub, cast_pow, cast_sub hd, sub_sq,
one_pow, cast_one, mul_one, sub_add, sub_sub_self],
apply one_le_mul_of_one_le_of_one_le,
{ rwa one_le_cast },
rw le_sub_iff_add_le,
norm_num,
exact le_mul_of_one_le_right zero_le_two (one_le_cast.2 hd),
end
lemma bound_aux' (n d : ℕ) : (d ^ n / ↑(n * d^2) : ℝ) ≤ roth_number_nat ((2 * d - 1)^n) :=
let ⟨k, h⟩ := exists_large_sphere n d in h.trans $ cast_le.2 $ card_sphere_le_roth_number_nat _ _ _
lemma bound_aux (hd : d ≠ 0) (hn : 2 ≤ n) :
(d ^ (n - 2) / n : ℝ) ≤ roth_number_nat ((2 * d - 1)^n) :=
begin
convert bound_aux' n d using 1,
rw [cast_mul, cast_pow, mul_comm, ←div_div, pow_sub₀ _ _ hn, ←div_eq_mul_inv],
rwa cast_ne_zero,
end
open_locale filter topological_space
open real
section numerical_bounds
lemma log_two_mul_two_le_sqrt_log_eight : log 2 * 2 ≤ sqrt (log 8) :=
begin
rw [show (8 : ℝ) = 2 ^ ((3 : ℕ) : ℝ), by norm_num1, log_rpow zero_lt_two (3:ℕ)],
apply le_sqrt_of_sq_le,
rw [mul_pow, sq (log 2), mul_assoc, mul_comm],
refine mul_le_mul_of_nonneg_right _ (log_nonneg one_le_two),
rw ←le_div_iff,
apply log_two_lt_d9.le.trans,
all_goals { norm_num1 }
end
lemma two_div_one_sub_two_div_e_le_eight : 2 / (1 - 2 / exp 1) ≤ 8 :=
begin
rw [div_le_iff, mul_sub, mul_one, mul_div_assoc', le_sub, div_le_iff (exp_pos _)],
{ linarith [exp_one_gt_d9] },
rw [sub_pos, div_lt_one];
exact exp_one_gt_d9.trans' (by norm_num),
end
lemma le_sqrt_log (hN : 4096 ≤ N) : log (2 / (1 - 2 / exp 1)) * (69 / 50) ≤ sqrt (log ↑N) :=
begin
have : ((12 : ℕ) : ℝ) * log 2 ≤ log N,
{ rw [←log_rpow zero_lt_two, log_le_log, rpow_nat_cast],
{ norm_num1,
exact_mod_cast hN },
{ exact rpow_pos_of_pos zero_lt_two _ },
rw cast_pos,
exact hN.trans_lt' (by norm_num1) },
refine (mul_le_mul_of_nonneg_right ((log_le_log _ $ by norm_num1).2
two_div_one_sub_two_div_e_le_eight) $ by norm_num1).trans (_),
{ refine div_pos zero_lt_two _,
rw [sub_pos, div_lt_one (exp_pos _)],
exact exp_one_gt_d9.trans_le' (by norm_num1) },
have l8 : log 8 = (3 : ℕ) * log 2,
{ rw [←log_rpow zero_lt_two, rpow_nat_cast],
norm_num },
rw [l8, cast_bit1, cast_one],
apply le_sqrt_of_sq_le (le_trans _ this),
simp only [cast_bit0, cast_bit1, cast_one],
rw [mul_right_comm, mul_pow, sq (log 2), ←mul_assoc],
apply mul_le_mul_of_nonneg_right _ (log_nonneg one_le_two),
rw ←le_div_iff' ,
{ exact log_two_lt_d9.le.trans (by norm_num1) },
exact sq_pos_of_ne_zero _ (by norm_num1),
end
lemma exp_neg_two_mul_le {x : ℝ} (hx : 0 < x) : exp (-2 * x) < exp (2 - ⌈x⌉₊) / ⌈x⌉₊ :=
begin
have h₁ := ceil_lt_add_one hx.le,
have h₂ : 1 - x ≤ 2 - ⌈x⌉₊,
{ rw le_sub_iff_add_le,
apply (add_le_add_left h₁.le _).trans_eq,
rw [←add_assoc, sub_add_cancel],
refl },
have h₃ : exp (-(x+1)) ≤ 1 / (x + 1),
{ rw [exp_neg, inv_eq_one_div],
refine one_div_le_one_div_of_le (add_pos hx zero_lt_one) _,
apply le_trans _ (add_one_le_exp_of_nonneg $ add_nonneg hx.le zero_le_one),
exact le_add_of_nonneg_right zero_le_one },
refine lt_of_le_of_lt _ (div_lt_div_of_lt_left (exp_pos _) (cast_pos.2 $ ceil_pos.2 hx) h₁),
refine le_trans _ (div_le_div_of_le_of_nonneg (exp_le_exp.2 h₂) $ add_nonneg hx.le zero_le_one),
rw [le_div_iff (add_pos hx zero_lt_one), ←le_div_iff' (exp_pos _), ←exp_sub, neg_mul,
sub_neg_eq_add, two_mul, sub_add_add_cancel, add_comm _ x],
refine le_trans _ (add_one_le_exp_of_nonneg $ add_nonneg hx.le zero_le_one),
exact le_add_of_nonneg_right zero_le_one,
end
lemma div_lt_floor {x : ℝ} (hx : 2 / (1 - 2 / exp 1) ≤ x) : x / exp 1 < (⌊x/2⌋₊ : ℝ) :=
begin
apply lt_of_le_of_lt _ (sub_one_lt_floor _),
have : 0 < 1 - 2 / exp 1,
{ rw [sub_pos, div_lt_one (exp_pos _)],
exact lt_of_le_of_lt (by norm_num) exp_one_gt_d9 },
rwa [le_sub, div_eq_mul_one_div x, div_eq_mul_one_div x, ←mul_sub, div_sub', ←div_eq_mul_one_div,
mul_div_assoc', one_le_div, ←div_le_iff this],
{ exact zero_lt_two },
{ exact two_ne_zero }
end
lemma ceil_lt_mul {x : ℝ} (hx : 50/19 ≤ x) : (⌈x⌉₊ : ℝ) < 1.38 * x :=
begin
refine (ceil_lt_add_one $ hx.trans' $ by norm_num).trans_le _,
rwa [←le_sub_iff_add_le', ←sub_one_mul, show (69/50 - 1 : ℝ) = (50/19)⁻¹, by norm_num1,
←div_eq_inv_mul, one_le_div],
norm_num1,
end
end numerical_bounds
/-- The (almost) optimal value of `n` in `behrend.bound_aux`. -/
noncomputable def n_value (N : ℕ) : ℕ := ⌈sqrt (log N)⌉₊
/-- The (almost) optimal value of `d` in `behrend.bound_aux`. -/
noncomputable def d_value (N : ℕ) : ℕ := ⌊(N : ℝ)^(1 / n_value N : ℝ)/2⌋₊
lemma n_value_pos (hN : 2 ≤ N) : 0 < n_value N :=
ceil_pos.2 $ real.sqrt_pos.2 $ log_pos $ one_lt_cast.2 $ hN
lemma two_le_n_value (hN : 3 ≤ N) : 2 ≤ n_value N :=
begin
refine succ_le_of_lt (lt_ceil.2 $ lt_sqrt_of_sq_lt _),
rw [cast_one, one_pow, lt_log_iff_exp_lt],
refine lt_of_lt_of_le _ (cast_le.2 hN),
{ exact exp_one_lt_d9.trans_le (by norm_num) },
rw cast_pos,
exact (zero_lt_succ _).trans_le hN,
end
lemma three_le_n_value (hN : 64 ≤ N) : 3 ≤ n_value N :=
begin
rw [n_value, ←lt_iff_add_one_le, lt_ceil, cast_two],
apply lt_sqrt_of_sq_lt,
have : (2 : ℝ)^((6 : ℕ) : ℝ) ≤ N,
{ rw rpow_nat_cast,
exact (cast_le.2 hN).trans' (by norm_num1) },
apply lt_of_lt_of_le _ ((log_le_log (rpow_pos_of_pos zero_lt_two _) _).2 this),
rw [log_rpow zero_lt_two, cast_bit0, cast_bit1, cast_one, ←div_lt_iff'],
{ exact log_two_gt_d9.trans_le' (by norm_num1) },
{ norm_num1 },
rw cast_pos,
exact hN.trans_lt' (by norm_num1),
end
lemma d_value_pos (hN₃ : 8 ≤ N) : 0 < d_value N :=
begin
have hN₀ : 0 < (N : ℝ) := cast_pos.2 (succ_pos'.trans_le hN₃),
rw [d_value, floor_pos, ←log_le_log zero_lt_one, log_one, log_div _ two_ne_zero, log_rpow hN₀,
div_mul_eq_mul_div, one_mul, sub_nonneg, le_div_iff],
{ have : (n_value N : ℝ) ≤ 2 * sqrt (log N),
{ apply (ceil_lt_add_one $ sqrt_nonneg _).le.trans,
rw [two_mul, add_le_add_iff_left],
apply le_sqrt_of_sq_le,
rw [one_pow, le_log_iff_exp_le hN₀],
exact (exp_one_lt_d9.le.trans $ by norm_num).trans (cast_le.2 hN₃) },
apply (mul_le_mul_of_nonneg_left this $ log_nonneg one_le_two).trans _,
rw [←mul_assoc, ←le_div_iff (real.sqrt_pos.2 $ log_pos $ one_lt_cast.2 _), div_sqrt],
{ apply log_two_mul_two_le_sqrt_log_eight.trans,
apply real.sqrt_le_sqrt,
rw log_le_log _ hN₀,
{ exact_mod_cast hN₃ },
{ norm_num } },
exact hN₃.trans_lt' (by norm_num) },
{ exact cast_pos.2 (n_value_pos $ hN₃.trans' $ by norm_num) },
{ exact (rpow_pos_of_pos hN₀ _).ne' },
{ exact div_pos (rpow_pos_of_pos hN₀ _) zero_lt_two },
end
lemma le_N (hN : 2 ≤ N) : (2 * (d_value N) - 1)^(n_value N) ≤ N :=
begin
have : (2 * d_value N - 1)^(n_value N) ≤ (2 * d_value N)^(n_value N) :=
nat.pow_le_pow_of_le_left (nat.sub_le _ _) _,
apply this.trans,
suffices : ((2 * d_value N)^n_value N : ℝ) ≤ N, by exact_mod_cast this,
rw ←rpow_nat_cast,
suffices i : (2 * d_value N : ℝ) ≤ (N : ℝ)^(1/n_value N : ℝ),
{ apply (rpow_le_rpow (mul_nonneg zero_le_two (cast_nonneg _)) i (cast_nonneg _)).trans,
rw [←rpow_mul (cast_nonneg _), one_div_mul_cancel, rpow_one],
rw cast_ne_zero,
apply (n_value_pos hN).ne', },
rw ←le_div_iff',
{ exact floor_le (div_nonneg (rpow_nonneg_of_nonneg (cast_nonneg _) _) zero_le_two) },
apply zero_lt_two
end
lemma bound (hN : 4096 ≤ N) : (N : ℝ)^(1/n_value N : ℝ) / exp 1 < d_value N :=
begin
apply div_lt_floor _,
rw [←log_le_log, log_rpow, mul_comm, ←div_eq_mul_one_div],
{ apply le_trans _ (div_le_div_of_le_left _ _ (ceil_lt_mul _).le),
rw [mul_comm, ←div_div, div_sqrt, le_div_iff],
{ exact le_sqrt_log hN },
{ norm_num1 },
{ apply log_nonneg,
rw one_le_cast,
exact hN.trans' (by norm_num1) },
{ rw [cast_pos, lt_ceil, cast_zero, real.sqrt_pos],
apply log_pos,
rw one_lt_cast,
exact hN.trans_lt' (by norm_num1) },
apply le_sqrt_of_sq_le,
have : ((12 : ℕ) : ℝ) * log 2 ≤ log N,
{ rw [←log_rpow zero_lt_two, log_le_log, rpow_nat_cast],
{ norm_num1,
exact_mod_cast hN },
{ exact rpow_pos_of_pos zero_lt_two _ },
rw cast_pos,
exact hN.trans_lt' (by norm_num1) },
refine le_trans _ this,
simp only [cast_bit0, cast_bit1, cast_one],
rw ←div_le_iff',
{ exact log_two_gt_d9.le.trans' (by norm_num1) },
{ norm_num1 } },
{ rw cast_pos,
exact hN.trans_lt' (by norm_num1) },
{ refine div_pos zero_lt_two _,
rw [sub_pos, div_lt_one (exp_pos _)],
exact lt_of_le_of_lt (by norm_num1) exp_one_gt_d9 },
apply rpow_pos_of_pos,
rw cast_pos,
exact hN.trans_lt' (by norm_num1),
end
lemma roth_lower_bound_explicit (hN : 4096 ≤ N) :
(N : ℝ) * exp (-4 * sqrt (log N)) < roth_number_nat N :=
begin
let n := n_value N,
have hn : 0 < (n : ℝ) := cast_pos.2 (n_value_pos $ hN.trans' $ by norm_num1),
have hd : 0 < d_value N := d_value_pos (hN.trans' $ by norm_num1),
have hN₀ : 0 < (N : ℝ) := cast_pos.2 (hN.trans' $ by norm_num1),
have hn₂ : 2 ≤ n := two_le_n_value (hN.trans' $ by norm_num1),
have : (2 * d_value N - 1)^n ≤ N := le_N (hN.trans' $ by norm_num1),
refine ((bound_aux hd.ne' hn₂).trans $ cast_le.2 $ roth_number_nat.mono this).trans_lt' _,
refine (div_lt_div_of_lt hn $ pow_lt_pow_of_lt_left (bound hN) _ _).trans_le' _,
{ exact div_nonneg (rpow_nonneg_of_nonneg (cast_nonneg _) _) (exp_pos _).le },
{ exact tsub_pos_of_lt (three_le_n_value $ hN.trans' $ by norm_num1) },
rw [←rpow_nat_cast, div_rpow (rpow_nonneg_of_nonneg hN₀.le _) (exp_pos _).le, ←rpow_mul hN₀.le,
mul_comm (_ / _), mul_one_div, cast_sub hn₂, cast_two, same_sub_div hn.ne', exp_one_rpow,
div_div, rpow_sub hN₀, rpow_one, div_div, div_eq_mul_inv],
refine mul_le_mul_of_nonneg_left _ (cast_nonneg _),
rw [mul_inv, mul_inv, ←exp_neg, ←rpow_neg (cast_nonneg _), neg_sub, ←div_eq_mul_inv],
have : exp ((-4) * sqrt (log N)) = exp (-2 * sqrt (log N)) * exp (-2 * sqrt (log N)),
{ rw [←exp_add, ←add_mul],
norm_num },
rw this,
refine (mul_le_mul _ (exp_neg_two_mul_le $ real.sqrt_pos.2 $ log_pos _).le (exp_pos _).le $
rpow_nonneg_of_nonneg (cast_nonneg _) _),
{ rw [←le_log_iff_exp_le (rpow_pos_of_pos hN₀ _), log_rpow hN₀, ←le_div_iff, mul_div_assoc,
div_sqrt, neg_mul, neg_le_neg_iff, div_mul_eq_mul_div, div_le_iff hn],
{ exact mul_le_mul_of_nonneg_left (le_ceil _) zero_le_two },
refine real.sqrt_pos.2 (log_pos _),
rw one_lt_cast,
exact hN.trans_lt' (by norm_num1) },
{ rw one_lt_cast,
exact hN.trans_lt' (by norm_num1) }
end
lemma exp_four_lt : exp 4 < 64 :=
begin
rw [show (64 : ℝ) = 2 ^ ((6 : ℕ) : ℝ), by norm_num1,
←lt_log_iff_exp_lt (rpow_pos_of_pos zero_lt_two _), log_rpow zero_lt_two, ←div_lt_iff'],
exact log_two_gt_d9.trans_le' (by norm_num1),
norm_num
end
lemma four_zero_nine_six_lt_exp_sixteen : 4096 < exp 16 :=
begin
rw [←log_lt_iff_lt_exp (show (0 : ℝ) < 4096, by norm_num), show (4096 : ℝ) = 2 ^ 12, by norm_num,
←rpow_nat_cast, log_rpow zero_lt_two, cast_bit0, cast_bit0, cast_bit1, cast_one],
linarith [log_two_lt_d9],
end
lemma lower_bound_le_one' (hN : 2 ≤ N) (hN' : N ≤ 4096) : (N : ℝ) * exp (-4 * sqrt (log N)) ≤ 1 :=
begin
rw [←log_le_log (mul_pos (cast_pos.2 (zero_lt_two.trans_le hN)) (exp_pos _)) zero_lt_one,
log_one, log_mul (cast_pos.2 (zero_lt_two.trans_le hN)).ne' (exp_pos _).ne', log_exp,
neg_mul, ←sub_eq_add_neg, sub_nonpos, ←div_le_iff (real.sqrt_pos.2 $ log_pos $
one_lt_cast.2 $ one_lt_two.trans_le hN), div_sqrt, sqrt_le_left
(zero_le_bit0.2 zero_le_two), log_le_iff_le_exp (cast_pos.2 (zero_lt_two.trans_le hN))],
norm_num1,
apply le_trans _ four_zero_nine_six_lt_exp_sixteen.le,
exact_mod_cast hN',
end
lemma lower_bound_le_one (hN : 1 ≤ N) (hN' : N ≤ 4096) : (N : ℝ) * exp (-4 * sqrt (log N)) ≤ 1 :=
begin
obtain rfl | hN := hN.eq_or_lt,
{ norm_num },
{ exact lower_bound_le_one' hN hN' }
end
lemma roth_lower_bound : (N : ℝ) * exp (-4 * sqrt (log N)) ≤ roth_number_nat N :=
begin
obtain rfl | hN := nat.eq_zero_or_pos N,
{ norm_num },
obtain h₁ | h₁ := le_or_lt 4096 N,
{ exact (roth_lower_bound_explicit h₁).le },
{ apply (lower_bound_le_one hN h₁.le).trans,
simpa using roth_number_nat.monotone hN }
end
end behrend
|