Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 15,018 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
/-
Copyright (c) 2020 Bhavik Mehta. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Bhavik Mehta, Alena Gusakov
-/
import data.fintype.basic
import algebra.geom_sum
/-!
# Colex
We define the colex ordering for finite sets, and give a couple of important
lemmas and properties relating to it.
The colex ordering likes to avoid large values - it can be thought of on
`finset ℕ` as the "binary" ordering. That is, order A based on
`∑_{i ∈ A} 2^i`.
It's defined here in a slightly more general way, requiring only `has_lt α` in
the definition of colex on `finset α`. In the context of the Kruskal-Katona
theorem, we are interested in particular on how colex behaves for sets of a
fixed size. If the size is 3, colex on ℕ starts
123, 124, 134, 234, 125, 135, 235, 145, 245, 345, ...
## Main statements
* `colex.hom_lt_iff`: strictly monotone functions preserve colex
* Colex order properties - linearity, decidability and so on.
* `forall_lt_of_colex_lt_of_forall_lt`: if A < B in colex, and everything
in B is < t, then everything in A is < t. This confirms the idea that
an enumeration under colex will exhaust all sets using elements < t before
allowing t to be included.
* `sum_two_pow_le_iff_lt`: colex for α = ℕ is the same as binary
(this also proves binary expansions are unique)
## See also
Related files are:
* `data.list.lex`: Lexicographic order on lists.
* `data.pi.lex`: Lexicographic order on `Πₗ i, α i`.
* `data.psigma.order`: Lexicographic order on `Σ' i, α i`.
* `data.sigma.order`: Lexicographic order on `Σ i, α i`.
* `data.prod.lex`: Lexicographic order on `α × β`.
## Tags
colex, colexicographic, binary
## References
* https://github.com/b-mehta/maths-notes/blob/master/iii/mich/combinatorics.pdf
-/
variable {α : Type*}
open finset
open_locale big_operators
/--
We define this type synonym to refer to the colexicographic ordering on finsets
rather than the natural subset ordering.
-/
@[derive inhabited]
def finset.colex (α) := finset α
/--
A convenience constructor to turn a `finset α` into a `finset.colex α`, useful in order to
use the colex ordering rather than the subset ordering.
-/
def finset.to_colex {α} (s : finset α) : finset.colex α := s
@[simp]
lemma colex.eq_iff (A B : finset α) :
A.to_colex = B.to_colex ↔ A = B := iff.rfl
/--
`A` is less than `B` in the colex ordering if the largest thing that's not in both sets is in B.
In other words, `max (A ∆ B) ∈ B` (if the maximum exists).
-/
instance [has_lt α] : has_lt (finset.colex α) :=
⟨λ (A B : finset α), ∃ (k : α), (∀ {x}, k < x → (x ∈ A ↔ x ∈ B)) ∧ k ∉ A ∧ k ∈ B⟩
/-- We can define (≤) in the obvious way. -/
instance [has_lt α] : has_le (finset.colex α) :=
⟨λ A B, A < B ∨ A = B⟩
lemma colex.lt_def [has_lt α] (A B : finset α) :
A.to_colex < B.to_colex ↔ ∃ k, (∀ {x}, k < x → (x ∈ A ↔ x ∈ B)) ∧ k ∉ A ∧ k ∈ B :=
iff.rfl
lemma colex.le_def [has_lt α] (A B : finset α) :
A.to_colex ≤ B.to_colex ↔ A.to_colex < B.to_colex ∨ A = B :=
iff.rfl
/-- If everything in `A` is less than `k`, we can bound the sum of powers. -/
lemma nat.sum_two_pow_lt {k : ℕ} {A : finset ℕ} (h₁ : ∀ {x}, x ∈ A → x < k) :
A.sum (pow 2) < 2^k :=
begin
apply lt_of_le_of_lt (sum_le_sum_of_subset (λ t, mem_range.2 ∘ h₁)),
have z := geom_sum_mul_add 1 k,
rw [mul_one, one_add_one_eq_two] at z,
rw ← z,
apply nat.lt_succ_self,
end
namespace colex
/-- Strictly monotone functions preserve the colex ordering. -/
lemma hom_lt_iff {β : Type*} [linear_order α] [decidable_eq β] [preorder β]
{f : α → β} (h₁ : strict_mono f) (A B : finset α) :
(A.image f).to_colex < (B.image f).to_colex ↔ A.to_colex < B.to_colex :=
begin
simp only [colex.lt_def, not_exists, mem_image, exists_prop, not_and],
split,
{ rintro ⟨k, z, q, k', _, rfl⟩,
exact ⟨k', λ x hx, by simpa [h₁.injective.eq_iff] using z (h₁ hx), λ t, q _ t rfl, ‹k' ∈ B›⟩ },
rintro ⟨k, z, ka, _⟩,
refine ⟨f k, λ x hx, _, _, k, ‹k ∈ B›, rfl⟩,
{ split,
any_goals
{ rintro ⟨x', hx', rfl⟩,
refine ⟨x', _, rfl⟩,
rwa ← z _ <|> rwa z _,
rwa strict_mono.lt_iff_lt h₁ at hx } },
{ simp only [h₁.injective, function.injective.eq_iff],
exact λ x hx, ne_of_mem_of_not_mem hx ka }
end
/-- A special case of `colex.hom_lt_iff` which is sometimes useful. -/
@[simp] lemma hom_fin_lt_iff {n : ℕ} (A B : finset (fin n)) :
(A.image (λ i : fin n, (i : ℕ))).to_colex < (B.image (λ i : fin n, (i : ℕ))).to_colex
↔ A.to_colex < B.to_colex :=
colex.hom_lt_iff (λ x y k, k) _ _
instance [has_lt α] : is_irrefl (finset.colex α) (<) :=
⟨λ A h, exists.elim h (λ _ ⟨_,a,b⟩, a b)⟩
@[trans]
lemma lt_trans [linear_order α] {a b c : finset.colex α} : a < b → b < c → a < c :=
begin
rintros ⟨k₁, k₁z, notinA, inB⟩ ⟨k₂, k₂z, notinB, inC⟩,
cases lt_or_gt_of_ne (ne_of_mem_of_not_mem inB notinB),
{ refine ⟨k₂, λ x hx, _, by rwa k₁z h, inC⟩,
rw ← k₂z hx,
apply k₁z (trans h hx) },
{ refine ⟨k₁, λ x hx, _, notinA, by rwa ← k₂z h⟩,
rw k₁z hx,
apply k₂z (trans h hx) }
end
@[trans]
lemma le_trans [linear_order α] (a b c : finset.colex α) : a ≤ b → b ≤ c → a ≤ c :=
λ AB BC, AB.elim (λ k, BC.elim (λ t, or.inl (lt_trans k t)) (λ t, t ▸ AB)) (λ k, k.symm ▸ BC)
instance [linear_order α] : is_trans (finset.colex α) (<) := ⟨λ _ _ _, colex.lt_trans⟩
lemma lt_trichotomy [linear_order α] (A B : finset.colex α) :
A < B ∨ A = B ∨ B < A :=
begin
by_cases h₁ : (A = B),
{ tauto },
rcases (exists_max_image (A \ B ∪ B \ A) id _) with ⟨k, hk, z⟩,
{ simp only [mem_union, mem_sdiff] at hk,
cases hk,
{ right,
right,
refine ⟨k, λ t th, _, hk.2, hk.1⟩,
specialize z t,
by_contra h₂,
simp only [mem_union, mem_sdiff, id.def] at z,
rw [not_iff, iff_iff_and_or_not_and_not, not_not, and_comm] at h₂,
apply not_le_of_lt th (z h₂) },
{ left,
refine ⟨k, λ t th, _, hk.2, hk.1⟩,
specialize z t,
by_contra h₃,
simp only [mem_union, mem_sdiff, id.def] at z,
rw [not_iff, iff_iff_and_or_not_and_not, not_not, and_comm, or_comm] at h₃,
apply not_le_of_lt th (z h₃) }, },
rw nonempty_iff_ne_empty,
intro a,
simp only [union_eq_empty_iff, sdiff_eq_empty_iff_subset] at a,
apply h₁ (subset.antisymm a.1 a.2)
end
instance [linear_order α] : is_trichotomous (finset.colex α) (<) := ⟨lt_trichotomy⟩
instance decidable_lt [linear_order α] : ∀ {A B : finset.colex α}, decidable (A < B) :=
show ∀ A B : finset α, decidable (A.to_colex < B.to_colex),
from λ A B, decidable_of_iff'
(∃ (k ∈ B), (∀ x ∈ A ∪ B, k < x → (x ∈ A ↔ x ∈ B)) ∧ k ∉ A)
begin
rw colex.lt_def,
apply exists_congr,
simp only [mem_union, exists_prop, or_imp_distrib, and_comm (_ ∈ B), and_assoc],
intro k,
refine and_congr_left' (forall_congr _),
tauto,
end
instance [linear_order α] : linear_order (finset.colex α) :=
{ le_refl := λ A, or.inr rfl,
le_trans := le_trans,
le_antisymm := λ A B AB BA, AB.elim (λ k, BA.elim (λ t, (asymm k t).elim) (λ t, t.symm)) id,
le_total := λ A B,
(lt_trichotomy A B).elim3 (or.inl ∘ or.inl) (or.inl ∘ or.inr) (or.inr ∘ or.inl),
decidable_le := λ A B, by apply_instance,
decidable_lt := λ A B, by apply_instance,
decidable_eq := λ A B, by apply_instance,
lt_iff_le_not_le := λ A B,
begin
split,
{ intro t,
refine ⟨or.inl t, _⟩,
rintro (i | rfl),
{ apply asymm_of _ t i },
{ apply irrefl _ t } },
rintro ⟨h₁ | rfl, h₂⟩,
{ apply h₁ },
apply h₂.elim (or.inr rfl),
end,
..finset.colex.has_lt,
..finset.colex.has_le }
/-- The instances set up let us infer that `colex.lt` is a strict total order. -/
example [linear_order α] : is_strict_total_order (finset.colex α) (<) := infer_instance
/-- Strictly monotone functions preserve the colex ordering. -/
lemma hom_le_iff {β : Type*} [linear_order α] [linear_order β]
{f : α → β} (h₁ : strict_mono f) (A B : finset α) :
(A.image f).to_colex ≤ (B.image f).to_colex ↔ A.to_colex ≤ B.to_colex :=
by rw [le_iff_le_iff_lt_iff_lt, hom_lt_iff h₁]
/-- A special case of `colex_hom` which is sometimes useful. -/
@[simp] lemma hom_fin_le_iff {n : ℕ} (A B : finset (fin n)) :
(A.image (λ i : fin n, (i : ℕ))).to_colex ≤ (B.image (λ i : fin n, (i : ℕ))).to_colex
↔ A.to_colex ≤ B.to_colex :=
colex.hom_le_iff (λ x y k, k) _ _
/--
If `A` is before `B` in colex, and everything in `B` is small, then everything in `A` is small.
-/
lemma forall_lt_of_colex_lt_of_forall_lt [linear_order α] {A B : finset α}
(t : α) (h₁ : A.to_colex < B.to_colex) (h₂ : ∀ x ∈ B, x < t) :
∀ x ∈ A, x < t :=
begin
rw colex.lt_def at h₁,
rcases h₁ with ⟨k, z, _, _⟩,
intros x hx,
apply lt_of_not_ge,
intro a,
refine not_lt_of_ge a (h₂ x _),
rwa ← z,
apply lt_of_lt_of_le (h₂ k ‹_›) a,
end
/-- `s.to_colex < {r}.to_colex` iff all elements of `s` are less than `r`. -/
lemma lt_singleton_iff_mem_lt [linear_order α] {r : α} {s : finset α} :
s.to_colex < ({r} : finset α).to_colex ↔ ∀ x ∈ s, x < r :=
begin
simp only [lt_def, mem_singleton, ←and_assoc, exists_eq_right],
split,
{ intros t x hx,
rw ←not_le,
intro h,
rcases lt_or_eq_of_le h with h₁ | rfl,
{ exact ne_of_irrefl h₁ ((t.1 h₁).1 hx).symm },
{ exact t.2 hx } },
{ exact λ h, ⟨λ z hz, ⟨λ i, (asymm hz (h _ i)).elim, λ i, (hz.ne' i).elim⟩, by simpa using h r⟩ }
end
/-- If {r} is less than or equal to s in the colexicographical sense,
then s contains an element greater than or equal to r. -/
lemma mem_le_of_singleton_le [linear_order α] {r : α} {s : finset α}:
({r} : finset α).to_colex ≤ s.to_colex ↔ ∃ x ∈ s, r ≤ x :=
by { rw ←not_lt, simp [lt_singleton_iff_mem_lt] }
/-- Colex is an extension of the base ordering on α. -/
lemma singleton_lt_iff_lt [linear_order α] {r s : α} :
({r} : finset α).to_colex < ({s} : finset α).to_colex ↔ r < s :=
by simp [lt_singleton_iff_mem_lt]
/-- Colex is an extension of the base ordering on α. -/
lemma singleton_le_iff_le [linear_order α] {r s : α} :
({r} : finset α).to_colex ≤ ({s} : finset α).to_colex ↔ r ≤ s :=
by rw [le_iff_le_iff_lt_iff_lt, singleton_lt_iff_lt]
/-- Colex doesn't care if you remove the other set -/
@[simp] lemma sdiff_lt_sdiff_iff_lt [has_lt α] [decidable_eq α] (A B : finset α) :
(A \ B).to_colex < (B \ A).to_colex ↔ A.to_colex < B.to_colex :=
begin
rw [colex.lt_def, colex.lt_def],
apply exists_congr,
intro k,
simp only [mem_sdiff, not_and, not_not],
split,
{ rintro ⟨z, kAB, kB, kA⟩,
refine ⟨_, kA, kB⟩,
{ intros x hx,
specialize z hx,
tauto } },
{ rintro ⟨z, kA, kB⟩,
refine ⟨_, λ _, kB, kB, kA⟩,
intros x hx,
rw z hx },
end
/-- Colex doesn't care if you remove the other set -/
@[simp] lemma sdiff_le_sdiff_iff_le [linear_order α] (A B : finset α) :
(A \ B).to_colex ≤ (B \ A).to_colex ↔ A.to_colex ≤ B.to_colex :=
by rw [le_iff_le_iff_lt_iff_lt, sdiff_lt_sdiff_iff_lt]
lemma empty_to_colex_lt [linear_order α] {A : finset α} (hA : A.nonempty) :
(∅ : finset α).to_colex < A.to_colex :=
begin
rw [colex.lt_def],
refine ⟨max' _ hA, _, by simp, max'_mem _ _⟩,
simp only [false_iff, not_mem_empty],
intros x hx t,
apply not_le_of_lt hx (le_max' _ _ t),
end
/-- If `A ⊂ B`, then `A` is less than `B` in the colex order. Note the converse does not hold, as
`⊆` is not a linear order. -/
lemma colex_lt_of_ssubset [linear_order α] {A B : finset α} (h : A ⊂ B) :
A.to_colex < B.to_colex :=
begin
rw [←sdiff_lt_sdiff_iff_lt, sdiff_eq_empty_iff_subset.2 h.1],
exact empty_to_colex_lt (by simpa [finset.nonempty] using exists_of_ssubset h),
end
@[simp] lemma empty_to_colex_le [linear_order α] {A : finset α} :
(∅ : finset α).to_colex ≤ A.to_colex :=
begin
rcases A.eq_empty_or_nonempty with rfl | hA,
{ simp },
{ apply (empty_to_colex_lt hA).le },
end
/-- If `A ⊆ B`, then `A ≤ B` in the colex order. Note the converse does not hold, as `⊆` is not a
linear order. -/
lemma colex_le_of_subset [linear_order α] {A B : finset α} (h : A ⊆ B) :
A.to_colex ≤ B.to_colex :=
begin
rw [←sdiff_le_sdiff_iff_le, sdiff_eq_empty_iff_subset.2 h],
apply empty_to_colex_le
end
/-- The function from finsets to finsets with the colex order is a relation homomorphism. -/
@[simps]
def to_colex_rel_hom [linear_order α] :
((⊆) : finset α → finset α → Prop) →r ((≤) : finset.colex α → finset.colex α → Prop) :=
{ to_fun := finset.to_colex,
map_rel' := λ A B, colex_le_of_subset }
instance [linear_order α] : order_bot (finset.colex α) :=
{ bot := (∅ : finset α).to_colex,
bot_le := λ x, empty_to_colex_le }
instance [linear_order α] [fintype α] : order_top (finset.colex α) :=
{ top := finset.univ.to_colex,
le_top := λ x, colex_le_of_subset (subset_univ _) }
instance [linear_order α] : lattice (finset.colex α) :=
{ ..(by apply_instance : semilattice_sup (finset.colex α)),
..(by apply_instance : semilattice_inf (finset.colex α)) }
instance [linear_order α] [fintype α] : bounded_order (finset.colex α) :=
{ ..(by apply_instance : order_top (finset.colex α)),
..(by apply_instance : order_bot (finset.colex α)) }
/-- For subsets of ℕ, we can show that colex is equivalent to binary. -/
lemma sum_two_pow_lt_iff_lt (A B : finset ℕ) :
∑ i in A, 2^i < ∑ i in B, 2^i ↔ A.to_colex < B.to_colex :=
begin
have z : ∀ (A B : finset ℕ), A.to_colex < B.to_colex → ∑ i in A, 2^i < ∑ i in B, 2^i,
{ intros A B,
rw [← sdiff_lt_sdiff_iff_lt, colex.lt_def],
rintro ⟨k, z, kA, kB⟩,
rw ← sdiff_union_inter A B,
conv_rhs { rw ← sdiff_union_inter B A },
rw [sum_union (disjoint_sdiff_inter _ _), sum_union (disjoint_sdiff_inter _ _),
inter_comm, add_lt_add_iff_right],
apply lt_of_lt_of_le (@nat.sum_two_pow_lt k (A \ B) _),
{ apply single_le_sum (λ _ _, nat.zero_le _) kB },
intros x hx,
apply lt_of_le_of_ne (le_of_not_lt (λ kx, _)),
{ apply (ne_of_mem_of_not_mem hx kA) },
have := (z kx).1 hx,
rw mem_sdiff at this hx,
exact hx.2 this.1 },
refine ⟨λ h, (lt_trichotomy A B).resolve_right (λ h₁, h₁.elim _ (not_lt_of_gt h ∘ z _ _)), z A B⟩,
rintro rfl,
apply irrefl _ h
end
/-- For subsets of ℕ, we can show that colex is equivalent to binary. -/
lemma sum_two_pow_le_iff_lt (A B : finset ℕ) :
∑ i in A, 2^i ≤ ∑ i in B, 2^i ↔ A.to_colex ≤ B.to_colex :=
by rw [le_iff_le_iff_lt_iff_lt, sum_two_pow_lt_iff_lt]
end colex
|