Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 7,925 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
/-
Copyright (c) 2019 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon

The writer monad transformer for passing immutable state.
-/
import algebra.group.defs
import logic.equiv.basic

universes u v w u₀ u₁ v₀ v₁

structure writer_t (ω : Type u) (m : Type u → Type v) (α : Type u) : Type (max u v) :=
(run : m (α × ω))

@[reducible] def writer (ω : Type u) := writer_t ω id

attribute [pp_using_anonymous_constructor] writer_t

namespace writer_t
section
  variable  {ω : Type u}
  variable  {m : Type u → Type v}
  variable  [monad m]
  variables {α β : Type u}
  open function

  @[ext]
  protected lemma ext (x x' : writer_t ω m α)
    (h : x.run = x'.run) :
    x = x' := by cases x; cases x'; congr; apply h

  @[inline] protected def tell (w : ω) : writer_t ω m punit :=
  ⟨pure (punit.star, w)⟩

  @[inline] protected def listen : writer_t ω m α → writer_t ω m (α × ω)
  | ⟨ cmd ⟩ := ⟨ (λ x : α × ω, ((x.1,x.2),x.2)) <$> cmd ⟩

  @[inline] protected def pass : writer_t ω m (α × (ω → ω)) → writer_t ω m α
  | ⟨ cmd ⟩ := ⟨ uncurry (uncurry $ λ x (f : ω → ω) w, (x,f w)) <$> cmd ⟩

  @[inline] protected def pure [has_one ω] (a : α) : writer_t ω m α :=
  ⟨ pure (a,1) ⟩

  @[inline] protected def bind [has_mul ω] (x : writer_t ω m α) (f : α → writer_t ω m β) :
    writer_t ω m β :=
  ⟨ do x  ← x.run,
       x' ← (f x.1).run,
       pure (x'.1,x.2 * x'.2) ⟩

  instance [has_one ω] [has_mul ω] : monad (writer_t ω m) :=
  { pure := λ α, writer_t.pure, bind := λ α β, writer_t.bind }

  instance [monoid ω] [is_lawful_monad m] : is_lawful_monad (writer_t ω m) :=
  { id_map := by { intros, cases x, simp [(<$>),writer_t.bind,writer_t.pure] },
    pure_bind := by { intros, simp [has_pure.pure,writer_t.pure,(>>=),writer_t.bind], ext; refl },
    bind_assoc := by { intros, simp [(>>=),writer_t.bind,mul_assoc] with functor_norm } }

  @[inline] protected def lift [has_one ω] (a : m α) : writer_t ω m α :=
  ⟨ flip prod.mk 1 <$> a ⟩

  instance (m) [monad m] [has_one ω] : has_monad_lift m (writer_t ω m) :=
  ⟨ λ α, writer_t.lift  ⟩

  @[inline] protected def monad_map {m m'} [monad m] [monad m'] {α} (f : Π {α}, m α → m' α) :
    writer_t ω m α → writer_t ω m' α :=
  λ x, ⟨ f x.run ⟩

  instance (m m') [monad m] [monad m'] : monad_functor m m' (writer_t ω m) (writer_t ω m') :=
  ⟨@writer_t.monad_map ω m m' _ _⟩

  @[inline] protected def adapt {ω' : Type u} {α : Type u} (f : ω → ω') :
    writer_t ω m α → writer_t ω' m α :=
  λ x, ⟨prod.map id f <$> x.run⟩

  instance (ε) [has_one ω] [monad m] [monad_except ε m] : monad_except ε (writer_t ω m) :=
  { throw := λ α, writer_t.lift ∘ throw,
    catch := λ α x c, ⟨catch x.run (λ e, (c e).run)⟩ }
end
end writer_t


/--
An implementation of [MonadReader](
https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-Reader-Class.html#t:MonadReader).
It does not contain `local` because this function cannot be lifted using `monad_lift`.
Instead, the `monad_reader_adapter` class provides the more general `adapt_reader` function.

Note: This class can be seen as a simplification of the more "principled" definition
```
class monad_reader (ρ : out_param (Type u)) (n : Type u → Type u) :=
(lift {α : Type u} : (∀ {m : Type u → Type u} [monad m], reader_t ρ m α) → n α)
```
-/
class monad_writer (ω : out_param (Type u)) (m : Type u → Type v) :=
(tell (w : ω) : m punit)
(listen {α} : m α → m (α × ω))
(pass {α : Type u} : m (α × (ω → ω)) → m α)

export monad_writer

instance {ω : Type u} {m : Type u → Type v} [monad m] : monad_writer ω (writer_t ω m) :=
{ tell := writer_t.tell,
  listen := λ α, writer_t.listen,
  pass := λ α, writer_t.pass }

instance {ω ρ : Type u} {m : Type u → Type v} [monad m] [monad_writer ω m] :
  monad_writer ω (reader_t ρ m) :=
{ tell := λ x, monad_lift (tell x : m punit),
  listen := λ α ⟨ cmd ⟩, ⟨ λ r, listen (cmd r) ⟩,
  pass := λ α ⟨ cmd ⟩, ⟨ λ r, pass (cmd r) ⟩ }

def swap_right {α β γ} : (α × β) × γ → (α × γ) × β
| ⟨⟨x,y⟩,z⟩ := ((x,z),y)

instance {ω σ : Type u} {m : Type u → Type v} [monad m] [monad_writer ω m] :
  monad_writer ω (state_t σ m) :=
{ tell := λ x, monad_lift (tell x : m punit),
  listen := λ α ⟨ cmd ⟩, ⟨ λ r, swap_right <$> listen (cmd r) ⟩,
  pass := λ α ⟨ cmd ⟩, ⟨ λ r, pass (swap_right <$> cmd r) ⟩ }
open function

def except_t.pass_aux {ε α ω} : except ε (α × (ω → ω)) → except ε α × (ω → ω)
| (except.error a) := (except.error a,id)
| (except.ok (x,y)) := (except.ok x,y)

instance {ω ε : Type u} {m : Type u → Type v} [monad m] [monad_writer ω m] :
  monad_writer ω (except_t ε m) :=
{ tell := λ x, monad_lift (tell x : m punit),
  listen := λ α ⟨ cmd ⟩, ⟨ uncurry (λ x y, flip prod.mk y <$> x) <$> listen cmd ⟩,
  pass := λ α ⟨ cmd ⟩, ⟨ pass (except_t.pass_aux <$> cmd) ⟩ }

def option_t.pass_aux {α ω} : option (α × (ω → ω)) → option α × (ω → ω)
| none := (none ,id)
| (some (x,y)) := (some x,y)

instance {ω : Type u} {m : Type u → Type v} [monad m] [monad_writer ω m] :
  monad_writer ω (option_t m) :=
{ tell := λ x, monad_lift (tell x : m punit),
  listen := λ α ⟨ cmd ⟩, ⟨ uncurry (λ x y, flip prod.mk y <$> x) <$> listen cmd ⟩,
  pass := λ α ⟨ cmd ⟩, ⟨ pass (option_t.pass_aux <$> cmd) ⟩ }

/-- Adapt a monad stack, changing the type of its top-most environment.

This class is comparable to
[Control.Lens.Magnify](https://hackage.haskell.org/package/lens-4.15.4/docs/Control-Lens-Zoom.html#t:Magnify),
but does not use lenses (why would it), and is derived automatically for any transformer
implementing `monad_functor`.

Note: This class can be seen as a simplification of the more "principled" definition
```
class monad_reader_functor (ρ ρ' : out_param (Type u)) (n n' : Type u → Type u) :=
(map {α : Type u} :
  (∀ {m : Type u → Type u} [monad m], reader_t ρ m α → reader_t ρ' m α) → n α → n' α)
```
-/
class monad_writer_adapter (ω ω' : out_param (Type u)) (m m' : Type u → Type v) :=
(adapt_writer {α : Type u} : (ω → ω') → m α → m' α)
export monad_writer_adapter (adapt_writer)

section
variables {ω ω' : Type u} {m m' : Type u → Type v}

/-- Transitivity.

This instance generates the type-class problem with a metavariable argument (which is why this
is marked as `[nolint dangerous_instance]`).
Currently that is not a problem, as there are almost no instances of `monad_functor` or
`monad_writer_adapter`.

see Note [lower instance priority] -/
@[nolint dangerous_instance, priority 100]
instance monad_writer_adapter_trans {n n' : Type u → Type v} [monad_writer_adapter ω ω' m m']
  [monad_functor m m' n n'] : monad_writer_adapter ω ω' n n' :=
⟨λ α f, monad_map (λ α, (adapt_writer f : m α → m' α))⟩

instance [monad m] : monad_writer_adapter ω ω' (writer_t ω m) (writer_t ω' m) :=
⟨λ α, writer_t.adapt⟩
end

instance (ω : Type u) (m out) [monad_run out m] : monad_run (λ α, out (α × ω)) (writer_t ω m) :=
⟨λ α x, run $ x.run ⟩

/-- reduce the equivalence between two writer monads to the equivalence between
their underlying monad -/
def writer_t.equiv {m₁ : Type u₀ → Type v₀} {m₂ : Type u₁ → Type v₁}
  {α₁ ω₁ : Type u₀} {α₂ ω₂ : Type u₁} (F : (m₁ (α₁ × ω₁)) ≃ (m₂ (α₂ × ω₂))) :
  writer_t ω₁ m₁ α₁ ≃ writer_t ω₂ m₂ α₂ :=
{ to_fun := λ ⟨f⟩, ⟨F f⟩,
  inv_fun := λ ⟨f⟩, ⟨F.symm f⟩,
  left_inv := λ ⟨f⟩, congr_arg writer_t.mk $ F.left_inv _,
  right_inv := λ ⟨f⟩, congr_arg writer_t.mk $ F.right_inv _ }