Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 9,771 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
/-
Copyright (c) 2020 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon
-/

import control.monad.basic
import data.int.basic
import data.stream.defs
import control.uliftable
import tactic.norm_num
import data.bitvec.basic


/-!
# Rand Monad and Random Class

This module provides tools for formulating computations guided by randomness and for
defining objects that can be created randomly.

## Main definitions
  * `rand` monad for computations guided by randomness;
  * `random` class for objects that can be generated randomly;
    * `random` to generate one object;
    * `random_r` to generate one object inside a range;
    * `random_series` to generate an infinite series of objects;
    * `random_series_r` to generate an infinite series of objects inside a range;
  * `io.mk_generator` to create a new random number generator;
  * `io.run_rand` to run a randomized computation inside the `io` monad;
  * `tactic.run_rand` to run a randomized computation inside the `tactic` monad

## Local notation

 * `i .. j` : `Icc i j`, the set of values between `i` and `j` inclusively;

## Tags

random monad io

## References

  * Similar library in Haskell: https://hackage.haskell.org/package/MonadRandom

-/

open list io applicative

universes u v w

/-- A monad to generate random objects using the generator type `g` -/
@[reducible]
def rand_g (g : Type) (α : Type u) : Type u := state (ulift.{u} g) α

/-- A monad to generate random objects using the generator type `std_gen` -/
@[reducible]
def rand := rand_g std_gen

instance (g : Type) : uliftable (rand_g.{u} g) (rand_g.{v} g) :=
@state_t.uliftable' _ _ _ _ _ (equiv.ulift.trans.{u u u u u} equiv.ulift.symm)

open ulift (hiding inhabited)

/-- Generate one more `ℕ` -/
def rand_g.next {g : Type} [random_gen g] : rand_g g ℕ :=
⟨ prod.map id up ∘ random_gen.next ∘ down ⟩

local infix ` .. `:41 := set.Icc

open stream

/-- `bounded_random α` gives us machinery to generate values of type `α` between certain bounds -/
class bounded_random (α : Type u) [preorder α] :=
(random_r : Π g [random_gen g] (x y : α),
              (x ≤ y) → rand_g g (x .. y))

/-- `random α` gives us machinery to generate values of type `α` -/
class random (α : Type u) :=
(random [] : Π (g : Type) [random_gen g], rand_g g α)

/-- shift_31_left = 2^31; multiplying by it shifts the binary
representation of a number left by 31 bits, dividing by it shifts it
right by 31 bits -/
def shift_31_left : ℕ :=
by apply_normed 2^31

namespace rand

open stream

variables (α : Type u)
variables (g : Type) [random_gen g]

/-- create a new random number generator distinct from the one stored in the state -/
def split : rand_g g g := ⟨ prod.map id up ∘ random_gen.split ∘ down ⟩

variables {g}

section random
variables [random α]

export random (random)

/-- Generate a random value of type `α`. -/
def random : rand_g g α :=
random.random α g

/-- generate an infinite series of random values of type `α` -/
def random_series : rand_g g (stream α) :=
do gen ← uliftable.up (split g),
   pure $ stream.corec_state (random.random α g) gen

end random

variables {α}

/-- Generate a random value between `x` and `y` inclusive. -/
def random_r [preorder α] [bounded_random α] (x y : α) (h : x ≤ y) : rand_g g (x .. y) :=
bounded_random.random_r g x y h

/-- generate an infinite series of random values of type `α` between `x` and `y` inclusive. -/
def random_series_r [preorder α] [bounded_random α] (x y : α) (h : x ≤ y) :
  rand_g g (stream (x .. y)) :=
do gen ← uliftable.up (split g),
   pure $ corec_state (bounded_random.random_r g x y h) gen

end rand

namespace io

private def accum_char (w : ℕ) (c : char) : ℕ :=
c.to_nat + 256 * w

/-- create and a seed a random number generator -/
def mk_generator : io std_gen := do
seed ← io.rand 0 shift_31_left,
return $ mk_std_gen seed

variables {α : Type}

/-- Run `cmd` using a randomly seeded random number generator -/
def run_rand (cmd : _root_.rand α) : io α :=
do g ← io.mk_generator,
   return $ (cmd.run ⟨g⟩).1

/-- Run `cmd` using the provided seed. -/
def run_rand_with (seed : ℕ) (cmd : _root_.rand α) : io α :=
return $ (cmd.run ⟨mk_std_gen seed⟩).1

section random
variables [random α]

/-- randomly generate a value of type α -/
def random : io α :=
io.run_rand (rand.random α)

/-- randomly generate an infinite series of value of type α -/
def random_series : io (stream α) :=
io.run_rand (rand.random_series α)

end random

section bounded_random
variables [preorder α] [bounded_random α]

/-- randomly generate a value of type α between `x` and `y` -/
def random_r (x y : α) (p : x ≤ y) : io (x .. y) :=
io.run_rand (bounded_random.random_r _ x y p)

/-- randomly generate an infinite series of value of type α between `x` and `y` -/
def random_series_r (x y : α) (h : x ≤ y) : io (stream $ x .. y) :=
io.run_rand (rand.random_series_r x y h)

end bounded_random

end io

namespace tactic

/-- create a seeded random number generator in the `tactic` monad -/
meta def mk_generator : tactic std_gen := do
tactic.unsafe_run_io @io.mk_generator

/-- run `cmd` using the a randomly seeded random number generator
in the tactic monad -/
meta def run_rand {α : Type u} (cmd : rand α) : tactic α := do
⟨g⟩ ← tactic.up mk_generator,
return (cmd.run ⟨g⟩).1

variables {α : Type u}

section bounded_random
variables [preorder α] [bounded_random α]

/-- Generate a random value between `x` and `y` inclusive. -/
meta def random_r (x y : α) (h : x ≤ y) : tactic (x .. y) :=
run_rand (rand.random_r x y h)

/-- Generate an infinite series of random values of type `α` between `x` and `y` inclusive. -/
meta def random_series_r (x y : α) (h : x ≤ y) : tactic (stream $ x .. y) :=
run_rand (rand.random_series_r x y h)

end bounded_random

section random

variables [random α]

/-- randomly generate a value of type α -/
meta def random : tactic α :=
run_rand (rand.random α)

 /-- randomly generate an infinite series of value of type α -/
meta def random_series : tactic (stream α) :=
run_rand (rand.random_series α)

end random

end tactic

open nat (succ one_add mod_eq_of_lt zero_lt_succ add_one succ_le_succ)

variables {g : Type} [random_gen g]

open nat

namespace fin
variables {n : ℕ} [fact (0 < n)]

/-- generate a `fin` randomly -/
protected def random : rand_g g (fin n) :=
⟨ λ ⟨g⟩, prod.map of_nat' up $ rand_nat g 0 n ⟩

end fin

open nat

instance nat_bounded_random : bounded_random ℕ :=
{ random_r := λ g inst x y hxy,
  do z ← @fin.random g inst (succ $ y - x) _,
     pure ⟨z.val + x, nat.le_add_left _ _,
       by rw ← le_tsub_iff_right hxy; apply le_of_succ_le_succ z.is_lt⟩ }

/-- This `bounded_random` interval generates integers between `x` and
`y` by first generating a natural number between `0` and `y - x` and
shifting the result appropriately. -/
instance int_bounded_random : bounded_random ℤ :=
{ random_r := λ g inst x y hxy,
  do ⟨z,h₀,h₁⟩ ← @bounded_random.random_r ℕ _ _ g inst 0 (int.nat_abs $ y - x) dec_trivial,
     pure ⟨z + x,
       int.le_add_of_nonneg_left (int.coe_nat_nonneg _),
       int.add_le_of_le_sub_right $ le_trans
         (int.coe_nat_le_coe_nat_of_le h₁)
         (le_of_eq $ int.of_nat_nat_abs_eq_of_nonneg (int.sub_nonneg_of_le hxy)) ⟩ }

instance fin_random (n : ℕ) [fact (0 < n)] : random (fin n) :=
{ random := λ g inst, @fin.random g inst _ _ }

instance fin_bounded_random (n : ℕ) : bounded_random (fin n) :=
{ random_r := λ g inst (x y : fin n) p,
    do ⟨r, h, h'⟩ ← @rand.random_r ℕ g inst _ _ x.val y.val p,
       pure ⟨⟨r,lt_of_le_of_lt h' y.is_lt⟩, h, h'⟩ }

/-- A shortcut for creating a `random (fin n)` instance from
a proof that `0 < n` rather than on matching on `fin (succ n)`  -/
def random_fin_of_pos : ∀ {n : ℕ} (h : 0 < n), random (fin n)
| (succ n) _ := fin_random _
| 0 h := false.elim (nat.not_lt_zero _ h)

lemma bool_of_nat_mem_Icc_of_mem_Icc_to_nat (x y : bool) (n : ℕ) :
  n ∈ (x.to_nat .. y.to_nat) → bool.of_nat n ∈ (x .. y) :=
begin
  simp only [and_imp, set.mem_Icc], intros h₀ h₁,
  split;
    [ have h₂ := bool.of_nat_le_of_nat h₀, have h₂ := bool.of_nat_le_of_nat h₁ ];
    rw bool.of_nat_to_nat at h₂; exact h₂,
end

instance : random bool :=
{ random   := λ g inst,
  (bool.of_nat ∘ subtype.val) <$> @bounded_random.random_r ℕ _ _ g inst 0 1 (nat.zero_le _) }

instance : bounded_random bool :=
{ random_r := λ g _inst x y p,
  subtype.map bool.of_nat (bool_of_nat_mem_Icc_of_mem_Icc_to_nat x y) <$>
    @bounded_random.random_r ℕ _ _ g _inst x.to_nat y.to_nat (bool.to_nat_le_to_nat p) }

open_locale fin_fact

/-- generate a random bit vector of length `n` -/
def bitvec.random (n : ℕ) : rand_g g (bitvec n) :=
bitvec.of_fin <$> rand.random (fin $ 2^n)

/-- generate a random bit vector of length `n` -/
def bitvec.random_r {n : ℕ} (x y : bitvec n) (h : x ≤ y) : rand_g g (x .. y) :=
have h' : ∀ (a : fin (2 ^ n)), a ∈ (x.to_fin .. y.to_fin) → bitvec.of_fin a ∈ (x .. y),
begin
  simp only [and_imp, set.mem_Icc], intros z h₀ h₁,
  replace h₀ := bitvec.of_fin_le_of_fin_of_le h₀,
  replace h₁ := bitvec.of_fin_le_of_fin_of_le h₁,
  rw bitvec.of_fin_to_fin at h₀ h₁, split; assumption,
end,
subtype.map bitvec.of_fin h' <$> rand.random_r x.to_fin y.to_fin (bitvec.to_fin_le_to_fin_of_le h)

open nat

instance random_bitvec (n : ℕ) : random (bitvec n) :=
{ random := λ _ inst, @bitvec.random _ inst n }

instance bounded_random_bitvec (n : ℕ) : bounded_random (bitvec n) :=
{ random_r := λ _ inst x y p, @bitvec.random_r _ inst _ _ _ p }