Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 14,347 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
/-
Copyright (c) 2019 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import algebra.group.type_tags
import algebra.hom.equiv
import algebra.hom.ring
import algebra.hom.units
/-!
# Unbundled monoid and group homomorphisms
This file is deprecated, and is no longer imported by anything in mathlib other than other
deprecated files, and test files. You should not need to import it.
This file defines predicates for unbundled monoid and group homomorphisms. Instead of using
this file, please use `monoid_hom`, defined in `algebra.hom.group`, with notation `→*`, for
morphisms between monoids or groups. For example use `φ : G →* H` to represent a group
homomorphism between multiplicative groups, and `ψ : A →+ B` to represent a group homomorphism
between additive groups.
## Main Definitions
`is_monoid_hom` (deprecated), `is_group_hom` (deprecated)
## Tags
is_group_hom, is_monoid_hom
-/
universes u v
variables {α : Type u} {β : Type v}
/-- Predicate for maps which preserve an addition. -/
structure is_add_hom {α β : Type*} [has_add α] [has_add β] (f : α → β) : Prop :=
(map_add [] : ∀ x y, f (x + y) = f x + f y)
/-- Predicate for maps which preserve a multiplication. -/
@[to_additive]
structure is_mul_hom {α β : Type*} [has_mul α] [has_mul β] (f : α → β) : Prop :=
(map_mul [] : ∀ x y, f (x * y) = f x * f y)
namespace is_mul_hom
variables [has_mul α] [has_mul β] {γ : Type*} [has_mul γ]
/-- The identity map preserves multiplication. -/
@[to_additive "The identity map preserves addition"]
lemma id : is_mul_hom (id : α → α) := {map_mul := λ _ _, rfl}
/-- The composition of maps which preserve multiplication, also preserves multiplication. -/
@[to_additive "The composition of addition preserving maps also preserves addition"]
lemma comp {f : α → β} {g : β → γ} (hf : is_mul_hom f) (hg : is_mul_hom g) : is_mul_hom (g ∘ f) :=
{ map_mul := λ x y, by simp only [function.comp, hf.map_mul, hg.map_mul] }
/-- A product of maps which preserve multiplication,
preserves multiplication when the target is commutative. -/
@[to_additive "A sum of maps which preserves addition, preserves addition when the target
is commutative."]
lemma mul {α β} [semigroup α] [comm_semigroup β]
{f g : α → β} (hf : is_mul_hom f) (hg : is_mul_hom g) :
is_mul_hom (λ a, f a * g a) :=
{ map_mul := λ a b, by simp only [hf.map_mul, hg.map_mul, mul_comm, mul_assoc, mul_left_comm] }
/-- The inverse of a map which preserves multiplication,
preserves multiplication when the target is commutative. -/
@[to_additive "The negation of a map which preserves addition, preserves addition when
the target is commutative."]
lemma inv {α β} [has_mul α] [comm_group β] {f : α → β} (hf : is_mul_hom f) :
is_mul_hom (λ a, (f a)⁻¹) :=
{ map_mul := λ a b, (hf.map_mul a b).symm ▸ mul_inv _ _ }
end is_mul_hom
/-- Predicate for add_monoid homomorphisms (deprecated -- use the bundled `monoid_hom` version). -/
structure is_add_monoid_hom [add_zero_class α] [add_zero_class β] (f : α → β)
extends is_add_hom f : Prop :=
(map_zero [] : f 0 = 0)
/-- Predicate for monoid homomorphisms (deprecated -- use the bundled `monoid_hom` version). -/
@[to_additive]
structure is_monoid_hom [mul_one_class α] [mul_one_class β] (f : α → β)
extends is_mul_hom f : Prop :=
(map_one [] : f 1 = 1)
namespace monoid_hom
variables {M : Type*} {N : Type*} [mM : mul_one_class M] [mN : mul_one_class N]
include mM mN
/-- Interpret a map `f : M → N` as a homomorphism `M →* N`. -/
@[to_additive "Interpret a map `f : M → N` as a homomorphism `M →+ N`."]
def of {f : M → N} (h : is_monoid_hom f) : M →* N :=
{ to_fun := f,
map_one' := h.2,
map_mul' := h.1.1 }
variables {mM mN}
@[simp, to_additive]
lemma coe_of {f : M → N} (hf : is_monoid_hom f) : ⇑ (monoid_hom.of hf) = f :=
rfl
@[to_additive]
lemma is_monoid_hom_coe (f : M →* N) : is_monoid_hom (f : M → N) :=
{ map_mul := f.map_mul,
map_one := f.map_one }
end monoid_hom
namespace mul_equiv
variables {M : Type*} {N : Type*} [mul_one_class M] [mul_one_class N]
/-- A multiplicative isomorphism preserves multiplication (deprecated). -/
@[to_additive "An additive isomorphism preserves addition (deprecated)."]
theorem is_mul_hom (h : M ≃* N) : is_mul_hom h := ⟨h.map_mul⟩
/-- A multiplicative bijection between two monoids is a monoid hom
(deprecated -- use `mul_equiv.to_monoid_hom`). -/
@[to_additive "An additive bijection between two additive monoids is an additive
monoid hom (deprecated). "]
lemma is_monoid_hom (h : M ≃* N) : is_monoid_hom h :=
{ map_mul := h.map_mul,
map_one := h.map_one }
end mul_equiv
namespace is_monoid_hom
variables [mul_one_class α] [mul_one_class β] {f : α → β} (hf : is_monoid_hom f)
/-- A monoid homomorphism preserves multiplication. -/
@[to_additive "An additive monoid homomorphism preserves addition."]
lemma map_mul (x y) : f (x * y) = f x * f y :=
hf.map_mul x y
/-- The inverse of a map which preserves multiplication,
preserves multiplication when the target is commutative. -/
@[to_additive "The negation of a map which preserves addition, preserves addition
when the target is commutative."]
lemma inv {α β} [mul_one_class α] [comm_group β] {f : α → β} (hf : is_monoid_hom f) :
is_monoid_hom (λ a, (f a)⁻¹) :=
{ map_one := hf.map_one.symm ▸ inv_one,
map_mul := λ a b, (hf.map_mul a b).symm ▸ mul_inv _ _ }
end is_monoid_hom
/-- A map to a group preserving multiplication is a monoid homomorphism. -/
@[to_additive "A map to an additive group preserving addition is an additive monoid
homomorphism."]
theorem is_mul_hom.to_is_monoid_hom [mul_one_class α] [group β] {f : α → β} (hf : is_mul_hom f) :
is_monoid_hom f :=
{ map_one := mul_right_eq_self.1 $ by rw [← hf.map_mul, one_mul],
map_mul := hf.map_mul }
namespace is_monoid_hom
variables [mul_one_class α] [mul_one_class β] {f : α → β}
/-- The identity map is a monoid homomorphism. -/
@[to_additive "The identity map is an additive monoid homomorphism."]
lemma id : is_monoid_hom (@id α) := { map_one := rfl, map_mul := λ _ _, rfl }
/-- The composite of two monoid homomorphisms is a monoid homomorphism. -/
@[to_additive "The composite of two additive monoid homomorphisms is an additive monoid
homomorphism."]
lemma comp (hf : is_monoid_hom f) {γ} [mul_one_class γ] {g : β → γ} (hg : is_monoid_hom g) :
is_monoid_hom (g ∘ f) :=
{ map_one := show g _ = 1, by rw [hf.map_one, hg.map_one],
..is_mul_hom.comp hf.to_is_mul_hom hg.to_is_mul_hom }
end is_monoid_hom
namespace is_add_monoid_hom
/-- Left multiplication in a ring is an additive monoid morphism. -/
lemma is_add_monoid_hom_mul_left {γ : Type*} [non_unital_non_assoc_semiring γ] (x : γ) :
is_add_monoid_hom (λ y : γ, x * y) :=
{ map_zero := mul_zero x, map_add := λ y z, mul_add x y z }
/-- Right multiplication in a ring is an additive monoid morphism. -/
lemma is_add_monoid_hom_mul_right {γ : Type*} [non_unital_non_assoc_semiring γ] (x : γ) :
is_add_monoid_hom (λ y : γ, y * x) :=
{ map_zero := zero_mul x, map_add := λ y z, add_mul y z x }
end is_add_monoid_hom
/-- Predicate for additive group homomorphism (deprecated -- use bundled `monoid_hom`). -/
structure is_add_group_hom [add_group α] [add_group β] (f : α → β) extends is_add_hom f : Prop
/-- Predicate for group homomorphisms (deprecated -- use bundled `monoid_hom`). -/
@[to_additive]
structure is_group_hom [group α] [group β] (f : α → β) extends is_mul_hom f : Prop
@[to_additive]
lemma monoid_hom.is_group_hom {G H : Type*} {_ : group G} {_ : group H} (f : G →* H) :
is_group_hom (f : G → H) :=
{ map_mul := f.map_mul }
@[to_additive]
lemma mul_equiv.is_group_hom {G H : Type*} {_ : group G} {_ : group H} (h : G ≃* H) :
is_group_hom h := { map_mul := h.map_mul }
/-- Construct `is_group_hom` from its only hypothesis. -/
@[to_additive "Construct `is_add_group_hom` from its only hypothesis."]
lemma is_group_hom.mk' [group α] [group β] {f : α → β} (hf : ∀ x y, f (x * y) = f x * f y) :
is_group_hom f :=
{ map_mul := hf }
namespace is_group_hom
variables [group α] [group β] {f : α → β} (hf : is_group_hom f)
open is_mul_hom (map_mul)
lemma map_mul : ∀ (x y), f (x * y) = f x * f y := hf.to_is_mul_hom.map_mul
/-- A group homomorphism is a monoid homomorphism. -/
@[to_additive "An additive group homomorphism is an additive monoid homomorphism."]
lemma to_is_monoid_hom : is_monoid_hom f :=
hf.to_is_mul_hom.to_is_monoid_hom
/-- A group homomorphism sends 1 to 1. -/
@[to_additive "An additive group homomorphism sends 0 to 0."]
lemma map_one : f 1 = 1 := hf.to_is_monoid_hom.map_one
/-- A group homomorphism sends inverses to inverses. -/
@[to_additive "An additive group homomorphism sends negations to negations."]
theorem map_inv (hf : is_group_hom f) (a : α) : f a⁻¹ = (f a)⁻¹ :=
eq_inv_of_mul_eq_one_left $ by rw [← hf.map_mul, inv_mul_self, hf.map_one]
@[to_additive] lemma map_div (hf : is_group_hom f) (a b : α) : f (a / b) = f a / f b :=
by simp_rw [div_eq_mul_inv, hf.map_mul, hf.map_inv]
/-- The identity is a group homomorphism. -/
@[to_additive "The identity is an additive group homomorphism."]
lemma id : is_group_hom (@id α) := { map_mul := λ _ _, rfl}
/-- The composition of two group homomorphisms is a group homomorphism. -/
@[to_additive "The composition of two additive group homomorphisms is an additive
group homomorphism."]
lemma comp (hf : is_group_hom f) {γ} [group γ] {g : β → γ} (hg : is_group_hom g) :
is_group_hom (g ∘ f) :=
{ ..is_mul_hom.comp hf.to_is_mul_hom hg.to_is_mul_hom }
/-- A group homomorphism is injective iff its kernel is trivial. -/
@[to_additive "An additive group homomorphism is injective if its kernel is trivial."]
lemma injective_iff {f : α → β} (hf : is_group_hom f) :
function.injective f ↔ (∀ a, f a = 1 → a = 1) :=
⟨λ h _, by rw ← hf.map_one; exact @h _ _,
λ h x y hxy, eq_of_div_eq_one $ h _ $ by rwa [hf.map_div, div_eq_one]⟩
/-- The product of group homomorphisms is a group homomorphism if the target is commutative. -/
@[to_additive "The sum of two additive group homomorphisms is an additive group homomorphism
if the target is commutative."]
lemma mul {α β} [group α] [comm_group β]
{f g : α → β} (hf : is_group_hom f) (hg : is_group_hom g) :
is_group_hom (λa, f a * g a) :=
{ map_mul := (hf.to_is_mul_hom.mul hg.to_is_mul_hom).map_mul }
/-- The inverse of a group homomorphism is a group homomorphism if the target is commutative. -/
@[to_additive "The negation of an additive group homomorphism is an additive group homomorphism
if the target is commutative."]
lemma inv {α β} [group α] [comm_group β] {f : α → β} (hf : is_group_hom f) :
is_group_hom (λa, (f a)⁻¹) :=
{ map_mul := hf.to_is_mul_hom.inv.map_mul }
end is_group_hom
namespace ring_hom
/-!
These instances look redundant, because `deprecated.ring` provides `is_ring_hom` for a `→+*`.
Nevertheless these are harmless, and helpful for stripping out dependencies on `deprecated.ring`.
-/
variables {R : Type*} {S : Type*}
section
variables [non_assoc_semiring R] [non_assoc_semiring S]
lemma to_is_monoid_hom (f : R →+* S) : is_monoid_hom f :=
{ map_one := f.map_one,
map_mul := f.map_mul }
lemma to_is_add_monoid_hom (f : R →+* S) : is_add_monoid_hom f :=
{ map_zero := f.map_zero,
map_add := f.map_add }
end
section
variables [ring R] [ring S]
lemma to_is_add_group_hom (f : R →+* S) : is_add_group_hom f :=
{ map_add := f.map_add }
end
end ring_hom
/-- Inversion is a group homomorphism if the group is commutative. -/
@[to_additive neg.is_add_group_hom
"Negation is an `add_group` homomorphism if the `add_group` is commutative."]
lemma inv.is_group_hom [comm_group α] : is_group_hom (has_inv.inv : α → α) :=
{ map_mul := mul_inv }
/-- The difference of two additive group homomorphisms is an additive group
homomorphism if the target is commutative. -/
lemma is_add_group_hom.sub {α β} [add_group α] [add_comm_group β]
{f g : α → β} (hf : is_add_group_hom f) (hg : is_add_group_hom g) :
is_add_group_hom (λa, f a - g a) :=
by simpa only [sub_eq_add_neg] using hf.add hg.neg
namespace units
variables {M : Type*} {N : Type*} [monoid M] [monoid N]
/-- The group homomorphism on units induced by a multiplicative morphism. -/
@[reducible] def map' {f : M → N} (hf : is_monoid_hom f) : Mˣ →* Nˣ :=
map (monoid_hom.of hf)
@[simp] lemma coe_map' {f : M → N} (hf : is_monoid_hom f) (x : Mˣ) :
↑((map' hf : Mˣ → Nˣ) x) = f x :=
rfl
lemma coe_is_monoid_hom : is_monoid_hom (coe : Mˣ → M) := (coe_hom M).is_monoid_hom_coe
end units
namespace is_unit
variables {M : Type*} {N : Type*} [monoid M] [monoid N] {x : M}
lemma map' {f : M → N} (hf :is_monoid_hom f) {x : M} (h : is_unit x) :
is_unit (f x) :=
h.map (monoid_hom.of hf)
end is_unit
lemma additive.is_add_hom [has_mul α] [has_mul β] {f : α → β} (hf : is_mul_hom f) :
@is_add_hom (additive α) (additive β) _ _ f :=
{ map_add := is_mul_hom.map_mul hf }
lemma multiplicative.is_mul_hom [has_add α] [has_add β] {f : α → β} (hf : is_add_hom f) :
@is_mul_hom (multiplicative α) (multiplicative β) _ _ f :=
{ map_mul := is_add_hom.map_add hf }
-- defeq abuse
lemma additive.is_add_monoid_hom [mul_one_class α] [mul_one_class β] {f : α → β}
(hf : is_monoid_hom f) : @is_add_monoid_hom (additive α) (additive β) _ _ f :=
{ map_zero := hf.map_one,
..additive.is_add_hom hf.to_is_mul_hom }
lemma multiplicative.is_monoid_hom
[add_zero_class α] [add_zero_class β] {f : α → β} (hf : is_add_monoid_hom f) :
@is_monoid_hom (multiplicative α) (multiplicative β) _ _ f :=
{ map_one := is_add_monoid_hom.map_zero hf,
..multiplicative.is_mul_hom hf.to_is_add_hom }
lemma additive.is_add_group_hom [group α] [group β] {f : α → β} (hf : is_group_hom f) :
@is_add_group_hom (additive α) (additive β) _ _ f :=
{ map_add := hf.to_is_mul_hom.map_mul }
lemma multiplicative.is_group_hom [add_group α] [add_group β] {f : α → β}
(hf : is_add_group_hom f) : @is_group_hom (multiplicative α) (multiplicative β) _ _ f :=
{ map_mul := hf.to_is_add_hom.map_add }
|