Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 14,347 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
/-
Copyright (c) 2019 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import algebra.group.type_tags
import algebra.hom.equiv
import algebra.hom.ring
import algebra.hom.units

/-!
# Unbundled monoid and group homomorphisms

This file is deprecated, and is no longer imported by anything in mathlib other than other
deprecated files, and test files. You should not need to import it.

This file defines predicates for unbundled monoid and group homomorphisms. Instead of using
this file, please use `monoid_hom`, defined in `algebra.hom.group`, with notation `→*`, for
morphisms between monoids or groups. For example use `φ : G →* H` to represent a group
homomorphism between multiplicative groups, and `ψ : A →+ B` to represent a group homomorphism
between additive groups.

## Main Definitions

`is_monoid_hom` (deprecated), `is_group_hom` (deprecated)

## Tags

is_group_hom, is_monoid_hom

-/

universes u v
variables {α : Type u} {β : Type v}

/-- Predicate for maps which preserve an addition. -/
structure is_add_hom {α β : Type*} [has_add α] [has_add β] (f : α → β) : Prop :=
(map_add [] : ∀ x y, f (x + y) = f x + f y)

/-- Predicate for maps which preserve a multiplication. -/
@[to_additive]
structure is_mul_hom {α β : Type*} [has_mul α] [has_mul β] (f : α → β) : Prop :=
(map_mul [] : ∀ x y, f (x * y) = f x * f y)

namespace is_mul_hom
variables [has_mul α] [has_mul β] {γ : Type*} [has_mul γ]

/-- The identity map preserves multiplication. -/
@[to_additive "The identity map preserves addition"]
lemma id : is_mul_hom (id : α → α) := {map_mul := λ _ _, rfl}

/-- The composition of maps which preserve multiplication, also preserves multiplication. -/
@[to_additive "The composition of addition preserving maps also preserves addition"]
lemma comp {f : α → β} {g : β → γ} (hf : is_mul_hom f) (hg : is_mul_hom g) : is_mul_hom (g ∘ f) :=
{ map_mul := λ x y, by simp only [function.comp, hf.map_mul, hg.map_mul] }

/-- A product of maps which preserve multiplication,
preserves multiplication when the target is commutative. -/
@[to_additive "A sum of maps which preserves addition, preserves addition when the target
is commutative."]
lemma mul {α β} [semigroup α] [comm_semigroup β]
  {f g : α → β} (hf : is_mul_hom f) (hg : is_mul_hom g) :
  is_mul_hom (λ a, f a * g a) :=
{ map_mul := λ a b, by simp only [hf.map_mul, hg.map_mul, mul_comm, mul_assoc, mul_left_comm] }

/-- The inverse of a map which preserves multiplication,
preserves multiplication when the target is commutative. -/
@[to_additive "The negation of a map which preserves addition, preserves addition when
the target is commutative."]
lemma inv {α β} [has_mul α] [comm_group β] {f : α → β} (hf : is_mul_hom f) :
  is_mul_hom (λ a, (f a)⁻¹) :=
{ map_mul := λ a b, (hf.map_mul a b).symm ▸ mul_inv _ _ }

end is_mul_hom

/-- Predicate for add_monoid homomorphisms (deprecated -- use the bundled `monoid_hom` version). -/
structure is_add_monoid_hom [add_zero_class α] [add_zero_class β] (f : α → β)
  extends is_add_hom f : Prop :=
(map_zero [] : f 0 = 0)

/-- Predicate for monoid homomorphisms (deprecated -- use the bundled `monoid_hom` version). -/
@[to_additive]
structure is_monoid_hom [mul_one_class α] [mul_one_class β] (f : α → β)
  extends is_mul_hom f : Prop :=
(map_one [] : f 1 = 1)

namespace monoid_hom

variables {M : Type*} {N : Type*} [mM : mul_one_class M] [mN : mul_one_class N]

include mM mN
/-- Interpret a map `f : M → N` as a homomorphism `M →* N`. -/
@[to_additive "Interpret a map `f : M → N` as a homomorphism `M →+ N`."]
def of {f : M → N} (h : is_monoid_hom f) : M →* N :=
{ to_fun := f,
  map_one' := h.2,
  map_mul' := h.1.1 }

variables {mM mN}
@[simp, to_additive]
lemma coe_of {f : M → N} (hf : is_monoid_hom f) : ⇑ (monoid_hom.of hf) = f :=
rfl

@[to_additive]
lemma is_monoid_hom_coe (f : M →* N) : is_monoid_hom (f : M → N) :=
{ map_mul := f.map_mul,
  map_one := f.map_one }

end monoid_hom

namespace mul_equiv

variables {M : Type*} {N : Type*} [mul_one_class M] [mul_one_class N]

/-- A multiplicative isomorphism preserves multiplication (deprecated). -/
@[to_additive "An additive isomorphism preserves addition (deprecated)."]
theorem is_mul_hom (h : M ≃* N) : is_mul_hom h := ⟨h.map_mul⟩

/-- A multiplicative bijection between two monoids is a monoid hom
  (deprecated -- use `mul_equiv.to_monoid_hom`). -/
@[to_additive "An additive bijection between two additive monoids is an additive
monoid hom (deprecated). "]
lemma is_monoid_hom (h : M ≃* N) : is_monoid_hom h :=
{ map_mul := h.map_mul,
  map_one := h.map_one }

end mul_equiv

namespace is_monoid_hom
variables [mul_one_class α] [mul_one_class β] {f : α → β} (hf : is_monoid_hom f)

/-- A monoid homomorphism preserves multiplication. -/
@[to_additive "An additive monoid homomorphism preserves addition."]
lemma map_mul (x y) : f (x * y) = f x * f y :=
hf.map_mul x y

/-- The inverse of a map which preserves multiplication,
preserves multiplication when the target is commutative. -/
@[to_additive "The negation of a map which preserves addition, preserves addition
when the target is commutative."]
lemma inv {α β} [mul_one_class α] [comm_group β] {f : α → β} (hf : is_monoid_hom f) :
  is_monoid_hom (λ a, (f a)⁻¹) :=
{ map_one := hf.map_one.symm ▸ inv_one,
  map_mul := λ a b, (hf.map_mul a b).symm ▸ mul_inv _ _ }

end is_monoid_hom

/-- A map to a group preserving multiplication is a monoid homomorphism. -/
@[to_additive "A map to an additive group preserving addition is an additive monoid
homomorphism."]
theorem is_mul_hom.to_is_monoid_hom [mul_one_class α] [group β] {f : α → β} (hf : is_mul_hom f) :
  is_monoid_hom f :=
{ map_one := mul_right_eq_self.1 $ by rw [← hf.map_mul, one_mul],
  map_mul := hf.map_mul }

namespace is_monoid_hom
variables [mul_one_class α] [mul_one_class β] {f : α → β}

/-- The identity map is a monoid homomorphism. -/
@[to_additive "The identity map is an additive monoid homomorphism."]
lemma id : is_monoid_hom (@id α) := { map_one := rfl, map_mul := λ _ _, rfl }

/-- The composite of two monoid homomorphisms is a monoid homomorphism. -/
@[to_additive "The composite of two additive monoid homomorphisms is an additive monoid
homomorphism."]
lemma comp (hf : is_monoid_hom f) {γ} [mul_one_class γ] {g : β → γ} (hg : is_monoid_hom g) :
  is_monoid_hom (g ∘ f) :=
{ map_one := show g _ = 1, by rw [hf.map_one, hg.map_one],
  ..is_mul_hom.comp hf.to_is_mul_hom hg.to_is_mul_hom }

end is_monoid_hom

namespace is_add_monoid_hom

/-- Left multiplication in a ring is an additive monoid morphism. -/
lemma is_add_monoid_hom_mul_left {γ : Type*} [non_unital_non_assoc_semiring γ] (x : γ) :
  is_add_monoid_hom (λ y : γ, x * y) :=
{ map_zero := mul_zero x, map_add := λ y z, mul_add x y z }

/-- Right multiplication in a ring is an additive monoid morphism. -/
lemma is_add_monoid_hom_mul_right {γ : Type*} [non_unital_non_assoc_semiring γ] (x : γ) :
  is_add_monoid_hom (λ y : γ, y * x) :=
{ map_zero := zero_mul x, map_add := λ y z, add_mul y z x }

end is_add_monoid_hom

/-- Predicate for additive group homomorphism (deprecated -- use bundled `monoid_hom`). -/
structure is_add_group_hom [add_group α] [add_group β] (f : α → β) extends is_add_hom f : Prop

/-- Predicate for group homomorphisms (deprecated -- use bundled `monoid_hom`). -/
@[to_additive]
structure is_group_hom [group α] [group β] (f : α → β) extends is_mul_hom f : Prop

@[to_additive]
lemma monoid_hom.is_group_hom {G H : Type*} {_ : group G} {_ : group H} (f : G →* H) :
  is_group_hom (f : G → H) :=
{ map_mul := f.map_mul }

@[to_additive]
lemma mul_equiv.is_group_hom {G H : Type*} {_ : group G} {_ : group H} (h : G ≃* H) :
  is_group_hom h := { map_mul := h.map_mul }

/-- Construct `is_group_hom` from its only hypothesis. -/
@[to_additive "Construct `is_add_group_hom` from its only hypothesis."]
lemma is_group_hom.mk' [group α] [group β] {f : α → β} (hf : ∀ x y, f (x * y) = f x * f y) :
  is_group_hom f :=
{ map_mul := hf }

namespace is_group_hom
variables [group α] [group β] {f : α → β} (hf : is_group_hom f)
open is_mul_hom (map_mul)

lemma map_mul : ∀ (x y), f (x * y) = f x * f y := hf.to_is_mul_hom.map_mul

/-- A group homomorphism is a monoid homomorphism. -/
@[to_additive "An additive group homomorphism is an additive monoid homomorphism."]
lemma to_is_monoid_hom : is_monoid_hom f :=
hf.to_is_mul_hom.to_is_monoid_hom

/-- A group homomorphism sends 1 to 1. -/
@[to_additive "An additive group homomorphism sends 0 to 0."]
lemma map_one : f 1 = 1 := hf.to_is_monoid_hom.map_one

/-- A group homomorphism sends inverses to inverses. -/
@[to_additive "An additive group homomorphism sends negations to negations."]
theorem map_inv (hf : is_group_hom f) (a : α) : f a⁻¹ = (f a)⁻¹ :=
eq_inv_of_mul_eq_one_left $ by rw [← hf.map_mul, inv_mul_self, hf.map_one]

@[to_additive] lemma map_div (hf : is_group_hom f) (a b : α) : f (a / b) = f a / f b :=
by simp_rw [div_eq_mul_inv, hf.map_mul, hf.map_inv]

/-- The identity is a group homomorphism. -/
@[to_additive "The identity is an additive group homomorphism."]
lemma id : is_group_hom (@id α) := { map_mul := λ _ _, rfl}

/-- The composition of two group homomorphisms is a group homomorphism. -/
@[to_additive "The composition of two additive group homomorphisms is an additive
group homomorphism."]
lemma comp (hf : is_group_hom f) {γ} [group γ] {g : β → γ} (hg : is_group_hom g) :
  is_group_hom (g ∘ f) :=
{ ..is_mul_hom.comp hf.to_is_mul_hom hg.to_is_mul_hom }

/-- A group homomorphism is injective iff its kernel is trivial. -/
@[to_additive "An additive group homomorphism is injective if its kernel is trivial."]
lemma injective_iff {f : α → β} (hf : is_group_hom f) :
  function.injective f ↔ (∀ a, f a = 1 → a = 1) :=
⟨λ h _, by rw ← hf.map_one; exact @h _ _,
  λ h x y hxy, eq_of_div_eq_one $ h _ $ by rwa [hf.map_div, div_eq_one]⟩

/-- The product of group homomorphisms is a group homomorphism if the target is commutative. -/
@[to_additive "The sum of two additive group homomorphisms is an additive group homomorphism
if the target is commutative."]
lemma mul {α β} [group α] [comm_group β]
  {f g : α → β} (hf : is_group_hom f) (hg : is_group_hom g) :
  is_group_hom (λa, f a * g a) :=
{ map_mul := (hf.to_is_mul_hom.mul hg.to_is_mul_hom).map_mul }

/-- The inverse of a group homomorphism is a group homomorphism if the target is commutative. -/
@[to_additive "The negation of an additive group homomorphism is an additive group homomorphism
if the target is commutative."]
lemma inv {α β} [group α] [comm_group β] {f : α → β} (hf : is_group_hom f) :
  is_group_hom (λa, (f a)⁻¹) :=
{ map_mul := hf.to_is_mul_hom.inv.map_mul }

end is_group_hom

namespace ring_hom
/-!
These instances look redundant, because `deprecated.ring` provides `is_ring_hom` for a `→+*`.
Nevertheless these are harmless, and helpful for stripping out dependencies on `deprecated.ring`.
-/
variables {R : Type*} {S : Type*}

section
variables [non_assoc_semiring R] [non_assoc_semiring S]

lemma to_is_monoid_hom (f : R →+* S) : is_monoid_hom f :=
{ map_one := f.map_one,
  map_mul := f.map_mul }

lemma to_is_add_monoid_hom (f : R →+* S) : is_add_monoid_hom f :=
{ map_zero := f.map_zero,
  map_add := f.map_add }
end

section
variables [ring R] [ring S]

lemma to_is_add_group_hom (f : R →+* S) : is_add_group_hom f :=
{ map_add := f.map_add }
end

end ring_hom

/-- Inversion is a group homomorphism if the group is commutative. -/
@[to_additive neg.is_add_group_hom
"Negation is an `add_group` homomorphism if the `add_group` is commutative."]
lemma inv.is_group_hom [comm_group α] : is_group_hom (has_inv.inv : α → α) :=
{ map_mul := mul_inv }

/-- The difference of two additive group homomorphisms is an additive group
homomorphism if the target is commutative. -/
lemma is_add_group_hom.sub {α β} [add_group α] [add_comm_group β]
  {f g : α → β} (hf : is_add_group_hom f) (hg : is_add_group_hom g) :
  is_add_group_hom (λa, f a - g a) :=
by simpa only [sub_eq_add_neg] using hf.add hg.neg

namespace units

variables {M : Type*} {N : Type*} [monoid M] [monoid N]

/-- The group homomorphism on units induced by a multiplicative morphism. -/
@[reducible] def map' {f : M → N} (hf : is_monoid_hom f) : Mˣ →* Nˣ :=
  map (monoid_hom.of hf)

@[simp] lemma coe_map' {f : M → N} (hf : is_monoid_hom f) (x : Mˣ) :
  ↑((map' hf : Mˣ → Nˣ) x) = f x :=
rfl

lemma coe_is_monoid_hom : is_monoid_hom (coe : Mˣ → M) := (coe_hom M).is_monoid_hom_coe

end units

namespace is_unit

variables {M : Type*} {N : Type*} [monoid M] [monoid N] {x : M}

lemma map' {f : M → N} (hf :is_monoid_hom f) {x : M} (h : is_unit x) :
  is_unit (f x) :=
h.map (monoid_hom.of hf)

end is_unit

lemma additive.is_add_hom [has_mul α] [has_mul β] {f : α → β} (hf : is_mul_hom f) :
  @is_add_hom (additive α) (additive β) _ _ f :=
{ map_add := is_mul_hom.map_mul hf }

lemma multiplicative.is_mul_hom [has_add α] [has_add β] {f : α → β} (hf : is_add_hom f) :
  @is_mul_hom (multiplicative α) (multiplicative β) _ _ f :=
{ map_mul := is_add_hom.map_add hf }

-- defeq abuse
lemma additive.is_add_monoid_hom [mul_one_class α] [mul_one_class β] {f : α → β}
  (hf : is_monoid_hom f) : @is_add_monoid_hom (additive α) (additive β) _ _ f :=
{ map_zero := hf.map_one,
  ..additive.is_add_hom hf.to_is_mul_hom }

lemma multiplicative.is_monoid_hom
  [add_zero_class α] [add_zero_class β] {f : α → β} (hf : is_add_monoid_hom f) :
  @is_monoid_hom (multiplicative α) (multiplicative β) _ _ f :=
{ map_one := is_add_monoid_hom.map_zero hf,
  ..multiplicative.is_mul_hom hf.to_is_add_hom }

lemma additive.is_add_group_hom [group α] [group β] {f : α → β} (hf : is_group_hom f) :
  @is_add_group_hom (additive α) (additive β) _ _ f :=
{ map_add := hf.to_is_mul_hom.map_mul }

lemma multiplicative.is_group_hom [add_group α] [add_group β] {f : α → β}
  (hf : is_add_group_hom f) : @is_group_hom (multiplicative α) (multiplicative β) _ _ f :=
{ map_mul := hf.to_is_add_hom.map_add }