Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 25,205 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
/-
Copyright (c) 2018 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mitchell Rowett, Scott Morrison, Johan Commelin, Mario Carneiro,
  Michael Howes
-/
import group_theory.subgroup.basic
import deprecated.submonoid

/-!
# Unbundled subgroups (deprecated)

This file is deprecated, and is no longer imported by anything in mathlib other than other
deprecated files, and test files. You should not need to import it.

This file defines unbundled multiplicative and additive subgroups. Instead of using this file,
please use `subgroup G` and `add_subgroup A`, defined in `group_theory.subgroup.basic`.

## Main definitions

`is_add_subgroup (S : set A)` : the predicate that `S` is the underlying subset of an additive
subgroup of `A`. The bundled variant `add_subgroup A` should be used in preference to this.

`is_subgroup (S : set G)` : the predicate that `S` is the underlying subset of a subgroup
of `G`. The bundled variant `subgroup G` should be used in preference to this.

## Tags

subgroup, subgroups, is_subgroup
-/
open set function

variables {G : Type*} {H : Type*} {A : Type*} {a a₁ a₂ b c: G}

section group
variables [group G] [add_group A]

/-- `s` is an additive subgroup: a set containing 0 and closed under addition and negation. -/
structure is_add_subgroup (s : set A) extends is_add_submonoid s : Prop :=
(neg_mem {a} : a ∈ s → -a ∈ s)

/-- `s` is a subgroup: a set containing 1 and closed under multiplication and inverse. -/
@[to_additive]
structure is_subgroup (s : set G) extends is_submonoid s : Prop :=
(inv_mem {a} : a ∈ s → a⁻¹ ∈ s)

@[to_additive]
lemma is_subgroup.div_mem {s : set G} (hs : is_subgroup s) {x y : G} (hx : x ∈ s) (hy : y ∈ s) :
  x / y ∈ s :=
by simpa only [div_eq_mul_inv] using hs.mul_mem hx (hs.inv_mem hy)

lemma additive.is_add_subgroup
  {s : set G} (hs : is_subgroup s) : @is_add_subgroup (additive G) _ s :=
@is_add_subgroup.mk (additive G) _ _ (additive.is_add_submonoid hs.to_is_submonoid)
  hs.inv_mem

theorem additive.is_add_subgroup_iff
  {s : set G} : @is_add_subgroup (additive G) _ s ↔ is_subgroup s :=
⟨by rintro ⟨⟨h₁, h₂⟩, h₃⟩; exact @is_subgroup.mk G _ _ ⟨h₁, @h₂⟩ @h₃,
  λ h, by exactI additive.is_add_subgroup h⟩

lemma multiplicative.is_subgroup
  {s : set A} (hs : is_add_subgroup s) : @is_subgroup (multiplicative A) _ s :=
@is_subgroup.mk (multiplicative A) _ _ (multiplicative.is_submonoid hs.to_is_add_submonoid)
  hs.neg_mem

theorem multiplicative.is_subgroup_iff
  {s : set A} : @is_subgroup (multiplicative A) _ s ↔ is_add_subgroup s :=
⟨by rintro ⟨⟨h₁, h₂⟩, h₃⟩; exact @is_add_subgroup.mk A _ _ ⟨h₁, @h₂⟩ @h₃,
  λ h, by exactI multiplicative.is_subgroup h⟩

@[to_additive of_add_neg]
theorem is_subgroup.of_div (s : set G)
  (one_mem : (1:G) ∈ s) (div_mem : ∀{a b:G}, a ∈ s → b ∈ s → a * b⁻¹ ∈ s) :
  is_subgroup s :=
have inv_mem : ∀a, a ∈ s → a⁻¹ ∈ s, from
  assume a ha,
  have 1 * a⁻¹ ∈ s, from div_mem one_mem ha,
  by simpa,
{ inv_mem := inv_mem,
  mul_mem := assume a b ha hb,
    have a * b⁻¹⁻¹ ∈ s, from div_mem ha (inv_mem b hb),
    by simpa,
  one_mem := one_mem }

theorem is_add_subgroup.of_sub (s : set A)
  (zero_mem : (0:A) ∈ s) (sub_mem : ∀{a b:A}, a ∈ s → b ∈ s → a - b ∈ s) :
  is_add_subgroup s :=
is_add_subgroup.of_add_neg s zero_mem
  (λ x y hx hy, by simpa only [sub_eq_add_neg] using sub_mem hx hy)

@[to_additive]
lemma is_subgroup.inter {s₁ s₂ : set G} (hs₁ : is_subgroup s₁) (hs₂ : is_subgroup s₂) :
  is_subgroup (s₁ ∩ s₂) :=
{ inv_mem := λ x hx, ⟨hs₁.inv_mem hx.1, hs₂.inv_mem hx.2⟩,
  ..is_submonoid.inter hs₁.to_is_submonoid hs₂.to_is_submonoid}

@[to_additive]
lemma is_subgroup.Inter {ι : Sort*} {s : ι → set G} (hs : ∀ y : ι, is_subgroup (s y)) :
  is_subgroup (set.Inter s) :=
{ inv_mem := λ x h, set.mem_Inter.2 $ λ y, is_subgroup.inv_mem (hs _) (set.mem_Inter.1 h y),
  ..is_submonoid.Inter (λ y, (hs y).to_is_submonoid) }

@[to_additive]
lemma is_subgroup_Union_of_directed {ι : Type*} [hι : nonempty ι]
  {s : ι → set G} (hs : ∀ i, is_subgroup (s i))
  (directed : ∀ i j, ∃ k, s i ⊆ s k ∧ s j ⊆ s k) :
  is_subgroup (⋃i, s i) :=
{ inv_mem := λ a ha,
    let ⟨i, hi⟩ := set.mem_Union.1 ha in
    set.mem_Union.2 ⟨i, (hs i).inv_mem hi⟩,
  to_is_submonoid := is_submonoid_Union_of_directed (λ i, (hs i).to_is_submonoid) directed }

end group

namespace is_subgroup
open is_submonoid
variables [group G] {s : set G} (hs : is_subgroup s)

include hs

@[to_additive]
lemma inv_mem_iff : a⁻¹ ∈ s ↔ a ∈ s :=
⟨λ h, by simpa using hs.inv_mem h, inv_mem hs⟩

@[to_additive]
lemma mul_mem_cancel_right (h : a ∈ s) : b * a ∈ s ↔ b ∈ s :=
⟨λ hba, by simpa using hs.mul_mem hba (hs.inv_mem h), λ hb, hs.mul_mem hb h⟩

@[to_additive]
lemma mul_mem_cancel_left (h : a ∈ s) : a * b ∈ s ↔ b ∈ s :=
⟨λ hab, by simpa using hs.mul_mem (hs.inv_mem h) hab, hs.mul_mem h⟩

end is_subgroup

/-- `is_normal_add_subgroup (s : set A)` expresses the fact that `s` is a normal additive subgroup
of the additive group `A`. Important: the preferred way to say this in Lean is via bundled
subgroups `S : add_subgroup A` and `hs : S.normal`, and not via this structure. -/
structure is_normal_add_subgroup [add_group A] (s : set A) extends is_add_subgroup s : Prop :=
(normal : ∀ n ∈ s, ∀ g : A, g + n + -g ∈ s)

/-- `is_normal_subgroup (s : set G)` expresses the fact that `s` is a normal subgroup
of the group `G`. Important: the preferred way to say this in Lean is via bundled
subgroups `S : subgroup G` and not via this structure. -/
@[to_additive]
structure is_normal_subgroup [group G] (s : set G) extends is_subgroup s : Prop :=
(normal : ∀ n ∈ s, ∀ g : G, g * n * g⁻¹ ∈ s)

@[to_additive]
lemma is_normal_subgroup_of_comm_group [comm_group G] {s : set G} (hs : is_subgroup s) :
  is_normal_subgroup s :=
{ normal := λ n hn g, by rwa [mul_right_comm, mul_right_inv, one_mul],
  ..hs }

lemma additive.is_normal_add_subgroup [group G]
  {s : set G} (hs : is_normal_subgroup s) : @is_normal_add_subgroup (additive G) _ s :=
@is_normal_add_subgroup.mk (additive G) _ _
  (additive.is_add_subgroup hs.to_is_subgroup)
  (is_normal_subgroup.normal hs)

theorem additive.is_normal_add_subgroup_iff [group G]
  {s : set G} : @is_normal_add_subgroup (additive G) _ s ↔ is_normal_subgroup s :=
⟨by rintro ⟨h₁, h₂⟩; exact
    @is_normal_subgroup.mk G _ _ (additive.is_add_subgroup_iff.1 h₁) @h₂,
  λ h, by exactI additive.is_normal_add_subgroup h⟩

lemma multiplicative.is_normal_subgroup [add_group A]
  {s : set A} (hs : is_normal_add_subgroup s) : @is_normal_subgroup (multiplicative A) _ s :=
@is_normal_subgroup.mk (multiplicative A) _ _
  (multiplicative.is_subgroup hs.to_is_add_subgroup)
  (is_normal_add_subgroup.normal hs)

theorem multiplicative.is_normal_subgroup_iff [add_group A]
  {s : set A} : @is_normal_subgroup (multiplicative A) _ s ↔ is_normal_add_subgroup s :=
⟨by rintro ⟨h₁, h₂⟩; exact
    @is_normal_add_subgroup.mk A _ _ (multiplicative.is_subgroup_iff.1 h₁) @h₂,
  λ h, by exactI multiplicative.is_normal_subgroup h⟩

namespace is_subgroup
variable [group G]

-- Normal subgroup properties
@[to_additive]
lemma mem_norm_comm {s : set G} (hs : is_normal_subgroup s) {a b : G} (hab : a * b ∈ s) :
  b * a ∈ s :=
have h : a⁻¹ * (a * b) * a⁻¹⁻¹ ∈ s, from hs.normal (a * b) hab a⁻¹,
by simp at h; exact h

@[to_additive]
lemma mem_norm_comm_iff {s : set G} (hs : is_normal_subgroup s) {a b : G} : a * b ∈ s ↔ b * a ∈ s :=
⟨mem_norm_comm hs, mem_norm_comm hs⟩

/-- The trivial subgroup -/
@[to_additive "the trivial additive subgroup"]
def trivial (G : Type*) [group G] : set G := {1}

@[simp, to_additive]
lemma mem_trivial {g : G} : g ∈ trivial G ↔ g = 1 :=
mem_singleton_iff

@[to_additive]
lemma trivial_normal : is_normal_subgroup (trivial G) :=
by refine {..}; simp [trivial] {contextual := tt}

@[to_additive]
lemma eq_trivial_iff {s : set G} (hs : is_subgroup s) :
  s = trivial G ↔ (∀ x ∈ s, x = (1 : G)) :=
by simp only [set.ext_iff, is_subgroup.mem_trivial];
  exact ⟨λ h x, (h x).1, λ h x, ⟨h x, λ hx, hx.symm ▸ hs.to_is_submonoid.one_mem⟩⟩

@[to_additive]
lemma univ_subgroup : is_normal_subgroup (@univ G) :=
by refine {..}; simp

/-- The underlying set of the center of a group. -/
@[to_additive add_center "The underlying set of the center of an additive group."]
def center (G : Type*) [group G] : set G := {z | ∀ g, g * z = z * g}

@[to_additive mem_add_center]
lemma mem_center {a : G} : a ∈ center G ↔ ∀g, g * a = a * g := iff.rfl

@[to_additive add_center_normal]
lemma center_normal : is_normal_subgroup (center G) :=
{ one_mem := by simp [center],
  mul_mem := assume a b ha hb g,
    by rw [←mul_assoc, mem_center.2 ha g, mul_assoc, mem_center.2 hb g, ←mul_assoc],
  inv_mem := assume a ha g,
    calc
      g * a⁻¹ = a⁻¹ * (g * a) * a⁻¹ : by simp [ha g]
      ...     = a⁻¹ * g             : by rw [←mul_assoc, mul_assoc]; simp,
  normal := assume n ha g h,
    calc
      h * (g * n * g⁻¹) = h * n           : by simp [ha g, mul_assoc]
      ...               = g * g⁻¹ * n * h : by rw ha h; simp
      ...               = g * n * g⁻¹ * h : by rw [mul_assoc g, ha g⁻¹, ←mul_assoc] }

/-- The underlying set of the normalizer of a subset `S : set G` of a group `G`. That is,
  the elements `g : G` such that `g * S * g⁻¹ = S`. -/
@[to_additive add_normalizer "The underlying set of the normalizer of a subset `S : set A` of an
  additive group `A`. That is, the elements `a : A` such that `a + S - a = S`."]
def normalizer (s : set G) : set G :=
{g : G | ∀ n, n ∈ s ↔ g * n * g⁻¹ ∈ s}

@[to_additive]
lemma normalizer_is_subgroup (s : set G) : is_subgroup (normalizer s) :=
{ one_mem := by simp [normalizer],
  mul_mem := λ a b (ha : ∀ n, n ∈ s ↔ a * n * a⁻¹ ∈ s)
    (hb : ∀ n, n ∈ s ↔ b * n * b⁻¹ ∈ s) n,
    by rw [mul_inv_rev, ← mul_assoc, mul_assoc a, mul_assoc a, ← ha, ← hb],
  inv_mem := λ a (ha : ∀ n, n ∈ s ↔ a * n * a⁻¹ ∈ s) n,
    by rw [ha (a⁻¹ * n * a⁻¹⁻¹)];
    simp [mul_assoc] }

@[to_additive subset_add_normalizer]
lemma subset_normalizer {s : set G} (hs : is_subgroup s) : s ⊆ normalizer s :=
λ g hg n, by rw [is_subgroup.mul_mem_cancel_right hs ((is_subgroup.inv_mem_iff hs).2 hg),
  is_subgroup.mul_mem_cancel_left hs hg]

end is_subgroup

-- Homomorphism subgroups
namespace is_group_hom
open is_submonoid is_subgroup

/-- `ker f : set G` is the underlying subset of the kernel of a map `G → H`. -/
@[to_additive "`ker f : set A` is the underlying subset of the kernel of a map `A → B`"]
def ker [group H] (f : G → H) : set G := preimage f (trivial H)

@[to_additive]
lemma mem_ker [group H] (f : G → H) {x : G} : x ∈ ker f ↔ f x = 1 :=
mem_trivial

variables [group G] [group H]

@[to_additive]
lemma one_ker_inv {f : G → H} (hf : is_group_hom f) {a b : G} (h : f (a * b⁻¹) = 1) : f a = f b :=
begin
  rw [hf.map_mul, hf.map_inv] at h,
  rw [←inv_inv (f b), eq_inv_of_mul_eq_one_left h]
end

@[to_additive]
lemma one_ker_inv' {f : G → H} (hf : is_group_hom f) {a b : G} (h : f (a⁻¹ * b) = 1) : f a = f b :=
begin
  rw [hf.map_mul, hf.map_inv] at h,
  apply inv_injective,
  rw eq_inv_of_mul_eq_one_left h
end

@[to_additive]
lemma inv_ker_one {f : G → H} (hf : is_group_hom f) {a b : G} (h : f a = f b) : f (a * b⁻¹) = 1 :=
have f a * (f b)⁻¹ = 1, by rw [h, mul_right_inv],
by rwa [←hf.map_inv, ←hf.map_mul] at this

@[to_additive]
lemma inv_ker_one' {f : G → H} (hf : is_group_hom f) {a b : G} (h : f a = f b) : f (a⁻¹ * b) = 1 :=
have (f a)⁻¹ * f b = 1, by rw [h, mul_left_inv],
by rwa [←hf.map_inv, ←hf.map_mul] at this

@[to_additive]
lemma one_iff_ker_inv {f : G → H} (hf : is_group_hom f) (a b : G) : f a = f b ↔ f (a * b⁻¹) = 1 :=
⟨hf.inv_ker_one, hf.one_ker_inv⟩

@[to_additive]
lemma one_iff_ker_inv' {f : G → H} (hf : is_group_hom f) (a b : G) : f a = f b ↔ f (a⁻¹ * b) = 1 :=
⟨hf.inv_ker_one', hf.one_ker_inv'⟩

@[to_additive]
lemma inv_iff_ker {f : G → H} (hf : is_group_hom f) (a b : G) : f a = f b ↔ a * b⁻¹ ∈ ker f :=
by rw [mem_ker]; exact one_iff_ker_inv hf _ _

@[to_additive]
lemma inv_iff_ker' {f : G → H} (hf : is_group_hom f) (a b : G) : f a = f b ↔ a⁻¹ * b ∈ ker f :=
by rw [mem_ker]; exact one_iff_ker_inv' hf _ _

@[to_additive]
lemma image_subgroup {f : G → H} (hf : is_group_hom f) {s : set G} (hs : is_subgroup s) :
  is_subgroup (f '' s) :=
{ mul_mem := assume a₁ a₂ ⟨b₁, hb₁, eq₁⟩ ⟨b₂, hb₂, eq₂⟩,
             ⟨b₁ * b₂, hs.mul_mem hb₁ hb₂, by simp [eq₁, eq₂, hf.map_mul]⟩,
  one_mem := ⟨1, hs.to_is_submonoid.one_mem, hf.map_one⟩,
  inv_mem := assume a ⟨b, hb, eq⟩, ⟨b⁻¹, hs.inv_mem hb, by { rw hf.map_inv, simp * }⟩ }

@[to_additive]
lemma range_subgroup {f : G → H} (hf : is_group_hom f) : is_subgroup (set.range f) :=
@set.image_univ _ _ f ▸ hf.image_subgroup univ_subgroup.to_is_subgroup

local attribute [simp] one_mem inv_mem mul_mem is_normal_subgroup.normal

@[to_additive]
lemma preimage {f : G → H} (hf : is_group_hom f) {s : set H} (hs : is_subgroup s) :
  is_subgroup (f ⁻¹' s) :=
by { refine {..};
     simp [hs.one_mem, hs.mul_mem, hs.inv_mem, hf.map_mul, hf.map_one, hf.map_inv,
           inv_mem_class.inv_mem]
     {contextual := tt} }

@[to_additive]
lemma preimage_normal {f : G → H} (hf : is_group_hom f) {s : set H} (hs : is_normal_subgroup s) :
  is_normal_subgroup (f ⁻¹' s) :=
{ one_mem := by simp [hf.map_one, hs.to_is_subgroup.one_mem],
  mul_mem := by simp [hf.map_mul, hs.to_is_subgroup.mul_mem] {contextual := tt},
  inv_mem := by simp [hf.map_inv, hs.to_is_subgroup.inv_mem] {contextual := tt},
  normal := by simp [hs.normal, hf.map_mul, hf.map_inv] {contextual := tt}}

@[to_additive]
lemma is_normal_subgroup_ker {f : G → H} (hf : is_group_hom f) : is_normal_subgroup (ker f) :=
hf.preimage_normal (trivial_normal)

@[to_additive]
lemma injective_of_trivial_ker {f : G → H} (hf : is_group_hom f) (h : ker f = trivial G) :
  function.injective f :=
begin
  intros a₁ a₂ hfa,
  simp [ext_iff, ker, is_subgroup.trivial] at h,
  have ha : a₁ * a₂⁻¹ = 1, by rw ←h; exact hf.inv_ker_one hfa,
  rw [eq_inv_of_mul_eq_one_left ha, inv_inv a₂]
end

@[to_additive]
lemma trivial_ker_of_injective {f : G → H} (hf : is_group_hom f) (h : function.injective f) :
  ker f = trivial G :=
set.ext $ assume x, iff.intro
  (assume hx,
    suffices f x = f 1, by simpa using h this,
    by simp [hf.map_one]; rwa [mem_ker] at hx)
  (by simp [mem_ker, hf.map_one] {contextual := tt})

@[to_additive]
lemma injective_iff_trivial_ker {f : G → H} (hf : is_group_hom f) :
  function.injective f ↔ ker f = trivial G :=
⟨hf.trivial_ker_of_injective, hf.injective_of_trivial_ker⟩

@[to_additive]
lemma trivial_ker_iff_eq_one {f : G → H} (hf : is_group_hom f) :
  ker f = trivial G ↔ ∀ x, f x = 1 → x = 1 :=
by rw set.ext_iff; simp [ker]; exact
⟨λ h x hx, (h x).1 hx, λ h x, ⟨h x, λ hx, by rw [hx, hf.map_one]⟩⟩

end is_group_hom

namespace add_group

variables [add_group A]

/-- If `A` is an additive group and `s : set A`, then `in_closure s : set A` is the underlying
subset of the subgroup generated by `s`. -/
inductive in_closure (s : set A) : A → Prop
| basic {a : A} : a ∈ s → in_closure a
| zero : in_closure 0
| neg {a : A} : in_closure a → in_closure (-a)
| add {a b : A} : in_closure a → in_closure b → in_closure (a + b)

end add_group

namespace group
open is_submonoid is_subgroup

variables [group G] {s : set G}

/-- If `G` is a group and `s : set G`, then `in_closure s : set G` is the underlying
subset of the subgroup generated by `s`. -/
@[to_additive]
inductive in_closure (s : set G) : G → Prop
| basic {a : G} : a ∈ s → in_closure a
| one : in_closure 1
| inv {a : G} : in_closure a → in_closure a⁻¹
| mul {a b : G} : in_closure a → in_closure b → in_closure (a * b)

/-- `group.closure s` is the subgroup generated by `s`, i.e. the smallest subgroup containg `s`. -/
@[to_additive "`add_group.closure s` is the additive subgroup generated by `s`, i.e., the
  smallest additive subgroup containing `s`."]
def closure (s : set G) : set G := {a | in_closure s a }

@[to_additive]
lemma mem_closure {a : G} : a ∈ s → a ∈ closure s := in_closure.basic

@[to_additive]
lemma closure.is_subgroup (s : set G) : is_subgroup (closure s) :=
{ one_mem := in_closure.one,
  mul_mem := assume a b, in_closure.mul,
  inv_mem := assume a, in_closure.inv }

@[to_additive]
theorem subset_closure {s : set G} : s ⊆ closure s := λ a, mem_closure

@[to_additive]
theorem closure_subset {s t : set G} (ht : is_subgroup t) (h : s ⊆ t) : closure s ⊆ t :=
assume a ha, by induction ha; simp [h _, *, ht.one_mem, ht.mul_mem, is_subgroup.inv_mem_iff]

@[to_additive]
lemma closure_subset_iff {s t : set G} (ht : is_subgroup t) : closure s ⊆ t ↔ s ⊆ t :=
⟨assume h b ha, h (mem_closure ha), assume h b ha, closure_subset ht h ha⟩

@[to_additive]
theorem closure_mono {s t : set G} (h : s ⊆ t) : closure s ⊆ closure t :=
closure_subset (closure.is_subgroup _) $ set.subset.trans h subset_closure

@[simp, to_additive]
lemma closure_subgroup {s : set G} (hs : is_subgroup s) : closure s = s :=
set.subset.antisymm (closure_subset hs $ set.subset.refl s) subset_closure

@[to_additive]
theorem exists_list_of_mem_closure {s : set G} {a : G} (h : a ∈ closure s) :
  (∃l:list G, (∀x∈l, x ∈ s ∨ x⁻¹ ∈ s) ∧ l.prod = a) :=
in_closure.rec_on h
  (λ x hxs, ⟨[x], list.forall_mem_singleton.2 $ or.inl hxs, one_mul _⟩)
  ⟨[], list.forall_mem_nil _, rfl⟩
  (λ x _ ⟨L, HL1, HL2⟩, ⟨L.reverse.map has_inv.inv,
    λ x hx, let ⟨y, hy1, hy2⟩ := list.exists_of_mem_map hx in
      hy2 ▸ or.imp id (by rw [inv_inv]; exact id) (HL1 _ $ list.mem_reverse.1 hy1).symm,
      HL2 ▸ list.rec_on L inv_one.symm (λ hd tl ih,
        by rw [list.reverse_cons, list.map_append, list.prod_append, ih, list.map_singleton,
            list.prod_cons, list.prod_nil, mul_one, list.prod_cons, mul_inv_rev])⟩)
  (λ x y hx hy ⟨L1, HL1, HL2⟩ ⟨L2, HL3, HL4⟩, ⟨L1 ++ L2, list.forall_mem_append.2 ⟨HL1, HL3⟩,
    by rw [list.prod_append, HL2, HL4]⟩)

@[to_additive]
lemma image_closure [group H] {f : G → H} (hf : is_group_hom f) (s : set G) :
  f '' closure s = closure (f '' s) :=
le_antisymm
  begin
    rintros _ ⟨x, hx, rfl⟩,
    apply in_closure.rec_on hx; intros,
    { solve_by_elim [subset_closure, set.mem_image_of_mem] },
    { rw [hf.to_is_monoid_hom.map_one],
      apply is_submonoid.one_mem (closure.is_subgroup _).to_is_submonoid, },
    { rw [hf.map_inv],
      apply is_subgroup.inv_mem (closure.is_subgroup _), assumption },
    { rw [hf.to_is_monoid_hom.map_mul],
      solve_by_elim [is_submonoid.mul_mem (closure.is_subgroup _).to_is_submonoid] }
  end
  (closure_subset (hf.image_subgroup $ closure.is_subgroup _) $ set.image_subset _ subset_closure)

@[to_additive]
theorem mclosure_subset {s : set G} : monoid.closure s ⊆ closure s :=
monoid.closure_subset (closure.is_subgroup _).to_is_submonoid $ subset_closure

@[to_additive]
theorem mclosure_inv_subset {s : set G} : monoid.closure (has_inv.inv ⁻¹' s) ⊆ closure s :=
monoid.closure_subset (closure.is_subgroup _).to_is_submonoid $ λ x hx,
  inv_inv x ▸ ((closure.is_subgroup _).inv_mem $ subset_closure hx)

@[to_additive]
theorem closure_eq_mclosure {s : set G} : closure s = monoid.closure (s ∪ has_inv.inv ⁻¹' s) :=
set.subset.antisymm
  (@closure_subset _ _ _ (monoid.closure (s ∪ has_inv.inv ⁻¹' s))
    { one_mem := (monoid.closure.is_submonoid _).one_mem,
      mul_mem := (monoid.closure.is_submonoid _).mul_mem,
      inv_mem := λ x hx, monoid.in_closure.rec_on hx
      (λ x hx, or.cases_on hx (λ hx, monoid.subset_closure $ or.inr $
        show x⁻¹⁻¹ ∈ s, from (inv_inv x).symm ▸ hx)
        (λ hx, monoid.subset_closure $ or.inl hx))
      ((@inv_one G _).symm ▸ is_submonoid.one_mem (monoid.closure.is_submonoid _))
      (λ x y hx hy ihx ihy,
        (mul_inv_rev x y).symm ▸ is_submonoid.mul_mem (monoid.closure.is_submonoid _) ihy ihx) }
    (set.subset.trans (set.subset_union_left _ _) monoid.subset_closure))
  (monoid.closure_subset (closure.is_subgroup _).to_is_submonoid $ set.union_subset subset_closure $
    λ x hx, inv_inv x ▸ (is_subgroup.inv_mem (closure.is_subgroup _) $ subset_closure hx))

@[to_additive]
theorem mem_closure_union_iff {G : Type*} [comm_group G] {s t : set G} {x : G} :
  x ∈ closure (s ∪ t) ↔ ∃ y ∈ closure s, ∃ z ∈ closure t, y * z = x :=
begin
  simp only [closure_eq_mclosure, monoid.mem_closure_union_iff, exists_prop, preimage_union], split,
  { rintro ⟨_, ⟨ys, hys, yt, hyt, rfl⟩, _, ⟨zs, hzs, zt, hzt, rfl⟩, rfl⟩,
    refine ⟨_, ⟨_, hys, _, hzs, rfl⟩, _, ⟨_, hyt, _, hzt, rfl⟩, _⟩,
    rw [mul_assoc, mul_assoc, mul_left_comm zs] },
  { rintro ⟨_, ⟨ys, hys, zs, hzs, rfl⟩, _, ⟨yt, hyt, zt, hzt, rfl⟩, rfl⟩,
    refine ⟨_, ⟨ys, hys, yt, hyt, rfl⟩, _, ⟨zs, hzs, zt, hzt, rfl⟩, _⟩,
    rw [mul_assoc, mul_assoc, mul_left_comm yt] }
end

end group

namespace is_subgroup
variable [group G]

@[to_additive]
lemma trivial_eq_closure : trivial G = group.closure ∅ :=
subset.antisymm
  (by simp [set.subset_def, (group.closure.is_subgroup _).one_mem])
  (group.closure_subset (trivial_normal).to_is_subgroup $ by simp)

end is_subgroup

/-The normal closure of a set s is the subgroup closure of all the conjugates of
elements of s. It is the smallest normal subgroup containing s. -/

namespace group
variables {s : set G} [group G]

lemma conjugates_of_subset {t : set G} (ht : is_normal_subgroup t) {a : G} (h : a ∈ t) :
  conjugates_of a ⊆ t :=
λ x hc,
begin
  obtain ⟨c, w⟩ := is_conj_iff.1 hc,
  have H := is_normal_subgroup.normal ht a h c,
  rwa ←w,
end

theorem conjugates_of_set_subset' {s t : set G} (ht : is_normal_subgroup t) (h : s ⊆ t) :
  conjugates_of_set s ⊆ t :=
set.Union₂_subset (λ x H, conjugates_of_subset ht (h H))

/-- The normal closure of a set s is the subgroup closure of all the conjugates of
elements of s. It is the smallest normal subgroup containing s. -/
def normal_closure (s : set G) : set G := closure (conjugates_of_set s)

theorem conjugates_of_set_subset_normal_closure : conjugates_of_set s ⊆ normal_closure s :=
subset_closure

theorem subset_normal_closure : s ⊆ normal_closure s :=
set.subset.trans subset_conjugates_of_set conjugates_of_set_subset_normal_closure

/-- The normal closure of a set is a subgroup. -/
lemma normal_closure.is_subgroup (s : set G) : is_subgroup (normal_closure s) :=
closure.is_subgroup (conjugates_of_set s)

/-- The normal closure of s is a normal subgroup. -/
lemma normal_closure.is_normal : is_normal_subgroup (normal_closure s) :=
{ normal := λ n h g,
begin
  induction h with x hx x hx ihx x y hx hy ihx ihy,
  {exact (conjugates_of_set_subset_normal_closure (conj_mem_conjugates_of_set hx))},
  {simpa using (normal_closure.is_subgroup s).one_mem},
  {rw ←conj_inv,
   exact ((normal_closure.is_subgroup _).inv_mem ihx)},
  {rw ←conj_mul,
   exact ((normal_closure.is_subgroup _).to_is_submonoid.mul_mem ihx ihy)},
end,
..normal_closure.is_subgroup _ }

/-- The normal closure of s is the smallest normal subgroup containing s. -/
theorem normal_closure_subset {s t : set G} (ht : is_normal_subgroup t) (h : s ⊆ t) :
  normal_closure s ⊆ t :=
λ a w,
begin
  induction w with x hx x hx ihx x y hx hy ihx ihy,
  {exact (conjugates_of_set_subset' ht h $ hx)},
  {exact ht.to_is_subgroup.to_is_submonoid.one_mem},
  {exact ht.to_is_subgroup.inv_mem ihx},
  {exact ht.to_is_subgroup.to_is_submonoid.mul_mem ihx ihy}
end

lemma normal_closure_subset_iff {s t : set G} (ht : is_normal_subgroup t) :
  s ⊆ t ↔ normal_closure s ⊆ t :=
⟨normal_closure_subset ht, set.subset.trans (subset_normal_closure)⟩

theorem normal_closure_mono {s t : set G} : s ⊆ t → normal_closure s ⊆ normal_closure t :=
λ h, normal_closure_subset normal_closure.is_normal (set.subset.trans h (subset_normal_closure))

end group

/-- Create a bundled subgroup from a set `s` and `[is_subgroup s]`. -/
@[to_additive "Create a bundled additive subgroup from a set `s` and `[is_add_subgroup s]`."]
def subgroup.of [group G] {s : set G} (h : is_subgroup s) : subgroup G :=
{ carrier := s,
  one_mem' := h.1.1,
  mul_mem' := h.1.2,
  inv_mem' := h.2 }

@[to_additive]
lemma subgroup.is_subgroup [group G] (K : subgroup G) : is_subgroup (K : set G) :=
{ one_mem := K.one_mem',
  mul_mem := K.mul_mem',
  inv_mem := K.inv_mem' }

-- this will never fire if it's an instance
@[to_additive]
lemma subgroup.of_normal [group G] (s : set G) (h : is_subgroup s) (n : is_normal_subgroup s) :
  subgroup.normal (subgroup.of h) :=
{ conj_mem := n.normal, }