Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 25,205 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 |
/-
Copyright (c) 2018 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mitchell Rowett, Scott Morrison, Johan Commelin, Mario Carneiro,
Michael Howes
-/
import group_theory.subgroup.basic
import deprecated.submonoid
/-!
# Unbundled subgroups (deprecated)
This file is deprecated, and is no longer imported by anything in mathlib other than other
deprecated files, and test files. You should not need to import it.
This file defines unbundled multiplicative and additive subgroups. Instead of using this file,
please use `subgroup G` and `add_subgroup A`, defined in `group_theory.subgroup.basic`.
## Main definitions
`is_add_subgroup (S : set A)` : the predicate that `S` is the underlying subset of an additive
subgroup of `A`. The bundled variant `add_subgroup A` should be used in preference to this.
`is_subgroup (S : set G)` : the predicate that `S` is the underlying subset of a subgroup
of `G`. The bundled variant `subgroup G` should be used in preference to this.
## Tags
subgroup, subgroups, is_subgroup
-/
open set function
variables {G : Type*} {H : Type*} {A : Type*} {a a₁ a₂ b c: G}
section group
variables [group G] [add_group A]
/-- `s` is an additive subgroup: a set containing 0 and closed under addition and negation. -/
structure is_add_subgroup (s : set A) extends is_add_submonoid s : Prop :=
(neg_mem {a} : a ∈ s → -a ∈ s)
/-- `s` is a subgroup: a set containing 1 and closed under multiplication and inverse. -/
@[to_additive]
structure is_subgroup (s : set G) extends is_submonoid s : Prop :=
(inv_mem {a} : a ∈ s → a⁻¹ ∈ s)
@[to_additive]
lemma is_subgroup.div_mem {s : set G} (hs : is_subgroup s) {x y : G} (hx : x ∈ s) (hy : y ∈ s) :
x / y ∈ s :=
by simpa only [div_eq_mul_inv] using hs.mul_mem hx (hs.inv_mem hy)
lemma additive.is_add_subgroup
{s : set G} (hs : is_subgroup s) : @is_add_subgroup (additive G) _ s :=
@is_add_subgroup.mk (additive G) _ _ (additive.is_add_submonoid hs.to_is_submonoid)
hs.inv_mem
theorem additive.is_add_subgroup_iff
{s : set G} : @is_add_subgroup (additive G) _ s ↔ is_subgroup s :=
⟨by rintro ⟨⟨h₁, h₂⟩, h₃⟩; exact @is_subgroup.mk G _ _ ⟨h₁, @h₂⟩ @h₃,
λ h, by exactI additive.is_add_subgroup h⟩
lemma multiplicative.is_subgroup
{s : set A} (hs : is_add_subgroup s) : @is_subgroup (multiplicative A) _ s :=
@is_subgroup.mk (multiplicative A) _ _ (multiplicative.is_submonoid hs.to_is_add_submonoid)
hs.neg_mem
theorem multiplicative.is_subgroup_iff
{s : set A} : @is_subgroup (multiplicative A) _ s ↔ is_add_subgroup s :=
⟨by rintro ⟨⟨h₁, h₂⟩, h₃⟩; exact @is_add_subgroup.mk A _ _ ⟨h₁, @h₂⟩ @h₃,
λ h, by exactI multiplicative.is_subgroup h⟩
@[to_additive of_add_neg]
theorem is_subgroup.of_div (s : set G)
(one_mem : (1:G) ∈ s) (div_mem : ∀{a b:G}, a ∈ s → b ∈ s → a * b⁻¹ ∈ s) :
is_subgroup s :=
have inv_mem : ∀a, a ∈ s → a⁻¹ ∈ s, from
assume a ha,
have 1 * a⁻¹ ∈ s, from div_mem one_mem ha,
by simpa,
{ inv_mem := inv_mem,
mul_mem := assume a b ha hb,
have a * b⁻¹⁻¹ ∈ s, from div_mem ha (inv_mem b hb),
by simpa,
one_mem := one_mem }
theorem is_add_subgroup.of_sub (s : set A)
(zero_mem : (0:A) ∈ s) (sub_mem : ∀{a b:A}, a ∈ s → b ∈ s → a - b ∈ s) :
is_add_subgroup s :=
is_add_subgroup.of_add_neg s zero_mem
(λ x y hx hy, by simpa only [sub_eq_add_neg] using sub_mem hx hy)
@[to_additive]
lemma is_subgroup.inter {s₁ s₂ : set G} (hs₁ : is_subgroup s₁) (hs₂ : is_subgroup s₂) :
is_subgroup (s₁ ∩ s₂) :=
{ inv_mem := λ x hx, ⟨hs₁.inv_mem hx.1, hs₂.inv_mem hx.2⟩,
..is_submonoid.inter hs₁.to_is_submonoid hs₂.to_is_submonoid}
@[to_additive]
lemma is_subgroup.Inter {ι : Sort*} {s : ι → set G} (hs : ∀ y : ι, is_subgroup (s y)) :
is_subgroup (set.Inter s) :=
{ inv_mem := λ x h, set.mem_Inter.2 $ λ y, is_subgroup.inv_mem (hs _) (set.mem_Inter.1 h y),
..is_submonoid.Inter (λ y, (hs y).to_is_submonoid) }
@[to_additive]
lemma is_subgroup_Union_of_directed {ι : Type*} [hι : nonempty ι]
{s : ι → set G} (hs : ∀ i, is_subgroup (s i))
(directed : ∀ i j, ∃ k, s i ⊆ s k ∧ s j ⊆ s k) :
is_subgroup (⋃i, s i) :=
{ inv_mem := λ a ha,
let ⟨i, hi⟩ := set.mem_Union.1 ha in
set.mem_Union.2 ⟨i, (hs i).inv_mem hi⟩,
to_is_submonoid := is_submonoid_Union_of_directed (λ i, (hs i).to_is_submonoid) directed }
end group
namespace is_subgroup
open is_submonoid
variables [group G] {s : set G} (hs : is_subgroup s)
include hs
@[to_additive]
lemma inv_mem_iff : a⁻¹ ∈ s ↔ a ∈ s :=
⟨λ h, by simpa using hs.inv_mem h, inv_mem hs⟩
@[to_additive]
lemma mul_mem_cancel_right (h : a ∈ s) : b * a ∈ s ↔ b ∈ s :=
⟨λ hba, by simpa using hs.mul_mem hba (hs.inv_mem h), λ hb, hs.mul_mem hb h⟩
@[to_additive]
lemma mul_mem_cancel_left (h : a ∈ s) : a * b ∈ s ↔ b ∈ s :=
⟨λ hab, by simpa using hs.mul_mem (hs.inv_mem h) hab, hs.mul_mem h⟩
end is_subgroup
/-- `is_normal_add_subgroup (s : set A)` expresses the fact that `s` is a normal additive subgroup
of the additive group `A`. Important: the preferred way to say this in Lean is via bundled
subgroups `S : add_subgroup A` and `hs : S.normal`, and not via this structure. -/
structure is_normal_add_subgroup [add_group A] (s : set A) extends is_add_subgroup s : Prop :=
(normal : ∀ n ∈ s, ∀ g : A, g + n + -g ∈ s)
/-- `is_normal_subgroup (s : set G)` expresses the fact that `s` is a normal subgroup
of the group `G`. Important: the preferred way to say this in Lean is via bundled
subgroups `S : subgroup G` and not via this structure. -/
@[to_additive]
structure is_normal_subgroup [group G] (s : set G) extends is_subgroup s : Prop :=
(normal : ∀ n ∈ s, ∀ g : G, g * n * g⁻¹ ∈ s)
@[to_additive]
lemma is_normal_subgroup_of_comm_group [comm_group G] {s : set G} (hs : is_subgroup s) :
is_normal_subgroup s :=
{ normal := λ n hn g, by rwa [mul_right_comm, mul_right_inv, one_mul],
..hs }
lemma additive.is_normal_add_subgroup [group G]
{s : set G} (hs : is_normal_subgroup s) : @is_normal_add_subgroup (additive G) _ s :=
@is_normal_add_subgroup.mk (additive G) _ _
(additive.is_add_subgroup hs.to_is_subgroup)
(is_normal_subgroup.normal hs)
theorem additive.is_normal_add_subgroup_iff [group G]
{s : set G} : @is_normal_add_subgroup (additive G) _ s ↔ is_normal_subgroup s :=
⟨by rintro ⟨h₁, h₂⟩; exact
@is_normal_subgroup.mk G _ _ (additive.is_add_subgroup_iff.1 h₁) @h₂,
λ h, by exactI additive.is_normal_add_subgroup h⟩
lemma multiplicative.is_normal_subgroup [add_group A]
{s : set A} (hs : is_normal_add_subgroup s) : @is_normal_subgroup (multiplicative A) _ s :=
@is_normal_subgroup.mk (multiplicative A) _ _
(multiplicative.is_subgroup hs.to_is_add_subgroup)
(is_normal_add_subgroup.normal hs)
theorem multiplicative.is_normal_subgroup_iff [add_group A]
{s : set A} : @is_normal_subgroup (multiplicative A) _ s ↔ is_normal_add_subgroup s :=
⟨by rintro ⟨h₁, h₂⟩; exact
@is_normal_add_subgroup.mk A _ _ (multiplicative.is_subgroup_iff.1 h₁) @h₂,
λ h, by exactI multiplicative.is_normal_subgroup h⟩
namespace is_subgroup
variable [group G]
-- Normal subgroup properties
@[to_additive]
lemma mem_norm_comm {s : set G} (hs : is_normal_subgroup s) {a b : G} (hab : a * b ∈ s) :
b * a ∈ s :=
have h : a⁻¹ * (a * b) * a⁻¹⁻¹ ∈ s, from hs.normal (a * b) hab a⁻¹,
by simp at h; exact h
@[to_additive]
lemma mem_norm_comm_iff {s : set G} (hs : is_normal_subgroup s) {a b : G} : a * b ∈ s ↔ b * a ∈ s :=
⟨mem_norm_comm hs, mem_norm_comm hs⟩
/-- The trivial subgroup -/
@[to_additive "the trivial additive subgroup"]
def trivial (G : Type*) [group G] : set G := {1}
@[simp, to_additive]
lemma mem_trivial {g : G} : g ∈ trivial G ↔ g = 1 :=
mem_singleton_iff
@[to_additive]
lemma trivial_normal : is_normal_subgroup (trivial G) :=
by refine {..}; simp [trivial] {contextual := tt}
@[to_additive]
lemma eq_trivial_iff {s : set G} (hs : is_subgroup s) :
s = trivial G ↔ (∀ x ∈ s, x = (1 : G)) :=
by simp only [set.ext_iff, is_subgroup.mem_trivial];
exact ⟨λ h x, (h x).1, λ h x, ⟨h x, λ hx, hx.symm ▸ hs.to_is_submonoid.one_mem⟩⟩
@[to_additive]
lemma univ_subgroup : is_normal_subgroup (@univ G) :=
by refine {..}; simp
/-- The underlying set of the center of a group. -/
@[to_additive add_center "The underlying set of the center of an additive group."]
def center (G : Type*) [group G] : set G := {z | ∀ g, g * z = z * g}
@[to_additive mem_add_center]
lemma mem_center {a : G} : a ∈ center G ↔ ∀g, g * a = a * g := iff.rfl
@[to_additive add_center_normal]
lemma center_normal : is_normal_subgroup (center G) :=
{ one_mem := by simp [center],
mul_mem := assume a b ha hb g,
by rw [←mul_assoc, mem_center.2 ha g, mul_assoc, mem_center.2 hb g, ←mul_assoc],
inv_mem := assume a ha g,
calc
g * a⁻¹ = a⁻¹ * (g * a) * a⁻¹ : by simp [ha g]
... = a⁻¹ * g : by rw [←mul_assoc, mul_assoc]; simp,
normal := assume n ha g h,
calc
h * (g * n * g⁻¹) = h * n : by simp [ha g, mul_assoc]
... = g * g⁻¹ * n * h : by rw ha h; simp
... = g * n * g⁻¹ * h : by rw [mul_assoc g, ha g⁻¹, ←mul_assoc] }
/-- The underlying set of the normalizer of a subset `S : set G` of a group `G`. That is,
the elements `g : G` such that `g * S * g⁻¹ = S`. -/
@[to_additive add_normalizer "The underlying set of the normalizer of a subset `S : set A` of an
additive group `A`. That is, the elements `a : A` such that `a + S - a = S`."]
def normalizer (s : set G) : set G :=
{g : G | ∀ n, n ∈ s ↔ g * n * g⁻¹ ∈ s}
@[to_additive]
lemma normalizer_is_subgroup (s : set G) : is_subgroup (normalizer s) :=
{ one_mem := by simp [normalizer],
mul_mem := λ a b (ha : ∀ n, n ∈ s ↔ a * n * a⁻¹ ∈ s)
(hb : ∀ n, n ∈ s ↔ b * n * b⁻¹ ∈ s) n,
by rw [mul_inv_rev, ← mul_assoc, mul_assoc a, mul_assoc a, ← ha, ← hb],
inv_mem := λ a (ha : ∀ n, n ∈ s ↔ a * n * a⁻¹ ∈ s) n,
by rw [ha (a⁻¹ * n * a⁻¹⁻¹)];
simp [mul_assoc] }
@[to_additive subset_add_normalizer]
lemma subset_normalizer {s : set G} (hs : is_subgroup s) : s ⊆ normalizer s :=
λ g hg n, by rw [is_subgroup.mul_mem_cancel_right hs ((is_subgroup.inv_mem_iff hs).2 hg),
is_subgroup.mul_mem_cancel_left hs hg]
end is_subgroup
-- Homomorphism subgroups
namespace is_group_hom
open is_submonoid is_subgroup
/-- `ker f : set G` is the underlying subset of the kernel of a map `G → H`. -/
@[to_additive "`ker f : set A` is the underlying subset of the kernel of a map `A → B`"]
def ker [group H] (f : G → H) : set G := preimage f (trivial H)
@[to_additive]
lemma mem_ker [group H] (f : G → H) {x : G} : x ∈ ker f ↔ f x = 1 :=
mem_trivial
variables [group G] [group H]
@[to_additive]
lemma one_ker_inv {f : G → H} (hf : is_group_hom f) {a b : G} (h : f (a * b⁻¹) = 1) : f a = f b :=
begin
rw [hf.map_mul, hf.map_inv] at h,
rw [←inv_inv (f b), eq_inv_of_mul_eq_one_left h]
end
@[to_additive]
lemma one_ker_inv' {f : G → H} (hf : is_group_hom f) {a b : G} (h : f (a⁻¹ * b) = 1) : f a = f b :=
begin
rw [hf.map_mul, hf.map_inv] at h,
apply inv_injective,
rw eq_inv_of_mul_eq_one_left h
end
@[to_additive]
lemma inv_ker_one {f : G → H} (hf : is_group_hom f) {a b : G} (h : f a = f b) : f (a * b⁻¹) = 1 :=
have f a * (f b)⁻¹ = 1, by rw [h, mul_right_inv],
by rwa [←hf.map_inv, ←hf.map_mul] at this
@[to_additive]
lemma inv_ker_one' {f : G → H} (hf : is_group_hom f) {a b : G} (h : f a = f b) : f (a⁻¹ * b) = 1 :=
have (f a)⁻¹ * f b = 1, by rw [h, mul_left_inv],
by rwa [←hf.map_inv, ←hf.map_mul] at this
@[to_additive]
lemma one_iff_ker_inv {f : G → H} (hf : is_group_hom f) (a b : G) : f a = f b ↔ f (a * b⁻¹) = 1 :=
⟨hf.inv_ker_one, hf.one_ker_inv⟩
@[to_additive]
lemma one_iff_ker_inv' {f : G → H} (hf : is_group_hom f) (a b : G) : f a = f b ↔ f (a⁻¹ * b) = 1 :=
⟨hf.inv_ker_one', hf.one_ker_inv'⟩
@[to_additive]
lemma inv_iff_ker {f : G → H} (hf : is_group_hom f) (a b : G) : f a = f b ↔ a * b⁻¹ ∈ ker f :=
by rw [mem_ker]; exact one_iff_ker_inv hf _ _
@[to_additive]
lemma inv_iff_ker' {f : G → H} (hf : is_group_hom f) (a b : G) : f a = f b ↔ a⁻¹ * b ∈ ker f :=
by rw [mem_ker]; exact one_iff_ker_inv' hf _ _
@[to_additive]
lemma image_subgroup {f : G → H} (hf : is_group_hom f) {s : set G} (hs : is_subgroup s) :
is_subgroup (f '' s) :=
{ mul_mem := assume a₁ a₂ ⟨b₁, hb₁, eq₁⟩ ⟨b₂, hb₂, eq₂⟩,
⟨b₁ * b₂, hs.mul_mem hb₁ hb₂, by simp [eq₁, eq₂, hf.map_mul]⟩,
one_mem := ⟨1, hs.to_is_submonoid.one_mem, hf.map_one⟩,
inv_mem := assume a ⟨b, hb, eq⟩, ⟨b⁻¹, hs.inv_mem hb, by { rw hf.map_inv, simp * }⟩ }
@[to_additive]
lemma range_subgroup {f : G → H} (hf : is_group_hom f) : is_subgroup (set.range f) :=
@set.image_univ _ _ f ▸ hf.image_subgroup univ_subgroup.to_is_subgroup
local attribute [simp] one_mem inv_mem mul_mem is_normal_subgroup.normal
@[to_additive]
lemma preimage {f : G → H} (hf : is_group_hom f) {s : set H} (hs : is_subgroup s) :
is_subgroup (f ⁻¹' s) :=
by { refine {..};
simp [hs.one_mem, hs.mul_mem, hs.inv_mem, hf.map_mul, hf.map_one, hf.map_inv,
inv_mem_class.inv_mem]
{contextual := tt} }
@[to_additive]
lemma preimage_normal {f : G → H} (hf : is_group_hom f) {s : set H} (hs : is_normal_subgroup s) :
is_normal_subgroup (f ⁻¹' s) :=
{ one_mem := by simp [hf.map_one, hs.to_is_subgroup.one_mem],
mul_mem := by simp [hf.map_mul, hs.to_is_subgroup.mul_mem] {contextual := tt},
inv_mem := by simp [hf.map_inv, hs.to_is_subgroup.inv_mem] {contextual := tt},
normal := by simp [hs.normal, hf.map_mul, hf.map_inv] {contextual := tt}}
@[to_additive]
lemma is_normal_subgroup_ker {f : G → H} (hf : is_group_hom f) : is_normal_subgroup (ker f) :=
hf.preimage_normal (trivial_normal)
@[to_additive]
lemma injective_of_trivial_ker {f : G → H} (hf : is_group_hom f) (h : ker f = trivial G) :
function.injective f :=
begin
intros a₁ a₂ hfa,
simp [ext_iff, ker, is_subgroup.trivial] at h,
have ha : a₁ * a₂⁻¹ = 1, by rw ←h; exact hf.inv_ker_one hfa,
rw [eq_inv_of_mul_eq_one_left ha, inv_inv a₂]
end
@[to_additive]
lemma trivial_ker_of_injective {f : G → H} (hf : is_group_hom f) (h : function.injective f) :
ker f = trivial G :=
set.ext $ assume x, iff.intro
(assume hx,
suffices f x = f 1, by simpa using h this,
by simp [hf.map_one]; rwa [mem_ker] at hx)
(by simp [mem_ker, hf.map_one] {contextual := tt})
@[to_additive]
lemma injective_iff_trivial_ker {f : G → H} (hf : is_group_hom f) :
function.injective f ↔ ker f = trivial G :=
⟨hf.trivial_ker_of_injective, hf.injective_of_trivial_ker⟩
@[to_additive]
lemma trivial_ker_iff_eq_one {f : G → H} (hf : is_group_hom f) :
ker f = trivial G ↔ ∀ x, f x = 1 → x = 1 :=
by rw set.ext_iff; simp [ker]; exact
⟨λ h x hx, (h x).1 hx, λ h x, ⟨h x, λ hx, by rw [hx, hf.map_one]⟩⟩
end is_group_hom
namespace add_group
variables [add_group A]
/-- If `A` is an additive group and `s : set A`, then `in_closure s : set A` is the underlying
subset of the subgroup generated by `s`. -/
inductive in_closure (s : set A) : A → Prop
| basic {a : A} : a ∈ s → in_closure a
| zero : in_closure 0
| neg {a : A} : in_closure a → in_closure (-a)
| add {a b : A} : in_closure a → in_closure b → in_closure (a + b)
end add_group
namespace group
open is_submonoid is_subgroup
variables [group G] {s : set G}
/-- If `G` is a group and `s : set G`, then `in_closure s : set G` is the underlying
subset of the subgroup generated by `s`. -/
@[to_additive]
inductive in_closure (s : set G) : G → Prop
| basic {a : G} : a ∈ s → in_closure a
| one : in_closure 1
| inv {a : G} : in_closure a → in_closure a⁻¹
| mul {a b : G} : in_closure a → in_closure b → in_closure (a * b)
/-- `group.closure s` is the subgroup generated by `s`, i.e. the smallest subgroup containg `s`. -/
@[to_additive "`add_group.closure s` is the additive subgroup generated by `s`, i.e., the
smallest additive subgroup containing `s`."]
def closure (s : set G) : set G := {a | in_closure s a }
@[to_additive]
lemma mem_closure {a : G} : a ∈ s → a ∈ closure s := in_closure.basic
@[to_additive]
lemma closure.is_subgroup (s : set G) : is_subgroup (closure s) :=
{ one_mem := in_closure.one,
mul_mem := assume a b, in_closure.mul,
inv_mem := assume a, in_closure.inv }
@[to_additive]
theorem subset_closure {s : set G} : s ⊆ closure s := λ a, mem_closure
@[to_additive]
theorem closure_subset {s t : set G} (ht : is_subgroup t) (h : s ⊆ t) : closure s ⊆ t :=
assume a ha, by induction ha; simp [h _, *, ht.one_mem, ht.mul_mem, is_subgroup.inv_mem_iff]
@[to_additive]
lemma closure_subset_iff {s t : set G} (ht : is_subgroup t) : closure s ⊆ t ↔ s ⊆ t :=
⟨assume h b ha, h (mem_closure ha), assume h b ha, closure_subset ht h ha⟩
@[to_additive]
theorem closure_mono {s t : set G} (h : s ⊆ t) : closure s ⊆ closure t :=
closure_subset (closure.is_subgroup _) $ set.subset.trans h subset_closure
@[simp, to_additive]
lemma closure_subgroup {s : set G} (hs : is_subgroup s) : closure s = s :=
set.subset.antisymm (closure_subset hs $ set.subset.refl s) subset_closure
@[to_additive]
theorem exists_list_of_mem_closure {s : set G} {a : G} (h : a ∈ closure s) :
(∃l:list G, (∀x∈l, x ∈ s ∨ x⁻¹ ∈ s) ∧ l.prod = a) :=
in_closure.rec_on h
(λ x hxs, ⟨[x], list.forall_mem_singleton.2 $ or.inl hxs, one_mul _⟩)
⟨[], list.forall_mem_nil _, rfl⟩
(λ x _ ⟨L, HL1, HL2⟩, ⟨L.reverse.map has_inv.inv,
λ x hx, let ⟨y, hy1, hy2⟩ := list.exists_of_mem_map hx in
hy2 ▸ or.imp id (by rw [inv_inv]; exact id) (HL1 _ $ list.mem_reverse.1 hy1).symm,
HL2 ▸ list.rec_on L inv_one.symm (λ hd tl ih,
by rw [list.reverse_cons, list.map_append, list.prod_append, ih, list.map_singleton,
list.prod_cons, list.prod_nil, mul_one, list.prod_cons, mul_inv_rev])⟩)
(λ x y hx hy ⟨L1, HL1, HL2⟩ ⟨L2, HL3, HL4⟩, ⟨L1 ++ L2, list.forall_mem_append.2 ⟨HL1, HL3⟩,
by rw [list.prod_append, HL2, HL4]⟩)
@[to_additive]
lemma image_closure [group H] {f : G → H} (hf : is_group_hom f) (s : set G) :
f '' closure s = closure (f '' s) :=
le_antisymm
begin
rintros _ ⟨x, hx, rfl⟩,
apply in_closure.rec_on hx; intros,
{ solve_by_elim [subset_closure, set.mem_image_of_mem] },
{ rw [hf.to_is_monoid_hom.map_one],
apply is_submonoid.one_mem (closure.is_subgroup _).to_is_submonoid, },
{ rw [hf.map_inv],
apply is_subgroup.inv_mem (closure.is_subgroup _), assumption },
{ rw [hf.to_is_monoid_hom.map_mul],
solve_by_elim [is_submonoid.mul_mem (closure.is_subgroup _).to_is_submonoid] }
end
(closure_subset (hf.image_subgroup $ closure.is_subgroup _) $ set.image_subset _ subset_closure)
@[to_additive]
theorem mclosure_subset {s : set G} : monoid.closure s ⊆ closure s :=
monoid.closure_subset (closure.is_subgroup _).to_is_submonoid $ subset_closure
@[to_additive]
theorem mclosure_inv_subset {s : set G} : monoid.closure (has_inv.inv ⁻¹' s) ⊆ closure s :=
monoid.closure_subset (closure.is_subgroup _).to_is_submonoid $ λ x hx,
inv_inv x ▸ ((closure.is_subgroup _).inv_mem $ subset_closure hx)
@[to_additive]
theorem closure_eq_mclosure {s : set G} : closure s = monoid.closure (s ∪ has_inv.inv ⁻¹' s) :=
set.subset.antisymm
(@closure_subset _ _ _ (monoid.closure (s ∪ has_inv.inv ⁻¹' s))
{ one_mem := (monoid.closure.is_submonoid _).one_mem,
mul_mem := (monoid.closure.is_submonoid _).mul_mem,
inv_mem := λ x hx, monoid.in_closure.rec_on hx
(λ x hx, or.cases_on hx (λ hx, monoid.subset_closure $ or.inr $
show x⁻¹⁻¹ ∈ s, from (inv_inv x).symm ▸ hx)
(λ hx, monoid.subset_closure $ or.inl hx))
((@inv_one G _).symm ▸ is_submonoid.one_mem (monoid.closure.is_submonoid _))
(λ x y hx hy ihx ihy,
(mul_inv_rev x y).symm ▸ is_submonoid.mul_mem (monoid.closure.is_submonoid _) ihy ihx) }
(set.subset.trans (set.subset_union_left _ _) monoid.subset_closure))
(monoid.closure_subset (closure.is_subgroup _).to_is_submonoid $ set.union_subset subset_closure $
λ x hx, inv_inv x ▸ (is_subgroup.inv_mem (closure.is_subgroup _) $ subset_closure hx))
@[to_additive]
theorem mem_closure_union_iff {G : Type*} [comm_group G] {s t : set G} {x : G} :
x ∈ closure (s ∪ t) ↔ ∃ y ∈ closure s, ∃ z ∈ closure t, y * z = x :=
begin
simp only [closure_eq_mclosure, monoid.mem_closure_union_iff, exists_prop, preimage_union], split,
{ rintro ⟨_, ⟨ys, hys, yt, hyt, rfl⟩, _, ⟨zs, hzs, zt, hzt, rfl⟩, rfl⟩,
refine ⟨_, ⟨_, hys, _, hzs, rfl⟩, _, ⟨_, hyt, _, hzt, rfl⟩, _⟩,
rw [mul_assoc, mul_assoc, mul_left_comm zs] },
{ rintro ⟨_, ⟨ys, hys, zs, hzs, rfl⟩, _, ⟨yt, hyt, zt, hzt, rfl⟩, rfl⟩,
refine ⟨_, ⟨ys, hys, yt, hyt, rfl⟩, _, ⟨zs, hzs, zt, hzt, rfl⟩, _⟩,
rw [mul_assoc, mul_assoc, mul_left_comm yt] }
end
end group
namespace is_subgroup
variable [group G]
@[to_additive]
lemma trivial_eq_closure : trivial G = group.closure ∅ :=
subset.antisymm
(by simp [set.subset_def, (group.closure.is_subgroup _).one_mem])
(group.closure_subset (trivial_normal).to_is_subgroup $ by simp)
end is_subgroup
/-The normal closure of a set s is the subgroup closure of all the conjugates of
elements of s. It is the smallest normal subgroup containing s. -/
namespace group
variables {s : set G} [group G]
lemma conjugates_of_subset {t : set G} (ht : is_normal_subgroup t) {a : G} (h : a ∈ t) :
conjugates_of a ⊆ t :=
λ x hc,
begin
obtain ⟨c, w⟩ := is_conj_iff.1 hc,
have H := is_normal_subgroup.normal ht a h c,
rwa ←w,
end
theorem conjugates_of_set_subset' {s t : set G} (ht : is_normal_subgroup t) (h : s ⊆ t) :
conjugates_of_set s ⊆ t :=
set.Union₂_subset (λ x H, conjugates_of_subset ht (h H))
/-- The normal closure of a set s is the subgroup closure of all the conjugates of
elements of s. It is the smallest normal subgroup containing s. -/
def normal_closure (s : set G) : set G := closure (conjugates_of_set s)
theorem conjugates_of_set_subset_normal_closure : conjugates_of_set s ⊆ normal_closure s :=
subset_closure
theorem subset_normal_closure : s ⊆ normal_closure s :=
set.subset.trans subset_conjugates_of_set conjugates_of_set_subset_normal_closure
/-- The normal closure of a set is a subgroup. -/
lemma normal_closure.is_subgroup (s : set G) : is_subgroup (normal_closure s) :=
closure.is_subgroup (conjugates_of_set s)
/-- The normal closure of s is a normal subgroup. -/
lemma normal_closure.is_normal : is_normal_subgroup (normal_closure s) :=
{ normal := λ n h g,
begin
induction h with x hx x hx ihx x y hx hy ihx ihy,
{exact (conjugates_of_set_subset_normal_closure (conj_mem_conjugates_of_set hx))},
{simpa using (normal_closure.is_subgroup s).one_mem},
{rw ←conj_inv,
exact ((normal_closure.is_subgroup _).inv_mem ihx)},
{rw ←conj_mul,
exact ((normal_closure.is_subgroup _).to_is_submonoid.mul_mem ihx ihy)},
end,
..normal_closure.is_subgroup _ }
/-- The normal closure of s is the smallest normal subgroup containing s. -/
theorem normal_closure_subset {s t : set G} (ht : is_normal_subgroup t) (h : s ⊆ t) :
normal_closure s ⊆ t :=
λ a w,
begin
induction w with x hx x hx ihx x y hx hy ihx ihy,
{exact (conjugates_of_set_subset' ht h $ hx)},
{exact ht.to_is_subgroup.to_is_submonoid.one_mem},
{exact ht.to_is_subgroup.inv_mem ihx},
{exact ht.to_is_subgroup.to_is_submonoid.mul_mem ihx ihy}
end
lemma normal_closure_subset_iff {s t : set G} (ht : is_normal_subgroup t) :
s ⊆ t ↔ normal_closure s ⊆ t :=
⟨normal_closure_subset ht, set.subset.trans (subset_normal_closure)⟩
theorem normal_closure_mono {s t : set G} : s ⊆ t → normal_closure s ⊆ normal_closure t :=
λ h, normal_closure_subset normal_closure.is_normal (set.subset.trans h (subset_normal_closure))
end group
/-- Create a bundled subgroup from a set `s` and `[is_subgroup s]`. -/
@[to_additive "Create a bundled additive subgroup from a set `s` and `[is_add_subgroup s]`."]
def subgroup.of [group G] {s : set G} (h : is_subgroup s) : subgroup G :=
{ carrier := s,
one_mem' := h.1.1,
mul_mem' := h.1.2,
inv_mem' := h.2 }
@[to_additive]
lemma subgroup.is_subgroup [group G] (K : subgroup G) : is_subgroup (K : set G) :=
{ one_mem := K.one_mem',
mul_mem := K.mul_mem',
inv_mem := K.inv_mem' }
-- this will never fire if it's an instance
@[to_additive]
lemma subgroup.of_normal [group G] (s : set G) (h : is_subgroup s) (n : is_normal_subgroup s) :
subgroup.normal (subgroup.of h) :=
{ conj_mem := n.normal, }
|