Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 24,227 Bytes
4365a98
 
 
fc5e983
4365a98
 
 
fc5e983
 
4365a98
 
 
 
 
 
fc5e983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4365a98
 
fc5e983
4365a98
fc5e983
4365a98
fc5e983
 
4365a98
fc5e983
 
 
4365a98
fc5e983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4365a98
fc5e983
 
 
4365a98
fc5e983
 
 
 
 
 
4365a98
fc5e983
 
4365a98
fc5e983
4365a98
fc5e983
 
 
4365a98
 
fc5e983
 
 
 
 
 
 
4365a98
fc5e983
 
4365a98
 
fc5e983
 
 
 
 
 
 
 
 
 
 
4365a98
fc5e983
4365a98
fc5e983
 
4365a98
 
fc5e983
4365a98
fc5e983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4365a98
fc5e983
 
 
 
 
 
 
 
 
4365a98
fc5e983
 
 
 
 
 
4365a98
fc5e983
 
4365a98
fc5e983
 
 
 
 
 
 
 
4365a98
 
fc5e983
 
 
4365a98
fc5e983
4365a98
fc5e983
 
 
 
 
 
 
 
 
 
 
 
 
4365a98
 
fc5e983
4365a98
fc5e983
 
 
 
4365a98
 
fc5e983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4365a98
fc5e983
 
4365a98
fc5e983
 
4365a98
fc5e983
 
4365a98
fc5e983
 
 
 
 
 
 
 
4365a98
fc5e983
 
 
 
 
 
 
 
 
4365a98
 
fc5e983
 
 
 
 
 
 
 
 
4365a98
fc5e983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4365a98
fc5e983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4365a98
 
fc5e983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4365a98
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Wrenna Robson
-/

import algebra.big_operators.basic
import linear_algebra.vandermonde
import logic.lemmas
import ring_theory.polynomial.basic

/-!
# Lagrange interpolation

## Main definitions
* In everything that follows, `s : finset ι` is a finite set of indexes, with `v : ι → F` an
indexing of the field over some type. We call the image of v on s the interpolation nodes,
though strictly unique nodes are only defined when v is injective on s.
* `lagrange.basis_divisor x y`, with `x y : F`. These are the normalised irreducible factors of
the Lagrange basis polynomials. They evaluate to `1` at `x` and `0` at `y` when `x` and `y`
are distinct.
* `lagrange.basis v i` with `i : ι`: the Lagrange basis polynomial that evaluates to `1` at `v i`
and `0` at `v j` for `i ≠ j`.
* `lagrange.interpolate v r` where `r : ι → F` is a function from the fintype to the field: the
Lagrange interpolant that evaluates to `r i` at `x i` for all `i : ι`. The `r i` are the _values_
associated with the _nodes_`x i`.
* `lagrange.interpolate_at v f`, where `v : ι ↪ F` and `ι` is a fintype, and `f : F → F` is a
function from the field to itself: this is the Lagrange interpolant that evaluates to `f (x i)`
at `x i`, and so approximates the function `f`. This is just a special case of the general
interpolation, where the values are given by a known function `f`.
-/

open_locale polynomial big_operators

section polynomial_determination

namespace polynomial
variables {R : Type*} [comm_ring R] [is_domain R] {f g : R[X]}

section finset
open function fintype
variables (s : finset R)

theorem eq_zero_of_degree_lt_of_eval_finset_eq_zero (degree_f_lt : f.degree < s.card)
  (eval_f : ∀ x ∈ s, f.eval x = 0) : f = 0 :=
begin
  rw ← mem_degree_lt at degree_f_lt,
  simp_rw eval_eq_sum_degree_lt_equiv degree_f_lt at eval_f,
  rw ← degree_lt_equiv_eq_zero_iff_eq_zero degree_f_lt,
  exact matrix.eq_zero_of_forall_index_sum_mul_pow_eq_zero
    (injective.comp (embedding.subtype _).inj' (equiv_fin_of_card_eq (card_coe _)).symm.injective)
    (λ _, eval_f _ (finset.coe_mem _))
end

theorem eq_of_degree_sub_lt_of_eval_finset_eq (degree_fg_lt : (f - g).degree < s.card)
  (eval_fg : ∀ x ∈ s, f.eval x = g.eval x) : f = g :=
begin
  rw ← sub_eq_zero,
  refine eq_zero_of_degree_lt_of_eval_finset_eq_zero _ degree_fg_lt _,
  simp_rw [eval_sub, sub_eq_zero],
  exact eval_fg
end

theorem eq_of_degrees_lt_of_eval_finset_eq (degree_f_lt : f.degree < s.card)
  (degree_g_lt : g.degree < s.card) (eval_fg : ∀ x ∈ s, f.eval x = g.eval x) : f = g :=
begin
  rw ← mem_degree_lt at degree_f_lt degree_g_lt,
  refine eq_of_degree_sub_lt_of_eval_finset_eq _ _ eval_fg,
  rw ← mem_degree_lt, exact submodule.sub_mem _ degree_f_lt degree_g_lt
end

end finset

section indexed
open finset
variables {ι : Type*} {v : ι → R} (s : finset ι)

theorem eq_zero_of_degree_lt_of_eval_index_eq_zero (hvs : set.inj_on v s)
  (degree_f_lt : f.degree < s.card) (eval_f : ∀ i ∈ s, f.eval (v i) = 0) : f = 0 :=
begin
  classical,
  rw ← card_image_of_inj_on hvs at degree_f_lt,
  refine eq_zero_of_degree_lt_of_eval_finset_eq_zero _ degree_f_lt _,
  intros x hx,
  rcases mem_image.mp hx with ⟨_, hj, rfl⟩,
  exact eval_f _ hj
end

theorem eq_of_degree_sub_lt_of_eval_index_eq (hvs : set.inj_on v s)
  (degree_fg_lt : (f - g).degree < s.card) (eval_fg : ∀ i ∈ s, f.eval (v i) = g.eval (v i)) :
  f = g :=
begin
  rw ← sub_eq_zero,
  refine eq_zero_of_degree_lt_of_eval_index_eq_zero _ hvs degree_fg_lt _,
  simp_rw [eval_sub, sub_eq_zero],
  exact eval_fg
end

theorem eq_of_degrees_lt_of_eval_index_eq (hvs : set.inj_on v s) (degree_f_lt : f.degree < s.card)
  (degree_g_lt : g.degree < s.card) (eval_fg : ∀ i ∈ s, f.eval (v i) = g.eval (v i)) : f = g :=
begin
  refine eq_of_degree_sub_lt_of_eval_index_eq _ hvs _ eval_fg,
  rw ← mem_degree_lt at degree_f_lt degree_g_lt ⊢,
  exact submodule.sub_mem _ degree_f_lt degree_g_lt
end

end indexed

end polynomial

end polynomial_determination

noncomputable theory

namespace lagrange
open polynomial
variables {F : Type*} [field F]

section basis_divisor
variables {x y : F}
/-- `basis_divisor x y` is the unique linear or constant polynomial such that
when evaluated at `x` it gives `1` and `y` it gives `0` (where when `x = y` it is identically `0`).
Such polynomials are the building blocks for the Lagrange interpolants. -/
def basis_divisor (x y : F) : F[X] := C ((x - y)⁻¹) * (X - C (y))

lemma basis_divisor_self : basis_divisor x x = 0 :=
by simp only [basis_divisor, sub_self, inv_zero, map_zero, zero_mul]

lemma basis_divisor_inj (hxy : basis_divisor x y = 0) : x = y :=
begin
  simp_rw [basis_divisor, mul_eq_zero, X_sub_C_ne_zero, or_false,
            C_eq_zero, inv_eq_zero, sub_eq_zero] at hxy,
  exact hxy
end

@[simp] lemma basis_divisor_eq_zero_iff : basis_divisor x y = 0 ↔ x = y :=
⟨basis_divisor_inj, λ H, H ▸ basis_divisor_self⟩

lemma basis_divisor_ne_zero_iff : basis_divisor x y ≠ 0 ↔ x ≠ y :=
by rw [ne.def, basis_divisor_eq_zero_iff]

lemma degree_basis_divisor_of_ne (hxy : x ≠ y) : (basis_divisor x y).degree = 1 :=
begin
  rw [basis_divisor, degree_mul, degree_X_sub_C, degree_C, zero_add],
  exact inv_ne_zero (sub_ne_zero_of_ne hxy)
end

@[simp] lemma degree_basis_divisor_self : (basis_divisor x x).degree = ⊥ :=
by rw [basis_divisor_self, degree_zero]

lemma nat_degree_basis_divisor_self : (basis_divisor x x).nat_degree = 0 :=
by rw [basis_divisor_self, nat_degree_zero]

lemma nat_degree_basis_divisor_of_ne (hxy : x ≠ y) : (basis_divisor x y).nat_degree = 1 :=
nat_degree_eq_of_degree_eq_some (degree_basis_divisor_of_ne hxy)

@[simp] lemma eval_basis_divisor_right : eval y (basis_divisor x y) = 0 :=
by simp only [basis_divisor, eval_mul, eval_C, eval_sub, eval_X, sub_self, mul_zero]

lemma eval_basis_divisor_left_of_ne (hxy : x ≠ y) : eval x (basis_divisor x y) = 1 :=
begin
  simp only [basis_divisor, eval_mul, eval_C, eval_sub, eval_X],
  exact inv_mul_cancel (sub_ne_zero_of_ne hxy)
end

end basis_divisor

section basis
open finset
variables {ι : Type*} [decidable_eq ι] {s : finset ι} {v : ι → F} {i j : ι}

/-- Lagrange basis polynomials indexed by `s : finset ι`, defined at nodes `v i` for a
map `v : ι → F`. For `i, j ∈ s`, `basis s v i` evaluates to 0 at `v j` for `i ≠ j`. When
`v` is injective on `s`, `basis s v i` evaluates to 1 at `v i`. -/
protected def basis (s : finset ι) (v : ι → F) (i : ι) : F[X] :=
∏ j in s.erase i, basis_divisor (v i) (v j)

@[simp] theorem basis_empty : lagrange.basis ∅ v i = 1 := rfl

@[simp] theorem basis_singleton (i : ι) : lagrange.basis {i} v i = 1 :=
by rw [lagrange.basis, erase_singleton, prod_empty]

@[simp] theorem basis_pair_left (hij : i ≠ j) :
  lagrange.basis {i, j} v i = basis_divisor (v i) (v j) :=
by simp only [lagrange.basis, hij, erase_insert_eq_erase, erase_eq_of_not_mem,
              mem_singleton, not_false_iff, prod_singleton]

@[simp] theorem basis_pair_right (hij : i ≠ j) :
  lagrange.basis {i, j} v j = basis_divisor (v j) (v i) :=
by { rw pair_comm, exact basis_pair_left hij.symm }

lemma basis_ne_zero (hvs : set.inj_on v s) (hi : i ∈ s) : lagrange.basis s v i ≠ 0 :=
begin
  simp_rw [lagrange.basis, prod_ne_zero_iff, ne.def, mem_erase],
  rintros j ⟨hij, hj⟩,
  rw [basis_divisor_eq_zero_iff, hvs.eq_iff hi hj],
  exact hij.symm
end

@[simp] theorem eval_basis_self (hvs : set.inj_on v s) (hi : i ∈ s) :
  (lagrange.basis s v i).eval (v i) = 1 :=
begin
  rw [lagrange.basis, eval_prod],
  refine prod_eq_one (λ j H, _),
  rw eval_basis_divisor_left_of_ne,
  rcases mem_erase.mp H with ⟨hij, hj⟩,
  exact mt (hvs hi hj) hij.symm
end

@[simp] theorem eval_basis_of_ne (hij : i ≠ j) (hj : j ∈ s) :
  (lagrange.basis s v i).eval (v j) = 0 :=
begin
  simp_rw [lagrange.basis, eval_prod, prod_eq_zero_iff],
  exact ⟨j, ⟨mem_erase.mpr ⟨hij.symm, hj⟩, eval_basis_divisor_right⟩⟩
end

@[simp] theorem nat_degree_basis (hvs : set.inj_on v s) (hi : i ∈ s) :
  (lagrange.basis s v i).nat_degree = s.card - 1 :=
begin
  have H : ∀ j, j ∈ s.erase i → basis_divisor (v i) (v j) ≠ 0,
  { simp_rw [ne.def, mem_erase, basis_divisor_eq_zero_iff],
    exact λ j ⟨hij₁, hj⟩ hij₂, hij₁ (hvs hj hi hij₂.symm) },
  rw [← card_erase_of_mem hi, card_eq_sum_ones],
  convert nat_degree_prod _ _ H using 1,
  refine sum_congr rfl (λ j hj, (nat_degree_basis_divisor_of_ne _).symm),
  rw [ne.def, ← basis_divisor_eq_zero_iff],
  exact H _ hj
end

theorem degree_basis (hvs : set.inj_on v s) (hi : i ∈ s) :
  (lagrange.basis s v i).degree = ↑(s.card - 1) :=
by rw [degree_eq_nat_degree (basis_ne_zero hvs hi), nat_degree_basis hvs hi]

lemma sum_basis (hvs : set.inj_on v s) (hs : s.nonempty) : ∑ j in s, (lagrange.basis s v j) = 1 :=
begin
  refine eq_of_degrees_lt_of_eval_index_eq s hvs (lt_of_le_of_lt (degree_sum_le _ _) _) _ _,
  { rw finset.sup_lt_iff (with_bot.bot_lt_coe s.card),
    intros i hi,
    rw [degree_basis hvs hi, with_bot.coe_lt_coe],
    exact nat.pred_lt (card_ne_zero_of_mem hi) },
  { rw [degree_one, ← with_bot.coe_zero, with_bot.coe_lt_coe],
    exact nonempty.card_pos hs },
  { intros i hi,
    rw [eval_finset_sum, eval_one, ← add_sum_erase _ _ hi,
        eval_basis_self hvs hi, add_right_eq_self],
    refine sum_eq_zero (λ j hj, _),
    rcases mem_erase.mp hj with ⟨hij, hj⟩,
    rw eval_basis_of_ne hij hi }
end

lemma basis_divisor_add_symm {x y : F} (hxy : x ≠ y) : basis_divisor x y + basis_divisor y x = 1 :=
begin
  classical,
  rw [←sum_basis (set.inj_on_of_injective function.injective_id _) ⟨x, mem_insert_self _ {y}⟩,
      sum_insert (not_mem_singleton.mpr hxy), sum_singleton, basis_pair_left hxy,
      basis_pair_right hxy, id, id]
end

end basis

section interpolate
open finset
variables {ι : Type*} [decidable_eq ι] {s t : finset ι} {i j : ι} {v : ι → F} (r r' : ι → F)

/-- Lagrange interpolation: given a finset `s : finset ι`, a nodal map  `v : ι → F` injective on
`s` and a value function `r : ι → F`,  `interpolate s v r` is the unique
polynomial of degree `< s.card` that takes value `r i` on `v i` for all `i` in `s`. -/
@[simps]
def interpolate (s : finset ι) (v : ι → F) : (ι → F) →ₗ[F] F[X] :=
{ to_fun := λ r, ∑ i in s, C (r i) * (lagrange.basis s v i),
  map_add' := λ f g, by simp_rw [← finset.sum_add_distrib, ← add_mul,
                                 ← C_add, pi.add_apply],
  map_smul' := λ c f, by simp_rw [finset.smul_sum, C_mul', smul_smul,
                                  pi.smul_apply, ring_hom.id_apply, smul_eq_mul] }

@[simp] theorem interpolate_empty : interpolate ∅ v r = 0 :=
by rw [interpolate_apply, sum_empty]

@[simp] theorem interpolate_singleton : interpolate {i} v r = C (r i) :=
by rw [interpolate_apply, sum_singleton, basis_singleton, mul_one]

theorem interpolate_one (hvs : set.inj_on v s) (hs : s.nonempty) : interpolate s v 1 = 1 :=
by { simp_rw [interpolate_apply, pi.one_apply, map_one, one_mul], exact sum_basis hvs hs }

theorem eval_interpolate_at_node (hvs : set.inj_on v s) (hi : i ∈ s) :
  eval (v i) (interpolate s v r) = r i :=
begin
  rw [interpolate_apply, eval_finset_sum, ← add_sum_erase _ _ hi],
  simp_rw [eval_mul, eval_C, eval_basis_self hvs hi, mul_one, add_right_eq_self],
  refine sum_eq_zero (λ j H, _),
  rw [eval_basis_of_ne (mem_erase.mp H).1 hi, mul_zero]
end

theorem degree_interpolate_le (hvs : set.inj_on v s) : (interpolate s v r).degree ≤ ↑(s.card - 1) :=
begin
  refine (degree_sum_le _ _).trans _,
  rw finset.sup_le_iff,
  intros i hi,
  rw [degree_mul, degree_basis hvs hi],
  by_cases hr : r i = 0,
  { simpa only [hr, map_zero, degree_zero, with_bot.bot_add] using bot_le },
  { rw [degree_C hr, zero_add, with_bot.coe_le_coe] }
end

theorem degree_interpolate_lt (hvs : set.inj_on v s) : (interpolate s v r).degree < s.card :=
begin
  rcases eq_empty_or_nonempty s with rfl | h,
  { rw [interpolate_empty, degree_zero, card_empty],
    exact with_bot.bot_lt_coe _ },
  { refine lt_of_le_of_lt (degree_interpolate_le _ hvs) _,
    rw with_bot.coe_lt_coe,
    exact nat.sub_lt (nonempty.card_pos h) zero_lt_one }
end

theorem degree_interpolate_erase_lt (hvs : set.inj_on v s) (hi : i ∈ s) :
  (interpolate (s.erase i) v r).degree < ↑(s.card - 1) :=
begin
  rw ← finset.card_erase_of_mem hi,
  exact degree_interpolate_lt _ (set.inj_on.mono (coe_subset.mpr (erase_subset _ _)) hvs),
end

theorem values_eq_on_of_interpolate_eq (hvs : set.inj_on v s)
  (hrr' : interpolate s v r = interpolate s v r') : ∀ i ∈ s, r i = r' i :=
λ _ hi, by rw [← eval_interpolate_at_node r hvs hi, hrr', eval_interpolate_at_node r' hvs hi]

theorem interpolate_eq_of_values_eq_on (hrr' : ∀ i ∈ s, r i = r' i) :
  interpolate s v r = interpolate s v r' :=
sum_congr rfl (λ i hi, (by rw hrr' _ hi))

theorem interpolate_eq_iff_values_eq_on (hvs : set.inj_on v s) :
  interpolate s v r = interpolate s v r' ↔ ∀ i ∈ s, r i = r' i :=
⟨values_eq_on_of_interpolate_eq _ _ hvs, interpolate_eq_of_values_eq_on _ _⟩

theorem eq_interpolate {f : F[X]} (hvs : set.inj_on v s) (degree_f_lt : f.degree < s.card) :
  f = interpolate s v (λ i, f.eval (v i)) :=
eq_of_degrees_lt_of_eval_index_eq _ hvs degree_f_lt (degree_interpolate_lt _ hvs) $
λ i hi, (eval_interpolate_at_node _ hvs hi).symm

theorem eq_interpolate_of_eval_eq {f : F[X]} (hvs : set.inj_on v s)
  (degree_f_lt : f.degree < s.card) (eval_f : ∀ i ∈ s, f.eval (v i) = r i) :
  f = interpolate s v r :=
by { rw eq_interpolate hvs degree_f_lt, exact interpolate_eq_of_values_eq_on _ _ eval_f }

/--
This is the characteristic property of the interpolation: the interpolation is the
unique polynomial of `degree < fintype.card ι` which takes the value of the `r i` on the `v i`.
-/
theorem eq_interpolate_iff {f : F[X]} (hvs : set.inj_on v s) :
  (f.degree < s.card ∧ ∀ i ∈ s, eval (v i) f = r i) ↔ f = interpolate s v r :=
begin
  split; intro h,
  { exact eq_interpolate_of_eval_eq _ hvs h.1 h.2 },
  { rw h, exact ⟨degree_interpolate_lt _ hvs, λ _ hi, eval_interpolate_at_node _ hvs hi⟩ }
end

/-- Lagrange interpolation induces isomorphism between functions from `s`
and polynomials of degree less than `fintype.card ι`.-/
def fun_equiv_degree_lt (hvs : set.inj_on v s) : degree_lt F s.card ≃ₗ[F] (s → F) :=
{ to_fun := λ f i, f.1.eval (v i),
  map_add' := λ f g, funext $ λ v, eval_add,
  map_smul' := λ c f, funext $ by simp,
  inv_fun := λ r, ⟨interpolate s v (λ x, if hx : x ∈ s then r ⟨x, hx⟩ else 0),
                   mem_degree_lt.2 $ degree_interpolate_lt _ hvs⟩,
  left_inv :=
  begin
    rintros ⟨f, hf⟩,
    simp only [subtype.mk_eq_mk, subtype.coe_mk, dite_eq_ite],
    rw mem_degree_lt at hf,
    nth_rewrite_rhs 0 eq_interpolate hvs hf,
    exact interpolate_eq_of_values_eq_on _ _ (λ _ hi, if_pos hi)
  end,
  right_inv :=
  begin
    intro f,
    ext ⟨i, hi⟩,
    simp only [subtype.coe_mk, eval_interpolate_at_node _ hvs hi],
    exact dif_pos hi,
  end }

theorem interpolate_eq_sum_interpolate_insert_sdiff (hvt : set.inj_on v t) (hs : s.nonempty)
  (hst : s ⊆ t) : interpolate t v r =
  ∑ i in s, (interpolate (insert i (t \ s)) v r) * lagrange.basis s v i :=
begin
  symmetry,
  refine eq_interpolate_of_eval_eq _ hvt (lt_of_le_of_lt (degree_sum_le _ _) _) (λ i hi, _),
  { simp_rw [(finset.sup_lt_iff (with_bot.bot_lt_coe t.card)), degree_mul],
    intros i hi,
    have hs : 1 ≤ s.card := nonempty.card_pos ⟨_, hi⟩,
    have hst' : s.card ≤ t.card := card_le_of_subset hst,
    have H : t.card = (1 + (t.card - s.card)) + (s.card - 1),
    { rw [add_assoc, tsub_add_tsub_cancel hst' hs, ← add_tsub_assoc_of_le (hs.trans hst'),
          nat.succ_add_sub_one, zero_add] },
    rw [degree_basis (set.inj_on.mono hst hvt) hi, H, with_bot.coe_add,
        with_bot.add_lt_add_iff_right (@with_bot.coe_ne_bot _ (s.card - 1))],
    convert degree_interpolate_lt _ (hvt.mono (coe_subset.mpr (insert_subset.mpr
      ⟨hst hi, sdiff_subset _ _⟩))),
    rw [card_insert_of_not_mem (not_mem_sdiff_of_mem_right hi), card_sdiff hst, add_comm] },

  { simp_rw [eval_finset_sum, eval_mul],
    by_cases hi' : i ∈ s,
    { rw [← add_sum_erase _ _ hi', eval_basis_self (hvt.mono hst) hi',
          eval_interpolate_at_node _ (hvt.mono (coe_subset.mpr
            (insert_subset.mpr ⟨hi, sdiff_subset _ _⟩))) (mem_insert_self _ _),
          mul_one, add_right_eq_self],
      refine sum_eq_zero (λ j hj, _),
      rcases mem_erase.mp hj with ⟨hij, hj⟩,
      rw [eval_basis_of_ne hij hi', mul_zero] },
    { have H : ∑ j in s, eval (v i) (lagrange.basis s v j) = 1,
      { rw [← eval_finset_sum, sum_basis (hvt.mono hst) hs, eval_one] },
      rw [← mul_one (r i), ← H, mul_sum],
      refine sum_congr rfl (λ j hj, _),
      congr,
      exact eval_interpolate_at_node _ (hvt.mono (insert_subset.mpr ⟨hst hj, sdiff_subset _ _⟩))
                                (mem_insert.mpr (or.inr (mem_sdiff.mpr ⟨hi, hi'⟩))) } }
end

theorem interpolate_eq_add_interpolate_erase (hvs : set.inj_on v s) (hi : i ∈ s) (hj : j ∈ s)
  (hij : i ≠ j) : interpolate s v r = interpolate (s.erase j) v r * basis_divisor (v i) (v j) +
  interpolate (s.erase i) v r * basis_divisor (v j) (v i) :=
begin
  rw [interpolate_eq_sum_interpolate_insert_sdiff _ hvs ⟨i, (mem_insert_self i {j})⟩ _,
      sum_insert (not_mem_singleton.mpr hij), sum_singleton, basis_pair_left hij,
      basis_pair_right hij,
      sdiff_insert_insert_of_mem_of_not_mem hi (not_mem_singleton.mpr hij),
      sdiff_singleton_eq_erase, pair_comm,
      sdiff_insert_insert_of_mem_of_not_mem hj (not_mem_singleton.mpr hij.symm),
      sdiff_singleton_eq_erase],
  { exact insert_subset.mpr ⟨hi, singleton_subset_iff.mpr hj⟩ },
end

end interpolate

section nodal
open finset polynomial
variables {ι : Type*} {s : finset ι} {v : ι → F} {i : ι} (r : ι → F) {x : F}

/--
`nodal s v` is the unique monic polynomial whose roots are the nodes defined by `v` and `s`.

That is, the roots of `nodal s v` are exactly the image of `v` on `s`,
with appropriate multiplicity.

We can use `nodal` to define the barycentric forms of the evaluated interpolant.
-/
def nodal (s : finset ι) (v : ι → F) : F[X] := ∏ i in s, (X - C (v i))

lemma nodal_eq (s : finset ι) (v : ι → F) : nodal s v = ∏ i in s, (X - C (v i)) := rfl

@[simp] lemma nodal_empty : nodal ∅ v = 1 := rfl

lemma degree_nodal : (nodal s v).degree = s.card :=
by simp_rw [nodal, degree_prod, degree_X_sub_C, sum_const, nat.smul_one_eq_coe]

lemma eval_nodal {x : F} : (nodal s v).eval x = ∏ i in s, (x - v i) :=
by simp_rw [nodal, eval_prod, eval_sub, eval_X, eval_C]

lemma eval_nodal_at_node (hi : i ∈ s) : eval (v i) (nodal s v) = 0 :=
by { rw [eval_nodal, prod_eq_zero_iff], exact ⟨i, hi, sub_eq_zero_of_eq rfl⟩ }

lemma eval_nodal_not_at_node (hx : ∀ i ∈ s, x ≠ v i) : eval x (nodal s v) ≠ 0 :=
by { simp_rw [nodal, eval_prod, prod_ne_zero_iff, eval_sub, eval_X, eval_C, sub_ne_zero], exact hx }

lemma nodal_eq_mul_nodal_erase [decidable_eq ι] (hi : i ∈ s) :
  nodal s v = (X - C (v i)) * nodal (s.erase i) v := by simp_rw [nodal, mul_prod_erase _ _ hi]

lemma X_sub_C_dvd_nodal (v : ι → F) (hi : i ∈ s) : (X - C (v i)) ∣ nodal s v :=
⟨_, by { classical, exact nodal_eq_mul_nodal_erase hi }⟩

variable [decidable_eq ι]

lemma nodal_erase_eq_nodal_div (hi : i ∈ s) :
  nodal (s.erase i) v = nodal s v / (X - C (v i)) :=
begin
  rw [nodal_eq_mul_nodal_erase hi, euclidean_domain.mul_div_cancel_left],
  exact X_sub_C_ne_zero _
end

lemma nodal_insert_eq_nodal (hi : i ∉ s) :
  nodal (insert i s) v = (X - C (v i)) * (nodal s v) := by simp_rw [nodal, prod_insert hi]

lemma derivative_nodal : (nodal s v).derivative = ∑ i in s, nodal (s.erase i) v :=
begin
  refine finset.induction_on s _ (λ _ _ hit IH, _),
  { rw [nodal_empty, derivative_one, sum_empty] },
  { rw [nodal_insert_eq_nodal hit, derivative_mul, IH, derivative_sub,
        derivative_X, derivative_C, sub_zero, one_mul, sum_insert hit,
        mul_sum, erase_insert hit, add_right_inj],
    refine sum_congr rfl (λ j hjt, _),
    rw [nodal_erase_eq_nodal_div (mem_insert_of_mem hjt), nodal_insert_eq_nodal hit,
        euclidean_domain.mul_div_assoc _ (X_sub_C_dvd_nodal v hjt),
        nodal_erase_eq_nodal_div hjt] }
end

lemma eval_nodal_derivative_eval_node_eq (hi : i ∈ s) :
  eval (v i) (nodal s v).derivative = eval (v i) (nodal (s.erase i) v) :=
begin
  rw [derivative_nodal, eval_finset_sum, ← add_sum_erase _ _ hi, add_right_eq_self],
  refine sum_eq_zero (λ j hj, _),
  simp_rw [nodal, eval_prod, eval_sub, eval_X, eval_C, prod_eq_zero_iff, mem_erase],
  exact ⟨i, ⟨(mem_erase.mp hj).1.symm, hi⟩, sub_eq_zero_of_eq rfl⟩
end

/-- This defines the nodal weight for a given set of node indexes and node mapping function `v`. -/
def nodal_weight (s : finset ι) (v : ι → F) (i : ι) := ∏ j in s.erase i, (v i - v j)⁻¹

lemma nodal_weight_eq_eval_nodal_erase_inv : nodal_weight s v i =
  (eval (v i) (nodal (s.erase i) v))⁻¹ :=
by rw [eval_nodal, nodal_weight, prod_inv_distrib]

lemma nodal_weight_eq_eval_nodal_derative (hi : i ∈ s) : nodal_weight s v i =
  (eval (v i) (nodal s v).derivative)⁻¹ :=
by rw [eval_nodal_derivative_eval_node_eq hi, nodal_weight_eq_eval_nodal_erase_inv]

lemma nodal_weight_ne_zero (hvs : set.inj_on v s) (hi : i ∈ s) : nodal_weight s v i ≠ 0 :=
begin
  rw [nodal_weight, prod_ne_zero_iff],
  intros j hj,
  rcases mem_erase.mp hj with ⟨hij, hj⟩,
  refine inv_ne_zero (sub_ne_zero_of_ne (mt (hvs.eq_iff hi hj).mp hij.symm)),
end

lemma basis_eq_prod_sub_inv_mul_nodal_div (hi : i ∈ s) :
  lagrange.basis s v i = C (nodal_weight s v i) * ( nodal s v / (X - C (v i)) )  :=
by simp_rw [lagrange.basis, basis_divisor, nodal_weight, prod_mul_distrib,
            map_prod, ← nodal_erase_eq_nodal_div hi, nodal]

lemma eval_basis_not_at_node (hi : i ∈ s) (hxi : x ≠ v i) :
  eval x (lagrange.basis s v i) = (eval x (nodal s v)) * (nodal_weight s v i * (x - v i)⁻¹)  :=
by rw [mul_comm, basis_eq_prod_sub_inv_mul_nodal_div hi, eval_mul, eval_C,
       ← nodal_erase_eq_nodal_div hi, eval_nodal, eval_nodal, mul_assoc, ← mul_prod_erase _ _ hi,
       ← mul_assoc (x - v i)⁻¹, inv_mul_cancel (sub_ne_zero_of_ne hxi), one_mul]

lemma interpolate_eq_nodal_weight_mul_nodal_div_X_sub_C :
  interpolate s v r = ∑ i in s, C (nodal_weight s v i) * (nodal s v / (X - C (v i))) * C (r i) :=
sum_congr rfl (λ j hj, by rw [mul_comm, basis_eq_prod_sub_inv_mul_nodal_div hj])

/-- This is the first barycentric form of the Lagrange interpolant. -/
lemma eval_interpolate_not_at_node (hx : ∀ i ∈ s, x ≠ v i) : eval x (interpolate s v r) =
  eval x (nodal s v) * ∑ i in s, nodal_weight s v i * (x - v i)⁻¹ * r i :=
begin
  simp_rw [interpolate_apply, mul_sum, eval_finset_sum, eval_mul, eval_C],
  refine sum_congr rfl (λ i hi, _),
  rw [← mul_assoc, mul_comm, eval_basis_not_at_node hi (hx _ hi)]
end

lemma sum_nodal_weight_mul_inv_sub_ne_zero (hvs : set.inj_on v s)
  (hx : ∀ i ∈ s, x ≠ v i) (hs : s.nonempty) :
  ∑ i in s, nodal_weight s v i * (x - v i)⁻¹ ≠ 0 :=
@right_ne_zero_of_mul_eq_one  _ _ _ (eval x (nodal s v)) _ $
  by simpa only [pi.one_apply, interpolate_one hvs hs, eval_one, mul_one]
    using (eval_interpolate_not_at_node 1 hx).symm

/-- This is the second barycentric form of the Lagrange interpolant. -/
lemma eval_interpolate_not_at_node' (hvs : set.inj_on v s) (hs : s.nonempty)
  (hx : ∀ i ∈ s, x ≠ v i) : eval x (interpolate s v r) =
  (∑ i in s, nodal_weight s v i * (x - v i)⁻¹ * r i) /
  ∑ i in s, nodal_weight s v i * (x - v i)⁻¹ :=
begin
  rw [← div_one (eval x (interpolate s v r)), ← @eval_one _ _ x, ← interpolate_one hvs hs,
      eval_interpolate_not_at_node r hx, eval_interpolate_not_at_node 1 hx],
  simp only [mul_div_mul_left _ _ (eval_nodal_not_at_node hx), pi.one_apply, mul_one]
end

end nodal

end lagrange