Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 18,991 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
/-
Copyright (c) 2019 Anne Baanen. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Anne Baanen
-/
import algebra.associated
import algebra.regular.basic
import linear_algebra.matrix.mv_polynomial
import linear_algebra.matrix.polynomial
import ring_theory.polynomial.basic
import tactic.linarith
import tactic.ring_exp
/-!
# Cramer's rule and adjugate matrices
The adjugate matrix is the transpose of the cofactor matrix.
It is calculated with Cramer's rule, which we introduce first.
The vectors returned by Cramer's rule are given by the linear map `cramer`,
which sends a matrix `A` and vector `b` to the vector consisting of the
determinant of replacing the `i`th column of `A` with `b` at index `i`
(written as `(A.update_column i b).det`).
Using Cramer's rule, we can compute for each matrix `A` the matrix `adjugate A`.
The entries of the adjugate are the determinants of each minor of `A`.
Instead of defining a minor to be `A` with row `i` and column `j` deleted, we
replace the `i`th row of `A` with the `j`th basis vector; this has the same
determinant as the minor but more importantly equals Cramer's rule applied
to `A` and the `j`th basis vector, simplifying the subsequent proofs.
We prove the adjugate behaves like `det A • A⁻¹`.
## Main definitions
* `matrix.cramer A b`: the vector output by Cramer's rule on `A` and `b`.
* `matrix.adjugate A`: the adjugate (or classical adjoint) of the matrix `A`.
## References
* https://en.wikipedia.org/wiki/Cramer's_rule#Finding_inverse_matrix
## Tags
cramer, cramer's rule, adjugate
-/
namespace matrix
universes u v
variables {n : Type u} [decidable_eq n] [fintype n] {α : Type v} [comm_ring α]
open_locale matrix big_operators polynomial
open equiv equiv.perm finset
section cramer
/-!
### `cramer` section
Introduce the linear map `cramer` with values defined by `cramer_map`.
After defining `cramer_map` and showing it is linear,
we will restrict our proofs to using `cramer`.
-/
variables (A : matrix n n α) (b : n → α)
/--
`cramer_map A b i` is the determinant of the matrix `A` with column `i` replaced with `b`,
and thus `cramer_map A b` is the vector output by Cramer's rule on `A` and `b`.
If `A ⬝ x = b` has a unique solution in `x`, `cramer_map A` sends the vector `b` to `A.det • x`.
Otherwise, the outcome of `cramer_map` is well-defined but not necessarily useful.
-/
def cramer_map (i : n) : α := (A.update_column i b).det
lemma cramer_map_is_linear (i : n) : is_linear_map α (λ b, cramer_map A b i) :=
{ map_add := det_update_column_add _ _,
map_smul := det_update_column_smul _ _ }
lemma cramer_is_linear : is_linear_map α (cramer_map A) :=
begin
split; intros; ext i,
{ apply (cramer_map_is_linear A i).1 },
{ apply (cramer_map_is_linear A i).2 }
end
/--
`cramer A b i` is the determinant of the matrix `A` with column `i` replaced with `b`,
and thus `cramer A b` is the vector output by Cramer's rule on `A` and `b`.
If `A ⬝ x = b` has a unique solution in `x`, `cramer A` sends the vector `b` to `A.det • x`.
Otherwise, the outcome of `cramer` is well-defined but not necessarily useful.
-/
def cramer (A : matrix n n α) : (n → α) →ₗ[α] (n → α) :=
is_linear_map.mk' (cramer_map A) (cramer_is_linear A)
lemma cramer_apply (i : n) : cramer A b i = (A.update_column i b).det := rfl
lemma cramer_transpose_apply (i : n) : cramer Aᵀ b i = (A.update_row i b).det :=
by rw [cramer_apply, update_column_transpose, det_transpose]
lemma cramer_transpose_row_self (i : n) :
Aᵀ.cramer (A i) = pi.single i A.det :=
begin
ext j,
rw [cramer_apply, pi.single_apply],
split_ifs with h,
{ -- i = j: this entry should be `A.det`
subst h,
simp only [update_column_transpose, det_transpose, update_row, function.update_eq_self] },
{ -- i ≠ j: this entry should be 0
rw [update_column_transpose, det_transpose],
apply det_zero_of_row_eq h,
rw [update_row_self, update_row_ne (ne.symm h)] }
end
lemma cramer_row_self (i : n) (h : ∀ j, b j = A j i) :
A.cramer b = pi.single i A.det :=
begin
rw [← transpose_transpose A, det_transpose],
convert cramer_transpose_row_self Aᵀ i,
exact funext h
end
@[simp] lemma cramer_one : cramer (1 : matrix n n α) = 1 :=
begin
ext i j,
convert congr_fun (cramer_row_self (1 : matrix n n α) (pi.single i 1) i _) j,
{ simp },
{ intros j, rw [matrix.one_eq_pi_single, pi.single_comm] }
end
lemma cramer_smul (r : α) (A : matrix n n α) :
cramer (r • A) = r ^ (fintype.card n - 1) • cramer A :=
linear_map.ext $ λ b, funext $ λ _, det_update_column_smul' _ _ _ _
@[simp] lemma cramer_subsingleton_apply [subsingleton n] (A : matrix n n α) (b : n → α) (i : n) :
cramer A b i = b i :=
by rw [cramer_apply, det_eq_elem_of_subsingleton _ i, update_column_self]
lemma cramer_zero [nontrivial n] : cramer (0 : matrix n n α) = 0 :=
begin
ext i j,
obtain ⟨j', hj'⟩ : ∃ j', j' ≠ j := exists_ne j,
apply det_eq_zero_of_column_eq_zero j',
intro j'',
simp [update_column_ne hj'],
end
/-- Use linearity of `cramer` to take it out of a summation. -/
lemma sum_cramer {β} (s : finset β) (f : β → n → α) :
∑ x in s, cramer A (f x) = cramer A (∑ x in s, f x) :=
(linear_map.map_sum (cramer A)).symm
/-- Use linearity of `cramer` and vector evaluation to take `cramer A _ i` out of a summation. -/
lemma sum_cramer_apply {β} (s : finset β) (f : n → β → α) (i : n) :
∑ x in s, cramer A (λ j, f j x) i = cramer A (λ (j : n), ∑ x in s, f j x) i :=
calc ∑ x in s, cramer A (λ j, f j x) i
= (∑ x in s, cramer A (λ j, f j x)) i : (finset.sum_apply i s _).symm
... = cramer A (λ (j : n), ∑ x in s, f j x) i :
by { rw [sum_cramer, cramer_apply], congr' with j, apply finset.sum_apply }
end cramer
section adjugate
/-!
### `adjugate` section
Define the `adjugate` matrix and a few equations.
These will hold for any matrix over a commutative ring.
-/
/-- The adjugate matrix is the transpose of the cofactor matrix.
Typically, the cofactor matrix is defined by taking the determinant of minors,
i.e. the matrix with a row and column removed.
However, the proof of `mul_adjugate` becomes a lot easier if we define the
minor as replacing a column with a basis vector, since it allows us to use
facts about the `cramer` map.
-/
def adjugate (A : matrix n n α) : matrix n n α := λ i, cramer Aᵀ (pi.single i 1)
lemma adjugate_def (A : matrix n n α) :
adjugate A = λ i, cramer Aᵀ (pi.single i 1) := rfl
lemma adjugate_apply (A : matrix n n α) (i j : n) :
adjugate A i j = (A.update_row j (pi.single i 1)).det :=
by { rw adjugate_def, simp only, rw [cramer_apply, update_column_transpose, det_transpose], }
lemma adjugate_transpose (A : matrix n n α) : (adjugate A)ᵀ = adjugate (Aᵀ) :=
begin
ext i j,
rw [transpose_apply, adjugate_apply, adjugate_apply, update_row_transpose, det_transpose],
rw [det_apply', det_apply'],
apply finset.sum_congr rfl,
intros σ _,
congr' 1,
by_cases i = σ j,
{ -- Everything except `(i , j)` (= `(σ j , j)`) is given by A, and the rest is a single `1`.
congr; ext j',
subst h,
have : σ j' = σ j ↔ j' = j := σ.injective.eq_iff,
rw [update_row_apply, update_column_apply],
simp_rw this,
rw [←dite_eq_ite, ←dite_eq_ite],
congr' 1 with rfl,
rw [pi.single_eq_same, pi.single_eq_same], },
{ -- Otherwise, we need to show that there is a `0` somewhere in the product.
have : (∏ j' : n, update_column A j (pi.single i 1) (σ j') j') = 0,
{ apply prod_eq_zero (mem_univ j),
rw [update_column_self, pi.single_eq_of_ne' h], },
rw this,
apply prod_eq_zero (mem_univ (σ⁻¹ i)),
erw [apply_symm_apply σ i, update_row_self],
apply pi.single_eq_of_ne,
intro h',
exact h ((symm_apply_eq σ).mp h') }
end
/-- Since the map `b ↦ cramer A b` is linear in `b`, it must be multiplication by some matrix. This
matrix is `A.adjugate`. -/
lemma cramer_eq_adjugate_mul_vec (A : matrix n n α) (b : n → α) :
cramer A b = A.adjugate.mul_vec b :=
begin
nth_rewrite 1 ← A.transpose_transpose,
rw [← adjugate_transpose, adjugate_def],
have : b = ∑ i, (b i) • (pi.single i 1),
{ refine (pi_eq_sum_univ b).trans _, congr' with j, simp [pi.single_apply, eq_comm] },
nth_rewrite 0 this, ext k,
simp [mul_vec, dot_product, mul_comm],
end
lemma mul_adjugate_apply (A : matrix n n α) (i j k) :
A i k * adjugate A k j = cramer Aᵀ (pi.single k (A i k)) j :=
begin
erw [←smul_eq_mul, ←pi.smul_apply, ←linear_map.map_smul, ←pi.single_smul', smul_eq_mul, mul_one],
end
lemma mul_adjugate (A : matrix n n α) : A ⬝ adjugate A = A.det • 1 :=
begin
ext i j,
rw [mul_apply, pi.smul_apply, pi.smul_apply, one_apply, smul_eq_mul, mul_boole],
simp [mul_adjugate_apply, sum_cramer_apply, cramer_transpose_row_self, pi.single_apply, eq_comm]
end
lemma adjugate_mul (A : matrix n n α) : adjugate A ⬝ A = A.det • 1 :=
calc adjugate A ⬝ A = (Aᵀ ⬝ (adjugate Aᵀ))ᵀ :
by rw [←adjugate_transpose, ←transpose_mul, transpose_transpose]
... = A.det • 1 : by rw [mul_adjugate (Aᵀ), det_transpose, transpose_smul, transpose_one]
lemma adjugate_smul (r : α) (A : matrix n n α) :
adjugate (r • A) = r ^ (fintype.card n - 1) • adjugate A :=
begin
rw [adjugate, adjugate, transpose_smul, cramer_smul],
refl,
end
/-- A stronger form of **Cramer's rule** that allows us to solve some instances of `A ⬝ x = b` even
if the determinant is not a unit. A sufficient (but still not necessary) condition is that `A.det`
divides `b`. -/
@[simp] lemma mul_vec_cramer (A : matrix n n α) (b : n → α) :
A.mul_vec (cramer A b) = A.det • b :=
by rw [cramer_eq_adjugate_mul_vec, mul_vec_mul_vec, mul_adjugate, smul_mul_vec_assoc, one_mul_vec]
lemma adjugate_subsingleton [subsingleton n] (A : matrix n n α) : adjugate A = 1 :=
begin
ext i j,
simp [subsingleton.elim i j, adjugate_apply, det_eq_elem_of_subsingleton _ i]
end
lemma adjugate_eq_one_of_card_eq_one {A : matrix n n α} (h : fintype.card n = 1) : adjugate A = 1 :=
begin
haveI : subsingleton n := fintype.card_le_one_iff_subsingleton.mp h.le,
exact adjugate_subsingleton _
end
@[simp] lemma adjugate_zero [nontrivial n] : adjugate (0 : matrix n n α) = 0 :=
begin
ext i j,
obtain ⟨j', hj'⟩ : ∃ j', j' ≠ j := exists_ne j,
apply det_eq_zero_of_column_eq_zero j',
intro j'',
simp [update_column_ne hj'],
end
@[simp] lemma adjugate_one : adjugate (1 : matrix n n α) = 1 :=
by { ext, simp [adjugate_def, matrix.one_apply, pi.single_apply, eq_comm] }
@[simp] lemma adjugate_diagonal (v : n → α) :
adjugate (diagonal v) = diagonal (λ i, ∏ j in finset.univ.erase i, v j) :=
begin
ext,
simp only [adjugate_def, cramer_apply, diagonal_transpose],
obtain rfl | hij := eq_or_ne i j,
{ rw [diagonal_apply_eq, diagonal_update_column_single, det_diagonal,
prod_update_of_mem (finset.mem_univ _), sdiff_singleton_eq_erase, one_mul] },
{ rw diagonal_apply_ne _ hij,
refine det_eq_zero_of_row_eq_zero j (λ k, _),
obtain rfl | hjk := eq_or_ne k j,
{ rw [update_column_self, pi.single_eq_of_ne' hij] },
{ rw [update_column_ne hjk, diagonal_apply_ne' _ hjk]} },
end
lemma _root_.ring_hom.map_adjugate {R S : Type*} [comm_ring R] [comm_ring S] (f : R →+* S)
(M : matrix n n R) : f.map_matrix M.adjugate = matrix.adjugate (f.map_matrix M) :=
begin
ext i k,
have : pi.single i (1 : S) = f ∘ pi.single i 1,
{ rw ←f.map_one,
exact pi.single_op (λ i, f) (λ i, f.map_zero) i (1 : R) },
rw [adjugate_apply, ring_hom.map_matrix_apply, map_apply, ring_hom.map_matrix_apply,
this, ←map_update_row, ←ring_hom.map_matrix_apply, ←ring_hom.map_det, ←adjugate_apply]
end
lemma _root_.alg_hom.map_adjugate {R A B : Type*} [comm_semiring R] [comm_ring A] [comm_ring B]
[algebra R A] [algebra R B] (f : A →ₐ[R] B)
(M : matrix n n A) : f.map_matrix M.adjugate = matrix.adjugate (f.map_matrix M) :=
f.to_ring_hom.map_adjugate _
lemma det_adjugate (A : matrix n n α) : (adjugate A).det = A.det ^ (fintype.card n - 1) :=
begin
-- get rid of the `- 1`
cases (fintype.card n).eq_zero_or_pos with h_card h_card,
{ haveI : is_empty n := fintype.card_eq_zero_iff.mp h_card,
rw [h_card, nat.zero_sub, pow_zero, adjugate_subsingleton, det_one] },
replace h_card := tsub_add_cancel_of_le h_card.nat_succ_le,
-- express `A` as an evaluation of a polynomial in n^2 variables, and solve in the polynomial ring
-- where `A'.det` is non-zero.
let A' := mv_polynomial_X n n ℤ,
suffices : A'.adjugate.det = A'.det ^ (fintype.card n - 1),
{ rw [←mv_polynomial_X_map_matrix_aeval ℤ A, ←alg_hom.map_adjugate, ←alg_hom.map_det,
←alg_hom.map_det, ←alg_hom.map_pow, this] },
apply mul_left_cancel₀ (show A'.det ≠ 0, from det_mv_polynomial_X_ne_zero n ℤ),
calc A'.det * A'.adjugate.det
= (A' ⬝ adjugate A').det : (det_mul _ _).symm
... = A'.det ^ fintype.card n : by rw [mul_adjugate, det_smul, det_one, mul_one]
... = A'.det * A'.det ^ (fintype.card n - 1) : by rw [←pow_succ, h_card],
end
@[simp] lemma adjugate_fin_zero (A : matrix (fin 0) (fin 0) α) : adjugate A = 0 :=
@subsingleton.elim _ matrix.subsingleton_of_empty_left _ _
@[simp] lemma adjugate_fin_one (A : matrix (fin 1) (fin 1) α) : adjugate A = 1 :=
adjugate_subsingleton A
lemma adjugate_fin_two (A : matrix (fin 2) (fin 2) α) :
adjugate A = !![A 1 1, -A 0 1; -A 1 0, A 0 0] :=
begin
ext i j,
rw [adjugate_apply, det_fin_two],
fin_cases i with [0, 1]; fin_cases j with [0, 1];
simp only [nat.one_ne_zero, one_mul, fin.one_eq_zero_iff, pi.single_eq_same, zero_mul,
fin.zero_eq_one_iff, sub_zero, pi.single_eq_of_ne, ne.def, not_false_iff, update_row_self,
update_row_ne, cons_val_zero, mul_zero, mul_one, zero_sub, cons_val_one, head_cons, of_apply],
end
@[simp] lemma adjugate_fin_two_of (a b c d : α) :
adjugate !![a, b; c, d] = !![d, -b; -c, a] :=
adjugate_fin_two _
lemma adjugate_conj_transpose [star_ring α] (A : matrix n n α) : A.adjugateᴴ = adjugate (Aᴴ) :=
begin
dsimp only [conj_transpose],
have : Aᵀ.adjugate.map star = adjugate (Aᵀ.map star) := ((star_ring_end α).map_adjugate Aᵀ),
rw [A.adjugate_transpose, this],
end
lemma is_regular_of_is_left_regular_det {A : matrix n n α} (hA : is_left_regular A.det) :
is_regular A :=
begin
split,
{ intros B C h,
refine hA.matrix _,
rw [←matrix.one_mul B, ←matrix.one_mul C, ←matrix.smul_mul, ←matrix.smul_mul, ←adjugate_mul,
matrix.mul_assoc, matrix.mul_assoc, ←mul_eq_mul A, h, mul_eq_mul] },
{ intros B C h,
simp only [mul_eq_mul] at h,
refine hA.matrix _,
rw [←matrix.mul_one B, ←matrix.mul_one C, ←matrix.mul_smul, ←matrix.mul_smul, ←mul_adjugate,
←matrix.mul_assoc, ←matrix.mul_assoc, h] }
end
lemma adjugate_mul_distrib_aux (A B : matrix n n α)
(hA : is_left_regular A.det)
(hB : is_left_regular B.det) :
adjugate (A ⬝ B) = adjugate B ⬝ adjugate A :=
begin
have hAB : is_left_regular (A ⬝ B).det,
{ rw [det_mul],
exact hA.mul hB },
refine (is_regular_of_is_left_regular_det hAB).left _,
rw [mul_eq_mul, mul_adjugate, mul_eq_mul, matrix.mul_assoc, ←matrix.mul_assoc B, mul_adjugate,
smul_mul, matrix.one_mul, mul_smul, mul_adjugate, smul_smul, mul_comm, ←det_mul]
end
/--
Proof follows from "The trace Cayley-Hamilton theorem" by Darij Grinberg, Section 5.3
-/
lemma adjugate_mul_distrib (A B : matrix n n α) : adjugate (A ⬝ B) = adjugate B ⬝ adjugate A :=
begin
let g : matrix n n α → matrix n n α[X] :=
λ M, M.map polynomial.C + (polynomial.X : α[X]) • 1,
let f' : matrix n n α[X] →+* matrix n n α := (polynomial.eval_ring_hom 0).map_matrix,
have f'_inv : ∀ M, f' (g M) = M,
{ intro,
ext,
simp [f', g], },
have f'_adj : ∀ (M : matrix n n α), f' (adjugate (g M)) = adjugate M,
{ intro,
rw [ring_hom.map_adjugate, f'_inv] },
have f'_g_mul : ∀ (M N : matrix n n α), f' (g M ⬝ g N) = M ⬝ N,
{ intros,
rw [←mul_eq_mul, ring_hom.map_mul, f'_inv, f'_inv, mul_eq_mul] },
have hu : ∀ (M : matrix n n α), is_regular (g M).det,
{ intros M,
refine polynomial.monic.is_regular _,
simp only [g, polynomial.monic.def, ←polynomial.leading_coeff_det_X_one_add_C M, add_comm] },
rw [←f'_adj, ←f'_adj, ←f'_adj, ←mul_eq_mul (f' (adjugate (g B))), ←f'.map_mul, mul_eq_mul,
←adjugate_mul_distrib_aux _ _ (hu A).left (hu B).left, ring_hom.map_adjugate,
ring_hom.map_adjugate, f'_inv, f'_g_mul]
end
@[simp] lemma adjugate_pow (A : matrix n n α) (k : ℕ) :
adjugate (A ^ k) = (adjugate A) ^ k :=
begin
induction k with k IH,
{ simp },
{ rw [pow_succ', mul_eq_mul, adjugate_mul_distrib, IH, ←mul_eq_mul, pow_succ] }
end
lemma det_smul_adjugate_adjugate (A : matrix n n α) :
det A • adjugate (adjugate A) = det A ^ (fintype.card n - 1) • A :=
begin
have : A ⬝ (A.adjugate ⬝ A.adjugate.adjugate) = A ⬝ (A.det ^ (fintype.card n - 1) • 1),
{ rw [←adjugate_mul_distrib, adjugate_mul, adjugate_smul, adjugate_one], },
rwa [←matrix.mul_assoc, mul_adjugate, matrix.mul_smul, matrix.mul_one, matrix.smul_mul,
matrix.one_mul] at this,
end
/-- Note that this is not true for `fintype.card n = 1` since `1 - 2 = 0` and not `-1`. -/
lemma adjugate_adjugate (A : matrix n n α) (h : fintype.card n ≠ 1) :
adjugate (adjugate A) = det A ^ (fintype.card n - 2) • A :=
begin
-- get rid of the `- 2`
cases h_card : (fintype.card n) with n',
{ haveI : is_empty n := fintype.card_eq_zero_iff.mp h_card,
exact @subsingleton.elim _ (matrix.subsingleton_of_empty_left) _ _, },
cases n',
{ exact (h h_card).elim },
rw ←h_card,
-- express `A` as an evaluation of a polynomial in n^2 variables, and solve in the polynomial ring
-- where `A'.det` is non-zero.
let A' := mv_polynomial_X n n ℤ,
suffices : adjugate (adjugate A') = det A' ^ (fintype.card n - 2) • A',
{ rw [←mv_polynomial_X_map_matrix_aeval ℤ A, ←alg_hom.map_adjugate, ←alg_hom.map_adjugate, this,
←alg_hom.map_det, ← alg_hom.map_pow, alg_hom.map_matrix_apply, alg_hom.map_matrix_apply,
matrix.map_smul' _ _ _ (_root_.map_mul _)] },
have h_card' : fintype.card n - 2 + 1 = fintype.card n - 1,
{ simp [h_card] },
have is_reg : is_smul_regular (mv_polynomial (n × n) ℤ) (det A') :=
λ x y, mul_left_cancel₀ (det_mv_polynomial_X_ne_zero n ℤ),
apply is_reg.matrix,
rw [smul_smul, ←pow_succ, h_card', det_smul_adjugate_adjugate],
end
/-- A weaker version of `matrix.adjugate_adjugate` that uses `nontrivial`. -/
lemma adjugate_adjugate' (A : matrix n n α) [nontrivial n] :
adjugate (adjugate A) = det A ^ (fintype.card n - 2) • A :=
adjugate_adjugate _ $ fintype.one_lt_card.ne'
end adjugate
end matrix
|