Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 18,991 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
/-
Copyright (c) 2019 Anne Baanen. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Anne Baanen
-/
import algebra.associated
import algebra.regular.basic
import linear_algebra.matrix.mv_polynomial
import linear_algebra.matrix.polynomial
import ring_theory.polynomial.basic
import tactic.linarith
import tactic.ring_exp

/-!
# Cramer's rule and adjugate matrices

The adjugate matrix is the transpose of the cofactor matrix.
It is calculated with Cramer's rule, which we introduce first.
The vectors returned by Cramer's rule are given by the linear map `cramer`,
which sends a matrix `A` and vector `b` to the vector consisting of the
determinant of replacing the `i`th column of `A` with `b` at index `i`
(written as `(A.update_column i b).det`).
Using Cramer's rule, we can compute for each matrix `A` the matrix `adjugate A`.
The entries of the adjugate are the determinants of each minor of `A`.
Instead of defining a minor to be `A` with row `i` and column `j` deleted, we
replace the `i`th row of `A` with the `j`th basis vector; this has the same
determinant as the minor but more importantly equals Cramer's rule applied
to `A` and the `j`th basis vector, simplifying the subsequent proofs.
We prove the adjugate behaves like `det A • A⁻¹`.

## Main definitions

 * `matrix.cramer A b`: the vector output by Cramer's rule on `A` and `b`.
 * `matrix.adjugate A`: the adjugate (or classical adjoint) of the matrix `A`.

## References

  * https://en.wikipedia.org/wiki/Cramer's_rule#Finding_inverse_matrix

## Tags

cramer, cramer's rule, adjugate
-/

namespace matrix
universes u v
variables {n : Type u} [decidable_eq n] [fintype n] {α : Type v} [comm_ring α]
open_locale matrix big_operators polynomial
open equiv equiv.perm finset

section cramer
/-!
  ### `cramer` section

  Introduce the linear map `cramer` with values defined by `cramer_map`.
  After defining `cramer_map` and showing it is linear,
  we will restrict our proofs to using `cramer`.
-/
variables (A : matrix n n α) (b : n → α)

/--
  `cramer_map A b i` is the determinant of the matrix `A` with column `i` replaced with `b`,
  and thus `cramer_map A b` is the vector output by Cramer's rule on `A` and `b`.

  If `A ⬝ x = b` has a unique solution in `x`, `cramer_map A` sends the vector `b` to `A.det • x`.
  Otherwise, the outcome of `cramer_map` is well-defined but not necessarily useful.
-/
def cramer_map (i : n) : α := (A.update_column i b).det

lemma cramer_map_is_linear (i : n) : is_linear_map α (λ b, cramer_map A b i) :=
{ map_add := det_update_column_add _ _,
  map_smul := det_update_column_smul _ _ }

lemma cramer_is_linear : is_linear_map α (cramer_map A) :=
begin
  split; intros; ext i,
  { apply (cramer_map_is_linear A i).1 },
  { apply (cramer_map_is_linear A i).2 }
end

/--
  `cramer A b i` is the determinant of the matrix `A` with column `i` replaced with `b`,
  and thus `cramer A b` is the vector output by Cramer's rule on `A` and `b`.

  If `A ⬝ x = b` has a unique solution in `x`, `cramer A` sends the vector `b` to `A.det • x`.
  Otherwise, the outcome of `cramer` is well-defined but not necessarily useful.
 -/
def cramer (A : matrix n n α) : (n → α) →ₗ[α] (n → α) :=
is_linear_map.mk' (cramer_map A) (cramer_is_linear A)

lemma cramer_apply (i : n) : cramer A b i = (A.update_column i b).det := rfl

lemma cramer_transpose_apply (i : n) : cramer Aᵀ b i = (A.update_row i b).det :=
by rw [cramer_apply, update_column_transpose, det_transpose]

lemma cramer_transpose_row_self (i : n) :
  Aᵀ.cramer (A i) = pi.single i A.det :=
begin
  ext j,
  rw [cramer_apply, pi.single_apply],
  split_ifs with h,
  { -- i = j: this entry should be `A.det`
    subst h,
    simp only [update_column_transpose, det_transpose, update_row, function.update_eq_self] },
  { -- i ≠ j: this entry should be 0
    rw [update_column_transpose, det_transpose],
    apply det_zero_of_row_eq h,
    rw [update_row_self, update_row_ne (ne.symm h)] }
end

lemma cramer_row_self (i : n) (h : ∀ j, b j = A j i) :
  A.cramer b = pi.single i A.det :=
begin
  rw [← transpose_transpose A, det_transpose],
  convert cramer_transpose_row_self Aᵀ i,
  exact funext h
end

@[simp] lemma cramer_one : cramer (1 : matrix n n α) = 1 :=
begin
  ext i j,
  convert congr_fun (cramer_row_self (1 : matrix n n α) (pi.single i 1) i _) j,
  { simp },
  { intros j, rw [matrix.one_eq_pi_single, pi.single_comm] }
end

lemma cramer_smul (r : α) (A : matrix n n α) :
  cramer (r • A) = r ^ (fintype.card n - 1) • cramer A :=
linear_map.ext $ λ b, funext $ λ _, det_update_column_smul' _ _ _ _

@[simp] lemma cramer_subsingleton_apply [subsingleton n] (A : matrix n n α) (b : n → α) (i : n) :
  cramer A b i = b i :=
by rw [cramer_apply, det_eq_elem_of_subsingleton _ i, update_column_self]

lemma cramer_zero [nontrivial n] : cramer (0 : matrix n n α) = 0 :=
begin
  ext i j,
  obtain ⟨j', hj'⟩ : ∃ j', j' ≠ j := exists_ne j,
  apply det_eq_zero_of_column_eq_zero j',
  intro j'',
  simp [update_column_ne hj'],
end

/-- Use linearity of `cramer` to take it out of a summation. -/
lemma sum_cramer {β} (s : finset β) (f : β → n → α) :
  ∑ x in s, cramer A (f x) = cramer A (∑ x in s, f x) :=
(linear_map.map_sum (cramer A)).symm

/-- Use linearity of `cramer` and vector evaluation to take `cramer A _ i` out of a summation. -/
lemma sum_cramer_apply {β} (s : finset β) (f : n → β → α) (i : n) :
∑ x in s, cramer A (λ j, f j x) i = cramer A (λ (j : n), ∑ x in s, f j x) i :=
calc ∑ x in s, cramer A (λ j, f j x) i
    = (∑ x in s, cramer A (λ j, f j x)) i : (finset.sum_apply i s _).symm
... = cramer A (λ (j : n), ∑ x in s, f j x) i :
  by { rw [sum_cramer, cramer_apply], congr' with j, apply finset.sum_apply }

end cramer

section adjugate
/-!
### `adjugate` section

Define the `adjugate` matrix and a few equations.
These will hold for any matrix over a commutative ring.
-/

/-- The adjugate matrix is the transpose of the cofactor matrix.

  Typically, the cofactor matrix is defined by taking the determinant of minors,
  i.e. the matrix with a row and column removed.
  However, the proof of `mul_adjugate` becomes a lot easier if we define the
  minor as replacing a column with a basis vector, since it allows us to use
  facts about the `cramer` map.
-/
def adjugate (A : matrix n n α) : matrix n n α := λ i, cramer Aᵀ (pi.single i 1)

lemma adjugate_def (A : matrix n n α) :
  adjugate A = λ i, cramer Aᵀ (pi.single i 1) := rfl

lemma adjugate_apply (A : matrix n n α) (i j : n) :
  adjugate A i j = (A.update_row j (pi.single i 1)).det :=
by { rw adjugate_def, simp only, rw [cramer_apply, update_column_transpose, det_transpose], }

lemma adjugate_transpose (A : matrix n n α) : (adjugate A)ᵀ = adjugate (Aᵀ) :=
begin
  ext i j,
  rw [transpose_apply, adjugate_apply, adjugate_apply, update_row_transpose, det_transpose],
  rw [det_apply', det_apply'],
  apply finset.sum_congr rfl,
  intros σ _,
  congr' 1,

  by_cases i = σ j,
  { -- Everything except `(i , j)` (= `(σ j , j)`) is given by A, and the rest is a single `1`.
    congr; ext j',
    subst h,
    have : σ j' = σ j ↔ j' = j := σ.injective.eq_iff,
    rw [update_row_apply, update_column_apply],
    simp_rw this,
    rw [←dite_eq_ite, ←dite_eq_ite],
    congr' 1 with rfl,
    rw [pi.single_eq_same, pi.single_eq_same], },
  { -- Otherwise, we need to show that there is a `0` somewhere in the product.
    have : (∏ j' : n, update_column A j (pi.single i 1) (σ j') j') = 0,
    { apply prod_eq_zero (mem_univ j),
      rw [update_column_self, pi.single_eq_of_ne' h], },
    rw this,
    apply prod_eq_zero (mem_univ (σ⁻¹ i)),
    erw [apply_symm_apply σ i, update_row_self],
    apply pi.single_eq_of_ne,
    intro h',
    exact h ((symm_apply_eq σ).mp h') }
end

/-- Since the map `b ↦ cramer A b` is linear in `b`, it must be multiplication by some matrix. This
matrix is `A.adjugate`. -/
lemma cramer_eq_adjugate_mul_vec (A : matrix n n α) (b : n → α) :
  cramer A b = A.adjugate.mul_vec b :=
begin
  nth_rewrite 1 ← A.transpose_transpose,
  rw [← adjugate_transpose, adjugate_def],
  have : b = ∑ i, (b i) • (pi.single i 1),
  { refine (pi_eq_sum_univ b).trans _, congr' with j, simp [pi.single_apply, eq_comm] },
  nth_rewrite 0 this, ext k,
  simp [mul_vec, dot_product, mul_comm],
end

lemma mul_adjugate_apply (A : matrix n n α) (i j k) :
  A i k * adjugate A k j = cramer Aᵀ (pi.single k (A i k)) j :=
begin
  erw [←smul_eq_mul, ←pi.smul_apply, ←linear_map.map_smul, ←pi.single_smul', smul_eq_mul, mul_one],
end

lemma mul_adjugate (A : matrix n n α) : A ⬝ adjugate A = A.det • 1 :=
begin
  ext i j,
  rw [mul_apply, pi.smul_apply, pi.smul_apply, one_apply, smul_eq_mul, mul_boole],
  simp [mul_adjugate_apply, sum_cramer_apply, cramer_transpose_row_self, pi.single_apply, eq_comm]
end

lemma adjugate_mul (A : matrix n n α) : adjugate A ⬝ A = A.det • 1 :=
calc adjugate A ⬝ A = (Aᵀ ⬝ (adjugate Aᵀ))ᵀ :
  by rw [←adjugate_transpose, ←transpose_mul, transpose_transpose]
... = A.det • 1 : by rw [mul_adjugate (Aᵀ), det_transpose, transpose_smul, transpose_one]

lemma adjugate_smul (r : α) (A : matrix n n α) :
  adjugate (r • A) = r ^ (fintype.card n - 1) • adjugate A :=
begin
  rw [adjugate, adjugate, transpose_smul, cramer_smul],
  refl,
end

/-- A stronger form of **Cramer's rule** that allows us to solve some instances of `A ⬝ x = b` even
if the determinant is not a unit. A sufficient (but still not necessary) condition is that `A.det`
divides `b`. -/
@[simp] lemma mul_vec_cramer (A : matrix n n α) (b : n → α) :
  A.mul_vec (cramer A b) = A.det • b :=
by rw [cramer_eq_adjugate_mul_vec, mul_vec_mul_vec, mul_adjugate, smul_mul_vec_assoc, one_mul_vec]

lemma adjugate_subsingleton [subsingleton n] (A : matrix n n α) : adjugate A = 1 :=
begin
  ext i j,
  simp [subsingleton.elim i j, adjugate_apply, det_eq_elem_of_subsingleton _ i]
end

lemma adjugate_eq_one_of_card_eq_one {A : matrix n n α} (h : fintype.card n = 1) : adjugate A = 1 :=
begin
  haveI : subsingleton n := fintype.card_le_one_iff_subsingleton.mp h.le,
  exact adjugate_subsingleton _
end

@[simp] lemma adjugate_zero [nontrivial n] : adjugate (0 : matrix n n α) = 0 :=
begin
  ext i j,
  obtain ⟨j', hj'⟩ : ∃ j', j' ≠ j := exists_ne j,
  apply det_eq_zero_of_column_eq_zero j',
  intro j'',
  simp [update_column_ne hj'],
end

@[simp] lemma adjugate_one : adjugate (1 : matrix n n α) = 1 :=
by { ext, simp [adjugate_def, matrix.one_apply, pi.single_apply, eq_comm] }

@[simp] lemma adjugate_diagonal (v : n → α) :
  adjugate (diagonal v) = diagonal (λ i, ∏ j in finset.univ.erase i, v j) :=
begin
  ext,
  simp only [adjugate_def, cramer_apply, diagonal_transpose],
  obtain rfl | hij := eq_or_ne i j,
  { rw [diagonal_apply_eq, diagonal_update_column_single, det_diagonal,
      prod_update_of_mem (finset.mem_univ _), sdiff_singleton_eq_erase, one_mul] },
  { rw diagonal_apply_ne _ hij,
    refine det_eq_zero_of_row_eq_zero j (λ k, _),
    obtain rfl | hjk := eq_or_ne k j,
    { rw [update_column_self, pi.single_eq_of_ne' hij] },
    { rw [update_column_ne hjk, diagonal_apply_ne' _ hjk]} },
end

lemma _root_.ring_hom.map_adjugate {R S : Type*} [comm_ring R] [comm_ring S] (f : R →+* S)
  (M : matrix n n R) : f.map_matrix M.adjugate = matrix.adjugate (f.map_matrix M) :=
begin
  ext i k,
  have : pi.single i (1 : S) = f ∘ pi.single i 1,
  { rw ←f.map_one,
    exact pi.single_op (λ i, f) (λ i, f.map_zero) i (1 : R) },
  rw [adjugate_apply, ring_hom.map_matrix_apply, map_apply, ring_hom.map_matrix_apply,
      this, ←map_update_row, ←ring_hom.map_matrix_apply, ←ring_hom.map_det, ←adjugate_apply]
end

lemma _root_.alg_hom.map_adjugate {R A B : Type*} [comm_semiring R] [comm_ring A] [comm_ring B]
  [algebra R A] [algebra R B] (f : A →ₐ[R] B)
  (M : matrix n n A) : f.map_matrix M.adjugate = matrix.adjugate (f.map_matrix M) :=
f.to_ring_hom.map_adjugate _


lemma det_adjugate (A : matrix n n α) : (adjugate A).det = A.det ^ (fintype.card n - 1) :=
begin
  -- get rid of the `- 1`
  cases (fintype.card n).eq_zero_or_pos with h_card h_card,
  { haveI : is_empty n := fintype.card_eq_zero_iff.mp h_card,
    rw [h_card, nat.zero_sub, pow_zero, adjugate_subsingleton, det_one] },
  replace h_card := tsub_add_cancel_of_le h_card.nat_succ_le,

  -- express `A` as an evaluation of a polynomial in n^2 variables, and solve in the polynomial ring
  -- where `A'.det` is non-zero.
  let A' := mv_polynomial_X n n ℤ,
  suffices : A'.adjugate.det = A'.det ^ (fintype.card n - 1),
  { rw [←mv_polynomial_X_map_matrix_aeval ℤ A, ←alg_hom.map_adjugate, ←alg_hom.map_det,
      ←alg_hom.map_det, ←alg_hom.map_pow, this] },

  apply mul_left_cancel₀ (show A'.det ≠ 0, from det_mv_polynomial_X_ne_zero n ℤ),
  calc  A'.det * A'.adjugate.det
      = (A' ⬝ adjugate A').det                 : (det_mul _ _).symm
  ... = A'.det ^ fintype.card n                : by rw [mul_adjugate, det_smul, det_one, mul_one]
  ... = A'.det * A'.det ^ (fintype.card n - 1) : by rw [←pow_succ, h_card],
end

@[simp] lemma adjugate_fin_zero (A : matrix (fin 0) (fin 0) α) : adjugate A = 0 :=
@subsingleton.elim _ matrix.subsingleton_of_empty_left _ _

@[simp] lemma adjugate_fin_one (A : matrix (fin 1) (fin 1) α) : adjugate A = 1 :=
adjugate_subsingleton A

lemma adjugate_fin_two (A : matrix (fin 2) (fin 2) α) :
  adjugate A = !![A 1 1, -A 0 1; -A 1 0, A 0 0] :=
begin
  ext i j,
  rw [adjugate_apply, det_fin_two],
  fin_cases i with [0, 1]; fin_cases j with [0, 1];
  simp only [nat.one_ne_zero, one_mul, fin.one_eq_zero_iff, pi.single_eq_same, zero_mul,
    fin.zero_eq_one_iff, sub_zero, pi.single_eq_of_ne, ne.def, not_false_iff, update_row_self,
    update_row_ne, cons_val_zero, mul_zero, mul_one, zero_sub, cons_val_one, head_cons, of_apply],
end

@[simp] lemma adjugate_fin_two_of (a b c d : α) :
  adjugate !![a, b; c, d] = !![d, -b; -c, a] :=
adjugate_fin_two _

lemma adjugate_conj_transpose [star_ring α] (A : matrix n n α) : A.adjugateᴴ = adjugate (Aᴴ) :=
begin
  dsimp only [conj_transpose],
  have : Aᵀ.adjugate.map star = adjugate (Aᵀ.map star) := ((star_ring_end α).map_adjugate Aᵀ),
  rw [A.adjugate_transpose, this],
end

lemma is_regular_of_is_left_regular_det {A : matrix n n α} (hA : is_left_regular A.det) :
  is_regular A :=
begin
  split,
  { intros B C h,
    refine hA.matrix _,
    rw [←matrix.one_mul B, ←matrix.one_mul C, ←matrix.smul_mul, ←matrix.smul_mul, ←adjugate_mul,
        matrix.mul_assoc, matrix.mul_assoc, ←mul_eq_mul A, h, mul_eq_mul] },
  { intros B C h,
    simp only [mul_eq_mul] at h,
    refine hA.matrix _,
    rw [←matrix.mul_one B, ←matrix.mul_one C, ←matrix.mul_smul, ←matrix.mul_smul, ←mul_adjugate,
        ←matrix.mul_assoc, ←matrix.mul_assoc, h] }
end

lemma adjugate_mul_distrib_aux (A B : matrix n n α)
  (hA : is_left_regular A.det)
  (hB : is_left_regular B.det) :
  adjugate (A ⬝ B) = adjugate B ⬝ adjugate A :=
begin
  have hAB : is_left_regular (A ⬝ B).det,
  { rw [det_mul],
    exact hA.mul hB },
  refine (is_regular_of_is_left_regular_det hAB).left _,
  rw [mul_eq_mul, mul_adjugate, mul_eq_mul, matrix.mul_assoc, ←matrix.mul_assoc B, mul_adjugate,
      smul_mul, matrix.one_mul, mul_smul, mul_adjugate, smul_smul, mul_comm, ←det_mul]
end

/--
Proof follows from "The trace Cayley-Hamilton theorem" by Darij Grinberg, Section 5.3
-/
lemma adjugate_mul_distrib (A B : matrix n n α) : adjugate (A ⬝ B) = adjugate B ⬝ adjugate A :=
begin
  let g : matrix n n α → matrix n n α[X] :=
    λ M, M.map polynomial.C + (polynomial.X : α[X]) • 1,
  let f' : matrix n n α[X] →+* matrix n n α := (polynomial.eval_ring_hom 0).map_matrix,
  have f'_inv : ∀ M, f' (g M) = M,
  { intro,
    ext,
    simp [f', g], },
  have f'_adj : ∀ (M : matrix n n α), f' (adjugate (g M)) = adjugate M,
  { intro,
    rw [ring_hom.map_adjugate, f'_inv] },
  have f'_g_mul : ∀ (M N : matrix n n α), f' (g M ⬝ g N) = M ⬝ N,
  { intros,
    rw [←mul_eq_mul, ring_hom.map_mul, f'_inv, f'_inv, mul_eq_mul] },
  have hu : ∀ (M : matrix n n α), is_regular (g M).det,
  { intros M,
    refine polynomial.monic.is_regular _,
    simp only [g, polynomial.monic.def, ←polynomial.leading_coeff_det_X_one_add_C M, add_comm] },
  rw [←f'_adj, ←f'_adj, ←f'_adj, ←mul_eq_mul (f' (adjugate (g B))), ←f'.map_mul, mul_eq_mul,
      ←adjugate_mul_distrib_aux _ _ (hu A).left (hu B).left, ring_hom.map_adjugate,
      ring_hom.map_adjugate, f'_inv, f'_g_mul]
end

@[simp] lemma adjugate_pow (A : matrix n n α) (k : ℕ) :
  adjugate (A ^ k) = (adjugate A) ^ k :=
begin
  induction k with k IH,
  { simp },
  { rw [pow_succ', mul_eq_mul, adjugate_mul_distrib, IH, ←mul_eq_mul, pow_succ] }
end

lemma det_smul_adjugate_adjugate (A : matrix n n α) :
  det A • adjugate (adjugate A) = det A ^ (fintype.card n - 1) • A :=
begin
  have : A ⬝ (A.adjugate ⬝ A.adjugate.adjugate) = A ⬝ (A.det ^ (fintype.card n - 1) • 1),
  { rw [←adjugate_mul_distrib, adjugate_mul, adjugate_smul, adjugate_one], },
  rwa [←matrix.mul_assoc, mul_adjugate, matrix.mul_smul, matrix.mul_one, matrix.smul_mul,
    matrix.one_mul] at this,
end

/-- Note that this is not true for `fintype.card n = 1` since `1 - 2 = 0` and not `-1`. -/
lemma adjugate_adjugate (A : matrix n n α) (h : fintype.card n ≠ 1) :
  adjugate (adjugate A) = det A ^ (fintype.card n - 2) • A :=
begin
  -- get rid of the `- 2`
  cases h_card : (fintype.card n) with n',
  { haveI : is_empty n := fintype.card_eq_zero_iff.mp h_card,
    exact @subsingleton.elim _ (matrix.subsingleton_of_empty_left) _ _, },
  cases n',
  { exact (h h_card).elim },
  rw ←h_card,

  -- express `A` as an evaluation of a polynomial in n^2 variables, and solve in the polynomial ring
  -- where `A'.det` is non-zero.
  let A' := mv_polynomial_X n n ℤ,
  suffices : adjugate (adjugate A') = det A' ^ (fintype.card n - 2) • A',
  { rw [←mv_polynomial_X_map_matrix_aeval ℤ A, ←alg_hom.map_adjugate, ←alg_hom.map_adjugate, this,
      ←alg_hom.map_det, ← alg_hom.map_pow, alg_hom.map_matrix_apply, alg_hom.map_matrix_apply,
      matrix.map_smul' _ _ _ (_root_.map_mul _)] },
  have h_card' : fintype.card n - 2 + 1 = fintype.card n - 1,
  { simp [h_card] },

  have is_reg : is_smul_regular (mv_polynomial (n × n) ℤ) (det A') :=
    λ x y, mul_left_cancel₀ (det_mv_polynomial_X_ne_zero n ℤ),
  apply is_reg.matrix,
  rw [smul_smul, ←pow_succ, h_card', det_smul_adjugate_adjugate],
end

/-- A weaker version of `matrix.adjugate_adjugate` that uses `nontrivial`. -/
lemma adjugate_adjugate' (A : matrix n n α) [nontrivial n] :
  adjugate (adjugate A) = det A ^ (fintype.card n - 2) • A :=
adjugate_adjugate _ $ fintype.one_lt_card.ne'

end adjugate

end matrix