Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 5,455 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
/-
Copyright (c) 2019 Johannes HΓΆlzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes HΓΆlzl, Patrick Massot, Casper Putz, Anne Baanen
-/

import linear_algebra.matrix.determinant

/-!
# Changing the index type of a matrix

This file concerns the map `matrix.reindex`, mapping a `m` by `n` matrix
to an `m'` by `n'` matrix, as long as `m ≃ m'` and `n ≃ n'`.

## Main definitions

* `matrix.reindex_linear_equiv R A`: `matrix.reindex` is an `R`-linear equivalence between
  `A`-matrices.
* `matrix.reindex_alg_equiv R`: `matrix.reindex` is an `R`-algebra equivalence between `R`-matrices.

## Tags

matrix, reindex

-/

namespace matrix

open equiv

open_locale matrix



variables {l m n o : Type*} {l' m' n' o' : Type*} {m'' n'' : Type*}
variables (R A : Type*)

section add_comm_monoid
variables [semiring R] [add_comm_monoid A] [module R A]

/-- The natural map that reindexes a matrix's rows and columns with equivalent types,
`matrix.reindex`, is a linear equivalence. -/
def reindex_linear_equiv (eβ‚˜ : m ≃ m') (eβ‚™ : n ≃ n') : matrix m n A ≃ₗ[R] matrix m' n' A :=
{ map_add'  := Ξ» _ _, rfl,
  map_smul' := Ξ» _ _, rfl,
  ..(reindex eβ‚˜ eβ‚™)}

@[simp] lemma reindex_linear_equiv_apply
  (eβ‚˜ : m ≃ m') (eβ‚™ : n ≃ n') (M : matrix m n A) :
  reindex_linear_equiv R A eβ‚˜ eβ‚™ M = reindex eβ‚˜ eβ‚™ M :=
rfl

@[simp] lemma reindex_linear_equiv_symm (eβ‚˜ : m ≃ m') (eβ‚™ : n ≃ n') :
  (reindex_linear_equiv R A eβ‚˜ eβ‚™).symm = reindex_linear_equiv R A eβ‚˜.symm eβ‚™.symm :=
rfl

@[simp] lemma reindex_linear_equiv_refl_refl :
  reindex_linear_equiv R A (equiv.refl m) (equiv.refl n) = linear_equiv.refl R _ :=
linear_equiv.ext $ Ξ» _, rfl

lemma reindex_linear_equiv_trans (e₁ : m ≃ m') (eβ‚‚ : n ≃ n') (e₁' : m' ≃ m'')
  (eβ‚‚' : n' ≃ n'') : (reindex_linear_equiv R A e₁ eβ‚‚).trans (reindex_linear_equiv R A e₁' eβ‚‚') =
   (reindex_linear_equiv R A (e₁.trans e₁') (eβ‚‚.trans eβ‚‚') : _ ≃ₗ[R] _) :=
by { ext, refl }

lemma reindex_linear_equiv_comp (e₁ : m ≃ m') (eβ‚‚ : n ≃ n') (e₁' : m' ≃ m'')
  (eβ‚‚' : n' ≃ n'') :
  (reindex_linear_equiv R A e₁' eβ‚‚') ∘ (reindex_linear_equiv R A e₁ eβ‚‚)
  = reindex_linear_equiv R A (e₁.trans e₁') (eβ‚‚.trans eβ‚‚') :=
by { rw [← reindex_linear_equiv_trans], refl }

lemma reindex_linear_equiv_comp_apply (e₁ : m ≃ m') (eβ‚‚ : n ≃ n') (e₁' : m' ≃ m'')
  (eβ‚‚' : n' ≃ n'') (M : matrix m n A) :
  (reindex_linear_equiv R A e₁' eβ‚‚') (reindex_linear_equiv R A e₁ eβ‚‚ M) =
    reindex_linear_equiv R A (e₁.trans e₁') (eβ‚‚.trans eβ‚‚') M :=
minor_minor _ _ _ _ _

lemma reindex_linear_equiv_one [decidable_eq m] [decidable_eq m'] [has_one A]
  (e : m ≃ m') : (reindex_linear_equiv R A e e (1 : matrix m m A)) = 1 :=
minor_one_equiv e.symm

end add_comm_monoid

section semiring
variables [semiring R] [semiring A] [module R A]

lemma reindex_linear_equiv_mul [fintype n] [fintype n']
  (eβ‚˜ : m ≃ m') (eβ‚™ : n ≃ n') (eβ‚’ : o ≃ o') (M : matrix m n A) (N : matrix n o A) :
  reindex_linear_equiv R A eβ‚˜ eβ‚™ M ⬝ reindex_linear_equiv R A eβ‚™ eβ‚’ N =
    reindex_linear_equiv R A eβ‚˜ eβ‚’ (M ⬝ N) :=
minor_mul_equiv M N _ _ _

lemma mul_reindex_linear_equiv_one [fintype n] [fintype o] [decidable_eq o] (e₁ : o ≃ n)
  (eβ‚‚ : o ≃ n') (M : matrix m n A) : M.mul (reindex_linear_equiv R A e₁ eβ‚‚ 1) =
    reindex_linear_equiv R A (equiv.refl m) (e₁.symm.trans eβ‚‚) M :=
mul_minor_one _ _ _

end semiring

section algebra

variables [comm_semiring R] [fintype n] [fintype m] [decidable_eq m] [decidable_eq n]

/--
For square matrices with coefficients in commutative semirings, the natural map that reindexes
a matrix's rows and columns with equivalent types, `matrix.reindex`, is an equivalence of algebras.
-/
def reindex_alg_equiv (e : m ≃ n) : matrix m m R ≃ₐ[R] matrix n n R :=
{ to_fun    := reindex e e,
  map_mul'  := Ξ» a b, (reindex_linear_equiv_mul R R e e e a b).symm,
  commutes' := Ξ» r, by simp [algebra_map, algebra.to_ring_hom, minor_smul],
  ..(reindex_linear_equiv R R e e) }

@[simp] lemma reindex_alg_equiv_apply (e : m ≃ n) (M : matrix m m R) :
  reindex_alg_equiv R e M = reindex e e M :=
rfl

@[simp] lemma reindex_alg_equiv_symm (e : m ≃ n) :
  (reindex_alg_equiv R e).symm = reindex_alg_equiv R e.symm :=
rfl

@[simp] lemma reindex_alg_equiv_refl : reindex_alg_equiv R (equiv.refl m) = alg_equiv.refl :=
alg_equiv.ext $ Ξ» _, rfl

lemma reindex_alg_equiv_mul (e : m ≃ n) (M : matrix m m R) (N : matrix m m R) :
  reindex_alg_equiv R e (M ⬝ N) = reindex_alg_equiv R e M ⬝ reindex_alg_equiv R e N :=
(reindex_alg_equiv R e).map_mul M N

end algebra

/-- Reindexing both indices along the same equivalence preserves the determinant.

For the `simp` version of this lemma, see `det_minor_equiv_self`.
-/
lemma det_reindex_linear_equiv_self [comm_ring R] [fintype m] [decidable_eq m]
  [fintype n] [decidable_eq n] (e : m ≃ n) (M : matrix m m R) :
  det (reindex_linear_equiv R R e e M) = det M :=
det_reindex_self e M

/-- Reindexing both indices along the same equivalence preserves the determinant.

For the `simp` version of this lemma, see `det_minor_equiv_self`.
-/
lemma det_reindex_alg_equiv [comm_ring R] [fintype m] [decidable_eq m] [fintype n] [decidable_eq n]
  (e : m ≃ n) (A : matrix m m R) :
  det (reindex_alg_equiv R e A) = det A :=
det_reindex_self e A

end matrix