Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 5,455 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
/-
Copyright (c) 2019 Johannes HΓΆlzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes HΓΆlzl, Patrick Massot, Casper Putz, Anne Baanen
-/
import linear_algebra.matrix.determinant
/-!
# Changing the index type of a matrix
This file concerns the map `matrix.reindex`, mapping a `m` by `n` matrix
to an `m'` by `n'` matrix, as long as `m β m'` and `n β n'`.
## Main definitions
* `matrix.reindex_linear_equiv R A`: `matrix.reindex` is an `R`-linear equivalence between
`A`-matrices.
* `matrix.reindex_alg_equiv R`: `matrix.reindex` is an `R`-algebra equivalence between `R`-matrices.
## Tags
matrix, reindex
-/
namespace matrix
open equiv
open_locale matrix
variables {l m n o : Type*} {l' m' n' o' : Type*} {m'' n'' : Type*}
variables (R A : Type*)
section add_comm_monoid
variables [semiring R] [add_comm_monoid A] [module R A]
/-- The natural map that reindexes a matrix's rows and columns with equivalent types,
`matrix.reindex`, is a linear equivalence. -/
def reindex_linear_equiv (eβ : m β m') (eβ : n β n') : matrix m n A ββ[R] matrix m' n' A :=
{ map_add' := Ξ» _ _, rfl,
map_smul' := Ξ» _ _, rfl,
..(reindex eβ eβ)}
@[simp] lemma reindex_linear_equiv_apply
(eβ : m β m') (eβ : n β n') (M : matrix m n A) :
reindex_linear_equiv R A eβ eβ M = reindex eβ eβ M :=
rfl
@[simp] lemma reindex_linear_equiv_symm (eβ : m β m') (eβ : n β n') :
(reindex_linear_equiv R A eβ eβ).symm = reindex_linear_equiv R A eβ.symm eβ.symm :=
rfl
@[simp] lemma reindex_linear_equiv_refl_refl :
reindex_linear_equiv R A (equiv.refl m) (equiv.refl n) = linear_equiv.refl R _ :=
linear_equiv.ext $ Ξ» _, rfl
lemma reindex_linear_equiv_trans (eβ : m β m') (eβ : n β n') (eβ' : m' β m'')
(eβ' : n' β n'') : (reindex_linear_equiv R A eβ eβ).trans (reindex_linear_equiv R A eβ' eβ') =
(reindex_linear_equiv R A (eβ.trans eβ') (eβ.trans eβ') : _ ββ[R] _) :=
by { ext, refl }
lemma reindex_linear_equiv_comp (eβ : m β m') (eβ : n β n') (eβ' : m' β m'')
(eβ' : n' β n'') :
(reindex_linear_equiv R A eβ' eβ') β (reindex_linear_equiv R A eβ eβ)
= reindex_linear_equiv R A (eβ.trans eβ') (eβ.trans eβ') :=
by { rw [β reindex_linear_equiv_trans], refl }
lemma reindex_linear_equiv_comp_apply (eβ : m β m') (eβ : n β n') (eβ' : m' β m'')
(eβ' : n' β n'') (M : matrix m n A) :
(reindex_linear_equiv R A eβ' eβ') (reindex_linear_equiv R A eβ eβ M) =
reindex_linear_equiv R A (eβ.trans eβ') (eβ.trans eβ') M :=
minor_minor _ _ _ _ _
lemma reindex_linear_equiv_one [decidable_eq m] [decidable_eq m'] [has_one A]
(e : m β m') : (reindex_linear_equiv R A e e (1 : matrix m m A)) = 1 :=
minor_one_equiv e.symm
end add_comm_monoid
section semiring
variables [semiring R] [semiring A] [module R A]
lemma reindex_linear_equiv_mul [fintype n] [fintype n']
(eβ : m β m') (eβ : n β n') (eβ : o β o') (M : matrix m n A) (N : matrix n o A) :
reindex_linear_equiv R A eβ eβ M β¬ reindex_linear_equiv R A eβ eβ N =
reindex_linear_equiv R A eβ eβ (M β¬ N) :=
minor_mul_equiv M N _ _ _
lemma mul_reindex_linear_equiv_one [fintype n] [fintype o] [decidable_eq o] (eβ : o β n)
(eβ : o β n') (M : matrix m n A) : M.mul (reindex_linear_equiv R A eβ eβ 1) =
reindex_linear_equiv R A (equiv.refl m) (eβ.symm.trans eβ) M :=
mul_minor_one _ _ _
end semiring
section algebra
variables [comm_semiring R] [fintype n] [fintype m] [decidable_eq m] [decidable_eq n]
/--
For square matrices with coefficients in commutative semirings, the natural map that reindexes
a matrix's rows and columns with equivalent types, `matrix.reindex`, is an equivalence of algebras.
-/
def reindex_alg_equiv (e : m β n) : matrix m m R ββ[R] matrix n n R :=
{ to_fun := reindex e e,
map_mul' := Ξ» a b, (reindex_linear_equiv_mul R R e e e a b).symm,
commutes' := Ξ» r, by simp [algebra_map, algebra.to_ring_hom, minor_smul],
..(reindex_linear_equiv R R e e) }
@[simp] lemma reindex_alg_equiv_apply (e : m β n) (M : matrix m m R) :
reindex_alg_equiv R e M = reindex e e M :=
rfl
@[simp] lemma reindex_alg_equiv_symm (e : m β n) :
(reindex_alg_equiv R e).symm = reindex_alg_equiv R e.symm :=
rfl
@[simp] lemma reindex_alg_equiv_refl : reindex_alg_equiv R (equiv.refl m) = alg_equiv.refl :=
alg_equiv.ext $ Ξ» _, rfl
lemma reindex_alg_equiv_mul (e : m β n) (M : matrix m m R) (N : matrix m m R) :
reindex_alg_equiv R e (M β¬ N) = reindex_alg_equiv R e M β¬ reindex_alg_equiv R e N :=
(reindex_alg_equiv R e).map_mul M N
end algebra
/-- Reindexing both indices along the same equivalence preserves the determinant.
For the `simp` version of this lemma, see `det_minor_equiv_self`.
-/
lemma det_reindex_linear_equiv_self [comm_ring R] [fintype m] [decidable_eq m]
[fintype n] [decidable_eq n] (e : m β n) (M : matrix m m R) :
det (reindex_linear_equiv R R e e M) = det M :=
det_reindex_self e M
/-- Reindexing both indices along the same equivalence preserves the determinant.
For the `simp` version of this lemma, see `det_minor_equiv_self`.
-/
lemma det_reindex_alg_equiv [comm_ring R] [fintype m] [decidable_eq m] [fintype n] [decidable_eq n]
(e : m β n) (A : matrix m m R) :
det (reindex_alg_equiv R e A) = det A :=
det_reindex_self e A
end matrix
|