Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 11,585 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
/-
Copyright (c) 2021 Joseph Myers. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Myers
-/
import linear_algebra.ray
import linear_algebra.determinant
/-!
# Orientations of modules
This file defines orientations of modules.
## Main definitions
* `orientation` is a type synonym for `module.ray` for the case where the module is that of
alternating maps from a module to its underlying ring. An orientation may be associated with an
alternating map or with a basis.
* `module.oriented` is a type class for a choice of orientation of a module that is considered
the positive orientation.
## Implementation notes
`orientation` is defined for an arbitrary index type, but the main intended use case is when
that index type is a `fintype` and there exists a basis of the same cardinality.
## References
* https://en.wikipedia.org/wiki/Orientation_(vector_space)
-/
noncomputable theory
open_locale big_operators
section ordered_comm_semiring
variables (R : Type*) [ordered_comm_semiring R]
variables (M : Type*) [add_comm_monoid M] [module R M]
variables {N : Type*} [add_comm_monoid N] [module R N]
variables (ι : Type*) [decidable_eq ι]
/-- An orientation of a module, intended to be used when `ι` is a `fintype` with the same
cardinality as a basis. -/
abbreviation orientation := module.ray R (alternating_map R M R ι)
/-- A type class fixing an orientation of a module. -/
class module.oriented :=
(positive_orientation : orientation R M ι)
variables {R M}
/-- An equivalence between modules implies an equivalence between orientations. -/
def orientation.map (e : M ≃ₗ[R] N) : orientation R M ι ≃ orientation R N ι :=
module.ray.map $ alternating_map.dom_lcongr R R ι R e
@[simp] lemma orientation.map_apply (e : M ≃ₗ[R] N) (v : alternating_map R M R ι)
(hv : v ≠ 0) :
orientation.map ι e (ray_of_ne_zero _ v hv) = ray_of_ne_zero _ (v.comp_linear_map e.symm)
(mt (v.comp_linear_equiv_eq_zero_iff e.symm).mp hv) := rfl
@[simp] lemma orientation.map_refl :
(orientation.map ι $ linear_equiv.refl R M) = equiv.refl _ :=
by rw [orientation.map, alternating_map.dom_lcongr_refl, module.ray.map_refl]
@[simp] lemma orientation.map_symm (e : M ≃ₗ[R] N) :
(orientation.map ι e).symm = orientation.map ι e.symm := rfl
end ordered_comm_semiring
section ordered_comm_ring
variables {R : Type*} [ordered_comm_ring R]
variables {M N : Type*} [add_comm_group M] [add_comm_group N] [module R M] [module R N]
namespace basis
variables {ι : Type*} [fintype ι] [decidable_eq ι]
/-- The orientation given by a basis. -/
protected def orientation [nontrivial R] (e : basis ι R M) : orientation R M ι :=
ray_of_ne_zero R _ e.det_ne_zero
lemma orientation_map [nontrivial R] (e : basis ι R M)
(f : M ≃ₗ[R] N) : (e.map f).orientation = orientation.map ι f e.orientation :=
by simp_rw [basis.orientation, orientation.map_apply, basis.det_map']
/-- The value of `orientation.map` when the index type has the cardinality of a basis, in terms
of `f.det`. -/
lemma map_orientation_eq_det_inv_smul (e : basis ι R M)
(x : orientation R M ι) (f : M ≃ₗ[R] M) : orientation.map ι f x = (f.det)⁻¹ • x :=
begin
induction x using module.ray.ind with g hg,
rw [orientation.map_apply, smul_ray_of_ne_zero, ray_eq_iff, units.smul_def,
(g.comp_linear_map ↑f.symm).eq_smul_basis_det e, g.eq_smul_basis_det e,
alternating_map.comp_linear_map_apply, alternating_map.smul_apply, basis.det_comp,
basis.det_self, mul_one, smul_eq_mul, mul_comm, mul_smul, linear_equiv.coe_inv_det],
end
/-- The orientation given by a basis derived using `units_smul`, in terms of the product of those
units. -/
lemma orientation_units_smul [nontrivial R] (e : basis ι R M) (w : ι → units R) :
(e.units_smul w).orientation = (∏ i, w i)⁻¹ • e.orientation :=
begin
rw [basis.orientation, basis.orientation, smul_ray_of_ne_zero, ray_eq_iff,
e.det.eq_smul_basis_det (e.units_smul w), det_units_smul, units.smul_def, smul_smul],
norm_cast,
simp
end
end basis
end ordered_comm_ring
section linear_ordered_comm_ring
variables {R : Type*} [linear_ordered_comm_ring R]
variables {M : Type*} [add_comm_group M] [module R M]
variables {ι : Type*} [decidable_eq ι]
namespace basis
variables [fintype ι]
/-- The orientations given by two bases are equal if and only if the determinant of one basis
with respect to the other is positive. -/
lemma orientation_eq_iff_det_pos (e₁ e₂ : basis ι R M) :
e₁.orientation = e₂.orientation ↔ 0 < e₁.det e₂ :=
calc e₁.orientation = e₂.orientation ↔ same_ray R e₁.det e₂.det : ray_eq_iff _ _
... ↔ same_ray R (e₁.det e₂ • e₂.det) e₂.det : by rw [← e₁.det.eq_smul_basis_det e₂]
... ↔ 0 < e₁.det e₂ : same_ray_smul_left_iff_of_ne e₂.det_ne_zero (e₁.is_unit_det e₂).ne_zero
/-- Given a basis, any orientation equals the orientation given by that basis or its negation. -/
lemma orientation_eq_or_eq_neg (e : basis ι R M) (x : orientation R M ι) :
x = e.orientation ∨ x = -e.orientation :=
begin
induction x using module.ray.ind with x hx,
rw ← x.map_basis_ne_zero_iff e at hx,
rwa [basis.orientation, ray_eq_iff, neg_ray_of_ne_zero, ray_eq_iff, x.eq_smul_basis_det e,
same_ray_neg_smul_left_iff_of_ne e.det_ne_zero hx,
same_ray_smul_left_iff_of_ne e.det_ne_zero hx, lt_or_lt_iff_ne, ne_comm]
end
/-- Given a basis, an orientation equals the negation of that given by that basis if and only
if it does not equal that given by that basis. -/
lemma orientation_ne_iff_eq_neg (e : basis ι R M) (x : orientation R M ι) :
x ≠ e.orientation ↔ x = -e.orientation :=
⟨λ h, (e.orientation_eq_or_eq_neg x).resolve_left h,
λ h, h.symm ▸ (module.ray.ne_neg_self e.orientation).symm⟩
/-- Composing a basis with a linear equiv gives the same orientation if and only if the
determinant is positive. -/
lemma orientation_comp_linear_equiv_eq_iff_det_pos (e : basis ι R M) (f : M ≃ₗ[R] M) :
(e.map f).orientation = e.orientation ↔ 0 < (f : M →ₗ[R] M).det :=
by rw [orientation_map, e.map_orientation_eq_det_inv_smul, units_inv_smul, units_smul_eq_self_iff,
linear_equiv.coe_det]
/-- Composing a basis with a linear equiv gives the negation of that orientation if and only if
the determinant is negative. -/
lemma orientation_comp_linear_equiv_eq_neg_iff_det_neg (e : basis ι R M) (f : M ≃ₗ[R] M) :
(e.map f).orientation = -e.orientation ↔ (f : M →ₗ[R] M).det < 0 :=
by rw [orientation_map, e.map_orientation_eq_det_inv_smul, units_inv_smul, units_smul_eq_neg_iff,
linear_equiv.coe_det]
/-- Negating a single basis vector (represented using `units_smul`) negates the corresponding
orientation. -/
@[simp] lemma orientation_neg_single [nontrivial R] (e : basis ι R M) (i : ι) :
(e.units_smul (function.update 1 i (-1))).orientation = -e.orientation :=
begin
rw [orientation_units_smul, finset.prod_update_of_mem (finset.mem_univ _)],
simp
end
/-- Given a basis and an orientation, return a basis giving that orientation: either the original
basis, or one constructed by negating a single (arbitrary) basis vector. -/
def adjust_to_orientation [nontrivial R] [nonempty ι] (e : basis ι R M) (x : orientation R M ι) :
basis ι R M :=
by haveI := classical.dec_eq (orientation R M ι); exact if e.orientation = x then e else
(e.units_smul (function.update 1 (classical.arbitrary ι) (-1)))
/-- `adjust_to_orientation` gives a basis with the required orientation. -/
@[simp] lemma orientation_adjust_to_orientation [nontrivial R] [nonempty ι] (e : basis ι R M)
(x : orientation R M ι) : (e.adjust_to_orientation x).orientation = x :=
begin
rw adjust_to_orientation,
split_ifs with h,
{ exact h },
{ rw [orientation_neg_single, eq_comm, ←orientation_ne_iff_eq_neg, ne_comm],
exact h }
end
/-- Every basis vector from `adjust_to_orientation` is either that from the original basis or its
negation. -/
lemma adjust_to_orientation_apply_eq_or_eq_neg [nontrivial R] [nonempty ι] (e : basis ι R M)
(x : orientation R M ι) (i : ι) :
e.adjust_to_orientation x i = e i ∨ e.adjust_to_orientation x i = -(e i) :=
begin
rw adjust_to_orientation,
split_ifs with h,
{ simp },
{ by_cases hi : i = classical.arbitrary ι;
simp [units_smul_apply, hi] }
end
end basis
end linear_ordered_comm_ring
section linear_ordered_field
variables {R : Type*} [linear_ordered_field R]
variables {M : Type*} [add_comm_group M] [module R M]
variables {ι : Type*} [decidable_eq ι]
namespace orientation
variables [fintype ι] [finite_dimensional R M]
open finite_dimensional
/-- If the index type has cardinality equal to the finite dimension, any two orientations are
equal or negations. -/
lemma eq_or_eq_neg (x₁ x₂ : orientation R M ι) (h : fintype.card ι = finrank R M) :
x₁ = x₂ ∨ x₁ = -x₂ :=
begin
have e := (fin_basis R M).reindex (fintype.equiv_fin_of_card_eq h).symm,
rcases e.orientation_eq_or_eq_neg x₁ with h₁|h₁;
rcases e.orientation_eq_or_eq_neg x₂ with h₂|h₂;
simp [h₁, h₂]
end
/-- If the index type has cardinality equal to the finite dimension, an orientation equals the
negation of another orientation if and only if they are not equal. -/
lemma ne_iff_eq_neg (x₁ x₂ : orientation R M ι) (h : fintype.card ι = finrank R M) :
x₁ ≠ x₂ ↔ x₁ = -x₂ :=
⟨λ hn, (eq_or_eq_neg x₁ x₂ h).resolve_left hn, λ he, he.symm ▸ (module.ray.ne_neg_self x₂).symm⟩
/-- The value of `orientation.map` when the index type has cardinality equal to the finite
dimension, in terms of `f.det`. -/
lemma map_eq_det_inv_smul (x : orientation R M ι) (f : M ≃ₗ[R] M)
(h : fintype.card ι = finrank R M) :
orientation.map ι f x = (f.det)⁻¹ • x :=
begin
have e := (fin_basis R M).reindex (fintype.equiv_fin_of_card_eq h).symm,
exact e.map_orientation_eq_det_inv_smul x f
end
/-- If the index type has cardinality equal to the finite dimension, composing an alternating
map with the same linear equiv on each argument gives the same orientation if and only if the
determinant is positive. -/
lemma map_eq_iff_det_pos (x : orientation R M ι) (f : M ≃ₗ[R] M)
(h : fintype.card ι = finrank R M) :
orientation.map ι f x = x ↔ 0 < (f : M →ₗ[R] M).det :=
by rw [map_eq_det_inv_smul _ _ h, units_inv_smul, units_smul_eq_self_iff, linear_equiv.coe_det]
/-- If the index type has cardinality equal to the finite dimension, composing an alternating
map with the same linear equiv on each argument gives the negation of that orientation if and
only if the determinant is negative. -/
lemma map_eq_neg_iff_det_neg (x : orientation R M ι) (f : M ≃ₗ[R] M)
(h : fintype.card ι = finrank R M) :
orientation.map ι f x = -x ↔ (f : M →ₗ[R] M).det < 0 :=
by rw [map_eq_det_inv_smul _ _ h, units_inv_smul, units_smul_eq_neg_iff, linear_equiv.coe_det]
/-- If the index type has cardinality equal to the finite dimension, a basis with the given
orientation. -/
def some_basis [nonempty ι] (x : orientation R M ι) (h : fintype.card ι = finrank R M) :
basis ι R M :=
((fin_basis R M).reindex (fintype.equiv_fin_of_card_eq h).symm).adjust_to_orientation x
/-- `some_basis` gives a basis with the required orientation. -/
@[simp] lemma some_basis_orientation [nonempty ι] (x : orientation R M ι)
(h : fintype.card ι = finrank R M) : (x.some_basis h).orientation = x :=
basis.orientation_adjust_to_orientation _ _
end orientation
end linear_ordered_field
|