Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 28,545 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 |
/-
Copyright (c) 2021 Martin Zinkevich. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Martin Zinkevich, Rémy Degenne
-/
import logic.encodable.lattice
import measure_theory.measurable_space_def
/-!
# Induction principles for measurable sets, related to π-systems and λ-systems.
## Main statements
* The main theorem of this file is Dynkin's π-λ theorem, which appears
here as an induction principle `induction_on_inter`. Suppose `s` is a
collection of subsets of `α` such that the intersection of two members
of `s` belongs to `s` whenever it is nonempty. Let `m` be the σ-algebra
generated by `s`. In order to check that a predicate `C` holds on every
member of `m`, it suffices to check that `C` holds on the members of `s` and
that `C` is preserved by complementation and *disjoint* countable
unions.
* The proof of this theorem relies on the notion of `is_pi_system`, i.e., a collection of sets
which is closed under binary non-empty intersections. Note that this is a small variation around
the usual notion in the literature, which often requires that a π-system is non-empty, and closed
also under disjoint intersections. This variation turns out to be convenient for the
formalization.
* The proof of Dynkin's π-λ theorem also requires the notion of `dynkin_system`, i.e., a collection
of sets which contains the empty set, is closed under complementation and under countable union
of pairwise disjoint sets. The disjointness condition is the only difference with `σ`-algebras.
* `generate_pi_system g` gives the minimal π-system containing `g`.
This can be considered a Galois insertion into both measurable spaces and sets.
* `generate_from_generate_pi_system_eq` proves that if you start from a collection of sets `g`,
take the generated π-system, and then the generated σ-algebra, you get the same result as
the σ-algebra generated from `g`. This is useful because there are connections between
independent sets that are π-systems and the generated independent spaces.
* `mem_generate_pi_system_Union_elim` and `mem_generate_pi_system_Union_elim'` show that any
element of the π-system generated from the union of a set of π-systems can be
represented as the intersection of a finite number of elements from these sets.
* `pi_Union_Inter` defines a new π-system from a family of π-systems `π : ι → set (set α)` and a
set of finsets `S : set (finset α)`. `pi_Union_Inter π S` is the set of sets that can be written
as `⋂ x ∈ t, f x` for some `t ∈ S` and sets `f x ∈ π x`. If `S` is union-closed, then it is a
π-system. The π-systems used to prove Kolmogorov's 0-1 law will be defined using this mechanism
(TODO).
## Implementation details
* `is_pi_system` is a predicate, not a type. Thus, we don't explicitly define the galois
insertion, nor do we define a complete lattice. In theory, we could define a complete
lattice and galois insertion on the subtype corresponding to `is_pi_system`.
-/
open measurable_space set
open_locale classical measure_theory
/-- A π-system is a collection of subsets of `α` that is closed under binary intersection of
non-disjoint sets. Usually it is also required that the collection is nonempty, but we don't do
that here. -/
def is_pi_system {α} (C : set (set α)) : Prop :=
∀ s t ∈ C, (s ∩ t : set α).nonempty → s ∩ t ∈ C
namespace measurable_space
lemma is_pi_system_measurable_set {α:Type*} [measurable_space α] :
is_pi_system {s : set α | measurable_set s} :=
λ s hs t ht _, hs.inter ht
end measurable_space
lemma is_pi_system.singleton {α} (S : set α) : is_pi_system ({S} : set (set α)) :=
begin
intros s h_s t h_t h_ne,
rw [set.mem_singleton_iff.1 h_s, set.mem_singleton_iff.1 h_t, set.inter_self,
set.mem_singleton_iff],
end
lemma is_pi_system.insert_empty {α} {S : set (set α)} (h_pi : is_pi_system S) :
is_pi_system (insert ∅ S) :=
begin
intros s hs t ht hst,
cases hs,
{ simp [hs], },
{ cases ht,
{ simp [ht], },
{ exact set.mem_insert_of_mem _ (h_pi s hs t ht hst), }, },
end
lemma is_pi_system.insert_univ {α} {S : set (set α)} (h_pi : is_pi_system S) :
is_pi_system (insert set.univ S) :=
begin
intros s hs t ht hst,
cases hs,
{ cases ht; simp [hs, ht], },
{ cases ht,
{ simp [hs, ht], },
{ exact set.mem_insert_of_mem _ (h_pi s hs t ht hst), }, },
end
lemma is_pi_system.comap {α β} {S : set (set β)} (h_pi : is_pi_system S) (f : α → β) :
is_pi_system {s : set α | ∃ t ∈ S, f ⁻¹' t = s} :=
begin
rintros _ ⟨s, hs_mem, rfl⟩ _ ⟨t, ht_mem, rfl⟩ hst,
rw ← set.preimage_inter at hst ⊢,
refine ⟨s ∩ t, h_pi s hs_mem t ht_mem _, rfl⟩,
by_contra,
rw set.not_nonempty_iff_eq_empty at h,
rw h at hst,
simpa using hst,
end
section order
variables {α : Type*} {ι ι' : Sort*} [linear_order α]
lemma is_pi_system_image_Iio (s : set α) : is_pi_system (Iio '' s) :=
begin
rintro _ ⟨a, ha, rfl⟩ _ ⟨b, hb, rfl⟩ -,
exact ⟨a ⊓ b, inf_ind a b ha hb, Iio_inter_Iio.symm⟩
end
lemma is_pi_system_Iio : is_pi_system (range Iio : set (set α)) :=
@image_univ α _ Iio ▸ is_pi_system_image_Iio univ
lemma is_pi_system_image_Ioi (s : set α) : is_pi_system (Ioi '' s) :=
@is_pi_system_image_Iio αᵒᵈ _ s
lemma is_pi_system_Ioi : is_pi_system (range Ioi : set (set α)) :=
@image_univ α _ Ioi ▸ is_pi_system_image_Ioi univ
lemma is_pi_system_Ixx_mem {Ixx : α → α → set α} {p : α → α → Prop}
(Hne : ∀ {a b}, (Ixx a b).nonempty → p a b)
(Hi : ∀ {a₁ b₁ a₂ b₂}, Ixx a₁ b₁ ∩ Ixx a₂ b₂ = Ixx (max a₁ a₂) (min b₁ b₂)) (s t : set α) :
is_pi_system {S | ∃ (l ∈ s) (u ∈ t) (hlu : p l u), Ixx l u = S} :=
begin
rintro _ ⟨l₁, hls₁, u₁, hut₁, hlu₁, rfl⟩ _ ⟨l₂, hls₂, u₂, hut₂, hlu₂, rfl⟩,
simp only [Hi, ← sup_eq_max, ← inf_eq_min],
exact λ H, ⟨l₁ ⊔ l₂, sup_ind l₁ l₂ hls₁ hls₂, u₁ ⊓ u₂, inf_ind u₁ u₂ hut₁ hut₂, Hne H, rfl⟩
end
lemma is_pi_system_Ixx {Ixx : α → α → set α} {p : α → α → Prop}
(Hne : ∀ {a b}, (Ixx a b).nonempty → p a b)
(Hi : ∀ {a₁ b₁ a₂ b₂}, Ixx a₁ b₁ ∩ Ixx a₂ b₂ = Ixx (max a₁ a₂) (min b₁ b₂))
(f : ι → α) (g : ι' → α) :
@is_pi_system α ({S | ∃ i j (h : p (f i) (g j)), Ixx (f i) (g j) = S}) :=
by simpa only [exists_range_iff] using is_pi_system_Ixx_mem @Hne @Hi (range f) (range g)
lemma is_pi_system_Ioo_mem (s t : set α) :
is_pi_system {S | ∃ (l ∈ s) (u ∈ t) (h : l < u), Ioo l u = S} :=
is_pi_system_Ixx_mem (λ a b ⟨x, hax, hxb⟩, hax.trans hxb) (λ _ _ _ _, Ioo_inter_Ioo) s t
lemma is_pi_system_Ioo (f : ι → α) (g : ι' → α) :
@is_pi_system α {S | ∃ l u (h : f l < g u), Ioo (f l) (g u) = S} :=
is_pi_system_Ixx (λ a b ⟨x, hax, hxb⟩, hax.trans hxb) (λ _ _ _ _, Ioo_inter_Ioo) f g
lemma is_pi_system_Ioc_mem (s t : set α) :
is_pi_system {S | ∃ (l ∈ s) (u ∈ t) (h : l < u), Ioc l u = S} :=
is_pi_system_Ixx_mem (λ a b ⟨x, hax, hxb⟩, hax.trans_le hxb) (λ _ _ _ _, Ioc_inter_Ioc) s t
lemma is_pi_system_Ioc (f : ι → α) (g : ι' → α) :
@is_pi_system α {S | ∃ i j (h : f i < g j), Ioc (f i) (g j) = S} :=
is_pi_system_Ixx (λ a b ⟨x, hax, hxb⟩, hax.trans_le hxb) (λ _ _ _ _, Ioc_inter_Ioc) f g
lemma is_pi_system_Ico_mem (s t : set α) :
is_pi_system {S | ∃ (l ∈ s) (u ∈ t) (h : l < u), Ico l u = S} :=
is_pi_system_Ixx_mem (λ a b ⟨x, hax, hxb⟩, hax.trans_lt hxb) (λ _ _ _ _, Ico_inter_Ico) s t
lemma is_pi_system_Ico (f : ι → α) (g : ι' → α) :
@is_pi_system α {S | ∃ i j (h : f i < g j), Ico (f i) (g j) = S} :=
is_pi_system_Ixx (λ a b ⟨x, hax, hxb⟩, hax.trans_lt hxb) (λ _ _ _ _, Ico_inter_Ico) f g
lemma is_pi_system_Icc_mem (s t : set α) :
is_pi_system {S | ∃ (l ∈ s) (u ∈ t) (h : l ≤ u), Icc l u = S} :=
is_pi_system_Ixx_mem (λ a b, nonempty_Icc.1) (λ _ _ _ _, Icc_inter_Icc) s t
lemma is_pi_system_Icc (f : ι → α) (g : ι' → α) :
@is_pi_system α {S | ∃ i j (h : f i ≤ g j), Icc (f i) (g j) = S} :=
is_pi_system_Ixx (λ a b, nonempty_Icc.1) (λ _ _ _ _, Icc_inter_Icc) f g
end order
/-- Given a collection `S` of subsets of `α`, then `generate_pi_system S` is the smallest
π-system containing `S`. -/
inductive generate_pi_system {α} (S : set (set α)) : set (set α)
| base {s : set α} (h_s : s ∈ S) : generate_pi_system s
| inter {s t : set α} (h_s : generate_pi_system s) (h_t : generate_pi_system t)
(h_nonempty : (s ∩ t).nonempty) : generate_pi_system (s ∩ t)
lemma is_pi_system_generate_pi_system {α} (S : set (set α)) :
is_pi_system (generate_pi_system S) :=
λ s h_s t h_t h_nonempty, generate_pi_system.inter h_s h_t h_nonempty
lemma subset_generate_pi_system_self {α} (S : set (set α)) : S ⊆ generate_pi_system S :=
λ s, generate_pi_system.base
lemma generate_pi_system_subset_self {α} {S : set (set α)} (h_S : is_pi_system S) :
generate_pi_system S ⊆ S :=
begin
intros x h,
induction h with s h_s s u h_gen_s h_gen_u h_nonempty h_s h_u,
{ exact h_s, },
{ exact h_S _ h_s _ h_u h_nonempty, },
end
lemma generate_pi_system_eq {α} {S : set (set α)} (h_pi : is_pi_system S) :
generate_pi_system S = S :=
set.subset.antisymm (generate_pi_system_subset_self h_pi) (subset_generate_pi_system_self S)
lemma generate_pi_system_mono {α} {S T : set (set α)} (hST : S ⊆ T) :
generate_pi_system S ⊆ generate_pi_system T :=
begin
intros t ht,
induction ht with s h_s s u h_gen_s h_gen_u h_nonempty h_s h_u,
{ exact generate_pi_system.base (set.mem_of_subset_of_mem hST h_s),},
{ exact is_pi_system_generate_pi_system T _ h_s _ h_u h_nonempty, },
end
lemma generate_pi_system_measurable_set {α} [M : measurable_space α] {S : set (set α)}
(h_meas_S : ∀ s ∈ S, measurable_set s) (t : set α)
(h_in_pi : t ∈ generate_pi_system S) : measurable_set t :=
begin
induction h_in_pi with s h_s s u h_gen_s h_gen_u h_nonempty h_s h_u,
{ apply h_meas_S _ h_s, },
{ apply measurable_set.inter h_s h_u, },
end
lemma generate_from_measurable_set_of_generate_pi_system {α} {g : set (set α)} (t : set α)
(ht : t ∈ generate_pi_system g) :
measurable_set[generate_from g] t :=
@generate_pi_system_measurable_set α (generate_from g) g
(λ s h_s_in_g, measurable_set_generate_from h_s_in_g) t ht
lemma generate_from_generate_pi_system_eq {α} {g : set (set α)} :
generate_from (generate_pi_system g) = generate_from g :=
begin
apply le_antisymm; apply generate_from_le,
{ exact λ t h_t, generate_from_measurable_set_of_generate_pi_system t h_t, },
{ exact λ t h_t, measurable_set_generate_from (generate_pi_system.base h_t), },
end
/- Every element of the π-system generated by the union of a family of π-systems
is a finite intersection of elements from the π-systems.
For an indexed union version, see `mem_generate_pi_system_Union_elim'`. -/
lemma mem_generate_pi_system_Union_elim {α β} {g : β → set (set α)}
(h_pi : ∀ b, is_pi_system (g b)) (t : set α) (h_t : t ∈ generate_pi_system (⋃ b, g b)) :
∃ (T : finset β) (f : β → set α), (t = ⋂ b ∈ T, f b) ∧ (∀ b ∈ T, f b ∈ g b) :=
begin
induction h_t with s h_s s t' h_gen_s h_gen_t' h_nonempty h_s h_t',
{ rcases h_s with ⟨t', ⟨⟨b, rfl⟩, h_s_in_t'⟩⟩,
refine ⟨{b}, (λ _, s), _⟩,
simpa using h_s_in_t', },
{ rcases h_t' with ⟨T_t', ⟨f_t', ⟨rfl, h_t'⟩⟩⟩,
rcases h_s with ⟨T_s, ⟨f_s, ⟨rfl, h_s⟩ ⟩ ⟩,
use [(T_s ∪ T_t'), (λ (b:β),
if (b ∈ T_s) then (if (b ∈ T_t') then (f_s b ∩ (f_t' b)) else (f_s b))
else (if (b ∈ T_t') then (f_t' b) else (∅ : set α)))],
split,
{ ext a,
simp_rw [set.mem_inter_iff, set.mem_Inter, finset.mem_union, or_imp_distrib],
rw ← forall_and_distrib,
split; intros h1 b; by_cases hbs : b ∈ T_s; by_cases hbt : b ∈ T_t'; specialize h1 b;
simp only [hbs, hbt, if_true, if_false, true_implies_iff, and_self, false_implies_iff,
and_true, true_and] at h1 ⊢,
all_goals { exact h1, }, },
intros b h_b,
split_ifs with hbs hbt hbt,
{ refine h_pi b (f_s b) (h_s b hbs) (f_t' b) (h_t' b hbt) (set.nonempty.mono _ h_nonempty),
exact set.inter_subset_inter (set.bInter_subset_of_mem hbs) (set.bInter_subset_of_mem hbt), },
{ exact h_s b hbs, },
{ exact h_t' b hbt, },
{ rw finset.mem_union at h_b,
apply false.elim (h_b.elim hbs hbt), }, },
end
/- Every element of the π-system generated by an indexed union of a family of π-systems
is a finite intersection of elements from the π-systems.
For a total union version, see `mem_generate_pi_system_Union_elim`. -/
lemma mem_generate_pi_system_Union_elim' {α β} {g : β → set (set α)} {s : set β}
(h_pi : ∀ b ∈ s, is_pi_system (g b)) (t : set α) (h_t : t ∈ generate_pi_system (⋃ b ∈ s, g b)) :
∃ (T : finset β) (f : β → set α), (↑T ⊆ s) ∧ (t = ⋂ b ∈ T, f b) ∧ (∀ b ∈ T, f b ∈ g b) :=
begin
have : t ∈ generate_pi_system (⋃ (b : subtype s), (g ∘ subtype.val) b),
{ suffices h1 : (⋃ (b : subtype s), (g ∘ subtype.val) b) = (⋃ b ∈ s, g b), by rwa h1,
ext x,
simp only [exists_prop, set.mem_Union, function.comp_app, subtype.exists, subtype.coe_mk],
refl },
rcases @mem_generate_pi_system_Union_elim α (subtype s) (g ∘ subtype.val)
(λ b, h_pi b.val b.property) t this with ⟨T, ⟨f, ⟨rfl, h_t'⟩⟩⟩,
refine ⟨T.image subtype.val, function.extend subtype.val f (λ b : β, (∅ : set α)), by simp, _, _⟩,
{ ext a, split;
{ simp only [set.mem_Inter, subtype.forall, finset.set_bInter_finset_image],
intros h1 b h_b h_b_in_T,
have h2 := h1 b h_b h_b_in_T,
revert h2,
rw function.extend_apply subtype.val_injective,
apply id } },
{ intros b h_b,
simp_rw [finset.mem_image, exists_prop, subtype.exists,
exists_and_distrib_right, exists_eq_right] at h_b,
cases h_b,
have h_b_alt : b = (subtype.mk b h_b_w).val := rfl,
rw [h_b_alt, function.extend_apply subtype.val_injective],
apply h_t',
apply h_b_h },
end
section Union_Inter
/-! ### π-system generated by finite intersections of sets of a π-system family -/
/-- From a set of finsets `S : set (finset ι)` and a family of sets of sets `π : ι → set (set α)`,
define the set of sets that can be written as `⋂ x ∈ t, f x` for some `t ∈ S` and sets `f x ∈ π x`.
If `S` is union-closed and `π` is a family of π-systems, then it is a π-system.
The π-systems used to prove Kolmogorov's 0-1 law are of that form. -/
def pi_Union_Inter {α ι} (π : ι → set (set α)) (S : set (finset ι)) : set (set α) :=
{s : set α | ∃ (t : finset ι) (htS : t ∈ S) (f : ι → set α) (hf : ∀ x, x ∈ t → f x ∈ π x),
s = ⋂ x ∈ t, f x}
/-- If `S` is union-closed and `π` is a family of π-systems, then `pi_Union_Inter π S` is a
π-system. -/
lemma is_pi_system_pi_Union_Inter {α ι} (π : ι → set (set α))
(hpi : ∀ x, is_pi_system (π x)) (S : set (finset ι)) (h_sup : sup_closed S) :
is_pi_system (pi_Union_Inter π S) :=
begin
rintros t1 ⟨p1, hp1S, f1, hf1m, ht1_eq⟩ t2 ⟨p2, hp2S, f2, hf2m, ht2_eq⟩ h_nonempty,
simp_rw [pi_Union_Inter, set.mem_set_of_eq],
let g := λ n, (ite (n ∈ p1) (f1 n) set.univ) ∩ (ite (n ∈ p2) (f2 n) set.univ),
use [p1 ∪ p2, h_sup p1 p2 hp1S hp2S, g],
have h_inter_eq : t1 ∩ t2 = ⋂ i ∈ p1 ∪ p2, g i,
{ rw [ht1_eq, ht2_eq],
simp_rw [← set.inf_eq_inter, g],
ext1 x,
simp only [inf_eq_inter, mem_inter_eq, mem_Inter, finset.mem_union],
refine ⟨λ h i hi_mem_union, _, λ h, ⟨λ i hi1, _, λ i hi2, _⟩⟩,
{ split_ifs,
exacts [⟨h.1 i h_1, h.2 i h_2⟩, ⟨h.1 i h_1, set.mem_univ _⟩,
⟨set.mem_univ _, h.2 i h_2⟩, ⟨set.mem_univ _, set.mem_univ _⟩], },
{ specialize h i (or.inl hi1),
rw if_pos hi1 at h,
exact h.1, },
{ specialize h i (or.inr hi2),
rw if_pos hi2 at h,
exact h.2, }, },
refine ⟨λ n hn, _, h_inter_eq⟩,
simp_rw g,
split_ifs with hn1 hn2,
{ refine hpi n (f1 n) (hf1m n hn1) (f2 n) (hf2m n hn2) (set.ne_empty_iff_nonempty.mp (λ h, _)),
rw h_inter_eq at h_nonempty,
suffices h_empty : (⋂ i ∈ p1 ∪ p2, g i) = ∅,
from (set.not_nonempty_iff_eq_empty.mpr h_empty) h_nonempty,
refine le_antisymm (set.Inter_subset_of_subset n _) (set.empty_subset _),
refine set.Inter_subset_of_subset hn _,
simp_rw [g, if_pos hn1, if_pos hn2],
exact h.subset, },
{ simp [hf1m n hn1], },
{ simp [hf2m n h], },
{ exact absurd hn (by simp [hn1, h]), },
end
lemma pi_Union_Inter_mono_left {α ι} {π π' : ι → set (set α)} (h_le : ∀ i, π i ⊆ π' i)
(S : set (finset ι)) :
pi_Union_Inter π S ⊆ pi_Union_Inter π' S :=
begin
rintros s ⟨t, ht_mem, ft, hft_mem_pi, rfl⟩,
exact ⟨t, ht_mem, ft, λ x hxt, h_le x (hft_mem_pi x hxt), rfl⟩,
end
lemma generate_from_pi_Union_Inter_le {α ι} {m : measurable_space α}
(π : ι → set (set α)) (h : ∀ n, generate_from (π n) ≤ m) (S : set (finset ι)) :
generate_from (pi_Union_Inter π S) ≤ m :=
begin
refine generate_from_le _,
rintros t ⟨ht_p, ht_p_mem, ft, hft_mem_pi, rfl⟩,
refine finset.measurable_set_bInter _ (λ x hx_mem, (h x) _ _),
exact measurable_set_generate_from (hft_mem_pi x hx_mem),
end
lemma subset_pi_Union_Inter {α ι} {π : ι → set (set α)} {S : set (finset ι)}
(h_univ : ∀ i, set.univ ∈ π i) {i : ι} {s : finset ι} (hsS : s ∈ S) (his : i ∈ s) :
π i ⊆ pi_Union_Inter π S :=
begin
refine λ t ht_pii, ⟨s, hsS, (λ j, ite (j = i) t set.univ), ⟨λ m h_pm, _, _⟩⟩,
{ split_ifs,
{ rwa h, },
{ exact h_univ m, }, },
{ ext1 x,
simp_rw set.mem_Inter,
split; intro hx,
{ intros j h_p_j,
split_ifs,
{ exact hx, },
{ exact set.mem_univ _, }, },
{ simpa using hx i his, }, },
end
lemma mem_pi_Union_Inter_of_measurable_set {α ι} (m : ι → measurable_space α)
{S : set (finset ι)} {i : ι} {t : finset ι} (htS : t ∈ S) (hit : i ∈ t) (s : set α)
(hs : measurable_set[m i] s) :
s ∈ pi_Union_Inter (λ n, {s | measurable_set[m n] s}) S :=
subset_pi_Union_Inter (λ i, measurable_set.univ) htS hit hs
lemma le_generate_from_pi_Union_Inter {α ι} {π : ι → set (set α)}
(S : set (finset ι)) (h_univ : ∀ n, set.univ ∈ π n) {x : ι}
{t : finset ι} (htS : t ∈ S) (hxt : x ∈ t) :
generate_from (π x) ≤ generate_from (pi_Union_Inter π S) :=
generate_from_mono (subset_pi_Union_Inter h_univ htS hxt)
lemma measurable_set_supr_of_mem_pi_Union_Inter {α ι} (m : ι → measurable_space α)
(S : set (finset ι)) (t : set α) (ht : t ∈ pi_Union_Inter (λ n, {s | measurable_set[m n] s}) S) :
measurable_set[⨆ i (hi : ∃ s ∈ S, i ∈ s), m i] t :=
begin
rcases ht with ⟨pt, hpt, ft, ht_m, rfl⟩,
refine pt.measurable_set_bInter (λ i hi, _),
suffices h_le : m i ≤ (⨆ i (hi : ∃ s ∈ S, i ∈ s), m i), from h_le (ft i) (ht_m i hi),
have hi' : ∃ s ∈ S, i ∈ s, from ⟨pt, hpt, hi⟩,
exact le_supr₂ i hi',
end
lemma generate_from_pi_Union_Inter_measurable_space {α ι} (m : ι → measurable_space α)
(S : set (finset ι)) :
generate_from (pi_Union_Inter (λ n, {s | measurable_set[m n] s}) S)
= ⨆ i (hi : ∃ p ∈ S, i ∈ p), m i :=
begin
refine le_antisymm _ _,
{ rw ← @generate_from_measurable_set α (⨆ i (hi : ∃ p ∈ S, i ∈ p), m i),
exact generate_from_mono (measurable_set_supr_of_mem_pi_Union_Inter m S), },
{ refine supr₂_le (λ i hi, _),
rcases hi with ⟨p, hpS, hpi⟩,
rw ← @generate_from_measurable_set α (m i),
exact generate_from_mono (mem_pi_Union_Inter_of_measurable_set m hpS hpi), },
end
end Union_Inter
namespace measurable_space
variable {α : Type*}
/-! ## Dynkin systems and Π-λ theorem -/
/-- A Dynkin system is a collection of subsets of a type `α` that contains the empty set,
is closed under complementation and under countable union of pairwise disjoint sets.
The disjointness condition is the only difference with `σ`-algebras.
The main purpose of Dynkin systems is to provide a powerful induction rule for σ-algebras
generated by a collection of sets which is stable under intersection.
A Dynkin system is also known as a "λ-system" or a "d-system".
-/
structure dynkin_system (α : Type*) :=
(has : set α → Prop)
(has_empty : has ∅)
(has_compl : ∀ {a}, has a → has aᶜ)
(has_Union_nat : ∀ {f : ℕ → set α}, pairwise (disjoint on f) → (∀ i, has (f i)) → has (⋃ i, f i))
namespace dynkin_system
@[ext] lemma ext : ∀ {d₁ d₂ : dynkin_system α}, (∀ s : set α, d₁.has s ↔ d₂.has s) → d₁ = d₂
| ⟨s₁, _, _, _⟩ ⟨s₂, _, _, _⟩ h := have s₁ = s₂, from funext $ assume x, propext $ h x,
by subst this
variable (d : dynkin_system α)
lemma has_compl_iff {a} : d.has aᶜ ↔ d.has a :=
⟨λ h, by simpa using d.has_compl h, λ h, d.has_compl h⟩
lemma has_univ : d.has univ :=
by simpa using d.has_compl d.has_empty
theorem has_Union {β} [encodable β] {f : β → set α}
(hd : pairwise (disjoint on f)) (h : ∀ i, d.has (f i)) : d.has (⋃ i, f i) :=
by { rw ← encodable.Union_decode₂, exact
d.has_Union_nat (encodable.Union_decode₂_disjoint_on hd)
(λ n, encodable.Union_decode₂_cases d.has_empty h) }
theorem has_union {s₁ s₂ : set α}
(h₁ : d.has s₁) (h₂ : d.has s₂) (h : s₁ ∩ s₂ ⊆ ∅) : d.has (s₁ ∪ s₂) :=
by { rw union_eq_Union, exact
d.has_Union (pairwise_disjoint_on_bool.2 h) (bool.forall_bool.2 ⟨h₂, h₁⟩) }
lemma has_diff {s₁ s₂ : set α} (h₁ : d.has s₁) (h₂ : d.has s₂) (h : s₂ ⊆ s₁) : d.has (s₁ \ s₂) :=
begin
apply d.has_compl_iff.1,
simp [diff_eq, compl_inter],
exact d.has_union (d.has_compl h₁) h₂ (λ x ⟨h₁, h₂⟩, h₁ (h h₂)),
end
instance : has_le (dynkin_system α) :=
{ le := λ m₁ m₂, m₁.has ≤ m₂.has }
lemma le_def {α} {a b : dynkin_system α} : a ≤ b ↔ a.has ≤ b.has := iff.rfl
instance : partial_order (dynkin_system α) :=
{ le_refl := assume a b, le_rfl,
le_trans := assume a b c hab hbc, le_def.mpr (le_trans hab hbc),
le_antisymm := assume a b h₁ h₂, ext $ assume s, ⟨h₁ s, h₂ s⟩,
..dynkin_system.has_le }
/-- Every measurable space (σ-algebra) forms a Dynkin system -/
def of_measurable_space (m : measurable_space α) : dynkin_system α :=
{ has := m.measurable_set',
has_empty := m.measurable_set_empty,
has_compl := m.measurable_set_compl,
has_Union_nat := assume f _ hf, m.measurable_set_Union f hf }
lemma of_measurable_space_le_of_measurable_space_iff {m₁ m₂ : measurable_space α} :
of_measurable_space m₁ ≤ of_measurable_space m₂ ↔ m₁ ≤ m₂ :=
iff.rfl
/-- The least Dynkin system containing a collection of basic sets.
This inductive type gives the underlying collection of sets. -/
inductive generate_has (s : set (set α)) : set α → Prop
| basic : ∀ t ∈ s, generate_has t
| empty : generate_has ∅
| compl : ∀ {a}, generate_has a → generate_has aᶜ
| Union : ∀ {f : ℕ → set α}, pairwise (disjoint on f) →
(∀ i, generate_has (f i)) → generate_has (⋃ i, f i)
lemma generate_has_compl {C : set (set α)} {s : set α} : generate_has C sᶜ ↔ generate_has C s :=
by { refine ⟨_, generate_has.compl⟩, intro h, convert generate_has.compl h, simp }
/-- The least Dynkin system containing a collection of basic sets. -/
def generate (s : set (set α)) : dynkin_system α :=
{ has := generate_has s,
has_empty := generate_has.empty,
has_compl := assume a, generate_has.compl,
has_Union_nat := assume f, generate_has.Union }
lemma generate_has_def {C : set (set α)} : (generate C).has = generate_has C := rfl
instance : inhabited (dynkin_system α) := ⟨generate univ⟩
/-- If a Dynkin system is closed under binary intersection, then it forms a `σ`-algebra. -/
def to_measurable_space (h_inter : ∀ s₁ s₂, d.has s₁ → d.has s₂ → d.has (s₁ ∩ s₂)) :=
{ measurable_space .
measurable_set' := d.has,
measurable_set_empty := d.has_empty,
measurable_set_compl := assume s h, d.has_compl h,
measurable_set_Union := λ f hf,
begin
rw ←Union_disjointed,
exact d.has_Union (disjoint_disjointed _)
(λ n, disjointed_rec (λ t i h, h_inter _ _ h $ d.has_compl $ hf i) (hf n)),
end }
lemma of_measurable_space_to_measurable_space
(h_inter : ∀ s₁ s₂, d.has s₁ → d.has s₂ → d.has (s₁ ∩ s₂)) :
of_measurable_space (d.to_measurable_space h_inter) = d :=
ext $ assume s, iff.rfl
/-- If `s` is in a Dynkin system `d`, we can form the new Dynkin system `{s ∩ t | t ∈ d}`. -/
def restrict_on {s : set α} (h : d.has s) : dynkin_system α :=
{ has := λ t, d.has (t ∩ s),
has_empty := by simp [d.has_empty],
has_compl := assume t hts,
have tᶜ ∩ s = ((t ∩ s)ᶜ) \ sᶜ,
from set.ext $ assume x, by { by_cases x ∈ s; simp [h] },
by { rw [this], exact d.has_diff (d.has_compl hts) (d.has_compl h)
(compl_subset_compl.mpr $ inter_subset_right _ _) },
has_Union_nat := assume f hd hf,
begin
rw [inter_comm, inter_Union],
apply d.has_Union_nat,
{ exact λ i j h x ⟨⟨_, h₁⟩, _, h₂⟩, hd i j h ⟨h₁, h₂⟩ },
{ simpa [inter_comm] using hf },
end }
lemma generate_le {s : set (set α)} (h : ∀ t ∈ s, d.has t) : generate s ≤ d :=
λ t ht, ht.rec_on h d.has_empty
(assume a _ h, d.has_compl h)
(assume f hd _ hf, d.has_Union hd hf)
lemma generate_has_subset_generate_measurable {C : set (set α)} {s : set α}
(hs : (generate C).has s) : measurable_set[generate_from C] s :=
generate_le (of_measurable_space (generate_from C)) (λ t, measurable_set_generate_from) s hs
lemma generate_inter {s : set (set α)}
(hs : is_pi_system s) {t₁ t₂ : set α}
(ht₁ : (generate s).has t₁) (ht₂ : (generate s).has t₂) : (generate s).has (t₁ ∩ t₂) :=
have generate s ≤ (generate s).restrict_on ht₂,
from generate_le _ $ assume s₁ hs₁,
have (generate s).has s₁, from generate_has.basic s₁ hs₁,
have generate s ≤ (generate s).restrict_on this,
from generate_le _ $ assume s₂ hs₂,
show (generate s).has (s₂ ∩ s₁), from
(s₂ ∩ s₁).eq_empty_or_nonempty.elim
(λ h, h.symm ▸ generate_has.empty)
(λ h, generate_has.basic _ $ hs _ hs₂ _ hs₁ h),
have (generate s).has (t₂ ∩ s₁), from this _ ht₂,
show (generate s).has (s₁ ∩ t₂), by rwa [inter_comm],
this _ ht₁
/--
**Dynkin's π-λ theorem**:
Given a collection of sets closed under binary intersections, then the Dynkin system it
generates is equal to the σ-algebra it generates.
This result is known as the π-λ theorem.
A collection of sets closed under binary intersection is called a π-system (often requiring
additionnally that is is non-empty, but we drop this condition in the formalization).
-/
lemma generate_from_eq {s : set (set α)} (hs : is_pi_system s) :
generate_from s = (generate s).to_measurable_space (λ t₁ t₂, generate_inter hs) :=
le_antisymm
(generate_from_le $ assume t ht, generate_has.basic t ht)
(of_measurable_space_le_of_measurable_space_iff.mp $
by { rw [of_measurable_space_to_measurable_space],
exact (generate_le _ $ assume t ht, measurable_set_generate_from ht) })
end dynkin_system
theorem induction_on_inter {C : set α → Prop} {s : set (set α)} [m : measurable_space α]
(h_eq : m = generate_from s) (h_inter : is_pi_system s)
(h_empty : C ∅) (h_basic : ∀ t ∈ s, C t) (h_compl : ∀ t, measurable_set t → C t → C tᶜ)
(h_union : ∀ f : ℕ → set α, pairwise (disjoint on f) →
(∀ i, measurable_set (f i)) → (∀ i, C (f i)) → C (⋃ i, f i)) :
∀ ⦃t⦄, measurable_set t → C t :=
have eq : measurable_set = dynkin_system.generate_has s,
by { rw [h_eq, dynkin_system.generate_from_eq h_inter], refl },
assume t ht,
have dynkin_system.generate_has s t, by rwa [eq] at ht,
this.rec_on h_basic h_empty
(assume t ht, h_compl t $ by { rw [eq], exact ht })
(assume f hf ht, h_union f hf $ assume i, by { rw [eq], exact ht _ })
end measurable_space
|