Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 11,512 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
/-
Copyright (c) 2022 Riccardo Brasca. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Riccardo Brasca
-/
import number_theory.cyclotomic.primitive_roots
import ring_theory.discriminant
/-!
# Discriminant of cyclotomic fields
We compute the discriminant of a `p ^ n`-th cyclotomic extension.
## Main results
* `is_cyclotomic_extension.discr_odd_prime` : if `p` is an odd prime such that
`is_cyclotomic_extension {p} K L` and `irreducible (cyclotomic p K)`, then
`discr K (hζ.power_basis K).basis = (-1) ^ ((p - 1) / 2) * p ^ (p - 2)` for any
`hζ : is_primitive_root ζ p`.
-/
universes u v
open algebra polynomial nat is_primitive_root power_basis
open_locale polynomial cyclotomic
namespace is_primitive_root
variables {n : ℕ+} {K : Type u} [field K] [char_zero K] {ζ : K}
variables [is_cyclotomic_extension {n} ℚ K]
/-- The discriminant of the power basis given by a primitive root of unity `ζ` is the same as the
discriminant of the power basis given by `ζ - 1`. -/
lemma discr_zeta_eq_discr_zeta_sub_one (hζ : is_primitive_root ζ n) :
discr ℚ (hζ.power_basis ℚ).basis = discr ℚ (hζ.sub_one_power_basis ℚ).basis :=
begin
haveI : number_field K := number_field.mk,
have H₁ : (aeval (hζ.power_basis ℚ).gen) (X - 1 : ℤ[X]) = (hζ.sub_one_power_basis ℚ).gen :=
by simp,
have H₂ : (aeval (hζ.sub_one_power_basis ℚ).gen) (X + 1 : ℤ[X]) = (hζ.power_basis ℚ).gen :=
by simp,
refine discr_eq_discr_of_to_matrix_coeff_is_integral _
(λ i j, to_matrix_is_integral H₁ _ _ _ _)
(λ i j, to_matrix_is_integral H₂ _ _ _ _),
{ exact hζ.is_integral n.pos },
{ refine minpoly.gcd_domain_eq_field_fractions' _ (hζ.is_integral n.pos) },
{ exact is_integral_sub (hζ.is_integral n.pos) is_integral_one },
{ refine minpoly.gcd_domain_eq_field_fractions' _ _,
exact is_integral_sub (hζ.is_integral n.pos) is_integral_one }
end
end is_primitive_root
namespace is_cyclotomic_extension
variables {p : ℕ+} {k : ℕ} {K : Type u} {L : Type v} {ζ : L} [field K] [field L]
variables [algebra K L]
/-- If `p` is a prime and `is_cyclotomic_extension {p ^ (k + 1)} K L`, then the discriminant of
`hζ.power_basis K` is `(-1) ^ ((p ^ (k + 1).totient) / 2) * p ^ (p ^ k * ((p - 1) * (k + 1) - 1))`
if `irreducible (cyclotomic (p ^ (k + 1)) K))`, and `p ^ (k + 1) ≠ 2`. -/
lemma discr_prime_pow_ne_two [is_cyclotomic_extension {p ^ (k + 1)} K L] [hp : fact (p : ℕ).prime]
(hζ : is_primitive_root ζ ↑(p ^ (k + 1))) (hirr : irreducible (cyclotomic (↑(p ^ (k + 1)) : ℕ) K))
(hk : p ^ (k + 1) ≠ 2) :
discr K (hζ.power_basis K).basis =
(-1) ^ (((p ^ (k + 1) : ℕ).totient) / 2) * p ^ ((p : ℕ) ^ k * ((p - 1) * (k + 1) - 1)) :=
begin
haveI hne := is_cyclotomic_extension.ne_zero' (p ^ (k + 1)) K L,
have hp2 : p = 2 → 1 ≤ k,
{ intro hp,
refine one_le_iff_ne_zero.2 (λ h, _),
rw [h, hp, zero_add, pow_one] at hk,
exact hk rfl },
rw [discr_power_basis_eq_norm, finrank _ hirr, hζ.power_basis_gen _,
← hζ.minpoly_eq_cyclotomic_of_irreducible hirr, pnat.pow_coe, totient_prime_pow hp.out
(succ_pos k)],
congr' 1,
{ by_cases hptwo : p = 2,
{ obtain ⟨k₁, hk₁⟩ := nat.exists_eq_succ_of_ne_zero (one_le_iff_ne_zero.1 (hp2 hptwo)),
rw [hk₁, succ_sub_one, hptwo, pnat.coe_bit0, pnat.one_coe, succ_sub_succ_eq_sub, tsub_zero,
mul_one, pow_succ, mul_assoc, nat.mul_div_cancel_left _ zero_lt_two,
nat.mul_div_cancel_left _ zero_lt_two],
by_cases hk₁zero : k₁ = 0,
{ simp [hk₁zero] },
obtain ⟨k₂, rfl⟩ := nat.exists_eq_succ_of_ne_zero hk₁zero,
rw [pow_succ, mul_assoc, pow_mul (-1 : K), pow_mul (-1 : K), neg_one_sq, one_pow, one_pow] },
{ simp only [succ_sub_succ_eq_sub, tsub_zero],
replace hptwo : ↑p ≠ 2,
{ intro h,
rw [← pnat.one_coe, ← pnat.coe_bit0, pnat.coe_inj] at h,
exact hptwo h },
obtain ⟨a, ha⟩ := even_sub_one_of_prime_ne_two hp.out hptwo,
rw [mul_comm ((p : ℕ) ^ k), mul_assoc, ha],
nth_rewrite 0 [← mul_one a],
nth_rewrite 4 [← mul_one a],
rw [← nat.mul_succ, mul_comm a, mul_assoc, mul_assoc 2, nat.mul_div_cancel_left _
zero_lt_two, nat.mul_div_cancel_left _ zero_lt_two, ← mul_assoc, mul_comm
(a * (p : ℕ) ^ k), pow_mul, ← ha],
congr' 1,
refine odd.neg_one_pow (nat.even.sub_odd (nat.succ_le_iff.2 (mul_pos (tsub_pos_iff_lt.2
hp.out.one_lt) (pow_pos hp.out.pos _))) (even.mul_right (nat.even_sub_one_of_prime_ne_two
hp.out hptwo) _) odd_one) } },
{ have H := congr_arg derivative (cyclotomic_prime_pow_mul_X_pow_sub_one K p k),
rw [derivative_mul, derivative_sub, derivative_one, sub_zero, derivative_pow,
derivative_X, mul_one, derivative_sub, derivative_one, sub_zero, derivative_pow,
derivative_X, mul_one, ← pnat.pow_coe, hζ.minpoly_eq_cyclotomic_of_irreducible hirr] at H,
replace H := congr_arg (λ P, aeval ζ P) H,
simp only [aeval_add, aeval_mul, minpoly.aeval, zero_mul, add_zero, aeval_nat_cast,
_root_.map_sub, aeval_one, aeval_X_pow] at H,
replace H := congr_arg (algebra.norm K) H,
have hnorm : (norm K) (ζ ^ (p : ℕ) ^ k - 1) = p ^ ((p : ℕ) ^ k),
{ by_cases hp : p = 2,
{ exact hζ.pow_sub_one_norm_prime_pow_of_one_le hirr rfl.le (hp2 hp) },
{ exact hζ.pow_sub_one_norm_prime_ne_two hirr rfl.le hp } },
rw [monoid_hom.map_mul, hnorm, monoid_hom.map_mul, ← map_nat_cast (algebra_map K L),
algebra.norm_algebra_map, finrank _ hirr, pnat.pow_coe, totient_prime_pow hp.out (succ_pos k),
nat.sub_one, nat.pred_succ, ← hζ.minpoly_eq_cyclotomic_of_irreducible hirr, map_pow,
hζ.norm_eq_one hk hirr, one_pow, mul_one, cast_pow, ← coe_coe, ← pow_mul, ← mul_assoc,
mul_comm (k + 1), mul_assoc] at H,
{ have := mul_pos (succ_pos k) (tsub_pos_iff_lt.2 hp.out.one_lt),
rw [← succ_pred_eq_of_pos this, mul_succ, pow_add _ _ ((p : ℕ) ^ k)] at H,
replace H := (mul_left_inj' (λ h, _)).1 H,
{ simpa only [← pnat.pow_coe, H, mul_comm _ (k + 1)] },
{ replace h := pow_eq_zero h,
rw [coe_coe] at h,
simpa using hne.1 } },
all_goals { apply_instance } },
all_goals { apply_instance }
end
/-- If `p` is a prime and `is_cyclotomic_extension {p ^ (k + 1)} K L`, then the discriminant of
`hζ.power_basis K` is `(-1) ^ (p ^ k * (p - 1) / 2) * p ^ (p ^ k * ((p - 1) * (k + 1) - 1))`
if `irreducible (cyclotomic (p ^ (k + 1)) K))`, and `p ^ (k + 1) ≠ 2`. -/
lemma discr_prime_pow_ne_two' [is_cyclotomic_extension {p ^ (k + 1)} K L] [hp : fact (p : ℕ).prime]
(hζ : is_primitive_root ζ ↑(p ^ (k + 1))) (hirr : irreducible (cyclotomic (↑(p ^ (k + 1)) : ℕ) K))
(hk : p ^ (k + 1) ≠ 2) :
discr K (hζ.power_basis K).basis =
(-1) ^ (((p : ℕ) ^ k * (p - 1)) / 2) * p ^ ((p : ℕ) ^ k * ((p - 1) * (k + 1) - 1)) :=
by simpa [totient_prime_pow hp.out (succ_pos k)] using discr_prime_pow_ne_two hζ hirr hk
/-- If `p` is a prime and `is_cyclotomic_extension {p ^ k} K L`, then the discriminant of
`hζ.power_basis K` is `(-1) ^ ((p ^ k).totient / 2) * p ^ (p ^ (k - 1) * ((p - 1) * k - 1))`
if `irreducible (cyclotomic (p ^ k) K))`. Beware that in the cases `p ^ k = 1` and `p ^ k = 2`
the formula uses `1 / 2 = 0` and `0 - 1 = 0`. It is useful only to have a uniform result.
See also `is_cyclotomic_extension.discr_prime_pow_eq_unit_mul_pow`. -/
lemma discr_prime_pow [hcycl : is_cyclotomic_extension {p ^ k} K L] [hp : fact (p : ℕ).prime]
(hζ : is_primitive_root ζ ↑(p ^ k)) (hirr : irreducible (cyclotomic (↑(p ^ k) : ℕ) K)) :
discr K (hζ.power_basis K).basis =
(-1) ^ (((p ^ k : ℕ).totient) / 2) * p ^ ((p : ℕ) ^ (k - 1) * ((p - 1) * k - 1)) :=
begin
unfreezingI { cases k },
{ simp only [coe_basis, pow_zero, power_basis_gen, totient_one, mul_zero, mul_one, show 1 / 2 = 0,
by refl, discr, trace_matrix],
have hζone : ζ = 1 := by simpa using hζ,
rw [hζ.power_basis_dim _, hζone, ← (algebra_map K L).map_one,
minpoly.eq_X_sub_C_of_algebra_map_inj _ (algebra_map K L).injective, nat_degree_X_sub_C],
simp only [trace_matrix, map_one, one_pow, matrix.det_unique, trace_form_apply, mul_one],
rw [← (algebra_map K L).map_one, trace_algebra_map, finrank _ hirr],
{ simp },
{ apply_instance },
{ exact hcycl } },
{ by_cases hk : p ^ (k + 1) = 2,
{ have hp : p = 2,
{ rw [← pnat.coe_inj, pnat.coe_bit0, pnat.one_coe, pnat.pow_coe, ← pow_one 2] at hk,
replace hk := eq_of_prime_pow_eq (prime_iff.1 hp.out) (prime_iff.1 nat.prime_two)
(succ_pos _) hk,
rwa [show 2 = ((2 : ℕ+) : ℕ), by simp, pnat.coe_inj] at hk },
rw [hp, ← pnat.coe_inj, pnat.pow_coe, pnat.coe_bit0, pnat.one_coe] at hk,
nth_rewrite 1 [← pow_one 2] at hk,
replace hk := nat.pow_right_injective rfl.le hk,
rw [add_left_eq_self] at hk,
simp only [hp, hk, pow_one, pnat.coe_bit0, pnat.one_coe] at hζ,
simp only [hp, hk, show 1 / 2 = 0, by refl, coe_basis, pow_one, power_basis_gen,
pnat.coe_bit0, pnat.one_coe, totient_two, pow_zero, mul_one, mul_zero],
rw [power_basis_dim, hζ.eq_neg_one_of_two_right, show (-1 : L) = algebra_map K L (-1),
by simp, minpoly.eq_X_sub_C_of_algebra_map_inj _ (algebra_map K L).injective,
nat_degree_X_sub_C],
simp only [discr, trace_matrix, matrix.det_unique, fin.default_eq_zero, fin.coe_zero,
pow_zero, trace_form_apply, mul_one],
rw [← (algebra_map K L).map_one, trace_algebra_map, finrank _ hirr, hp, hk],
{ simp },
{ apply_instance },
{ exact hcycl } },
{ exact discr_prime_pow_ne_two hζ hirr hk } }
end
/-- If `p` is a prime and `is_cyclotomic_extension {p ^ k} K L`, then there are `u : ℤˣ` and
`n : ℕ` such that the discriminant of `hζ.power_basis K` is `u * p ^ n`. Often this is enough and
less cumbersome to use than `is_cyclotomic_extension.discr_prime_pow`. -/
lemma discr_prime_pow_eq_unit_mul_pow [is_cyclotomic_extension {p ^ k} K L]
[hp : fact (p : ℕ).prime] (hζ : is_primitive_root ζ ↑(p ^ k))
(hirr : irreducible (cyclotomic (↑(p ^ k) : ℕ) K)) :
∃ (u : ℤˣ) (n : ℕ), discr K (hζ.power_basis K).basis = u * p ^ n :=
begin
rw [discr_prime_pow hζ hirr],
by_cases heven : even (((p ^ k : ℕ).totient) / 2),
{ refine ⟨1, (p : ℕ) ^ (k - 1) * ((p - 1) * k - 1), by simp [heven.neg_one_pow]⟩ },
{ exact ⟨-1, (p : ℕ) ^ (k - 1) * ((p - 1) * k - 1),
by simp [(odd_iff_not_even.2 heven).neg_one_pow]⟩ },
end
/-- If `p` is an odd prime and `is_cyclotomic_extension {p} K L`, then
`discr K (hζ.power_basis K).basis = (-1) ^ ((p - 1) / 2) * p ^ (p - 2)` if
`irreducible (cyclotomic p K)`. -/
lemma discr_odd_prime [is_cyclotomic_extension {p} K L] [hp : fact (p : ℕ).prime]
(hζ : is_primitive_root ζ p) (hirr : irreducible (cyclotomic p K)) (hodd : p ≠ 2) :
discr K (hζ.power_basis K).basis = (-1) ^ (((p : ℕ) - 1) / 2) * p ^ ((p : ℕ) - 2) :=
begin
haveI : is_cyclotomic_extension {p ^ (0 + 1)} K L,
{ rw [zero_add, pow_one],
apply_instance },
have hζ' : is_primitive_root ζ ↑(p ^ (0 + 1)) := by simpa using hζ,
convert discr_prime_pow_ne_two hζ' (by simpa [hirr]) (by simp [hodd]),
{ rw [zero_add, pow_one, totient_prime hp.out] },
{ rw [pow_zero, one_mul, zero_add, mul_one, nat.sub_sub] }
end
end is_cyclotomic_extension
|