Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 24,550 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 |
/-
Copyright (c) 2021 Alex Kontorovich and Heather Macbeth and Marc Masdeu. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Alex Kontorovich, Heather Macbeth, Marc Masdeu
-/
import analysis.complex.upper_half_plane.basic
import linear_algebra.general_linear_group
import analysis.matrix
/-!
# The action of the modular group SL(2, β€) on the upper half-plane
We define the action of `SL(2,β€)` on `β` (via restriction of the `SL(2,β)` action in
`analysis.complex.upper_half_plane`). We then define the standard fundamental domain
(`modular_group.fd`, `π`) for this action and show
(`modular_group.exists_smul_mem_fd`) that any point in `β` can be
moved inside `π`.
## Main definitions
The standard (closed) fundamental domain of the action of `SL(2,β€)` on `β`, denoted `π`:
`fd := {z | 1 β€ (z : β).norm_sq β§ |z.re| β€ (1 : β) / 2}`
The standard open fundamental domain of the action of `SL(2,β€)` on `β`, denoted `πα΅`:
`fdo := {z | 1 < (z : β).norm_sq β§ |z.re| < (1 : β) / 2}`
These notations are localized in the `modular` locale and can be enabled via `open_locale modular`.
## Main results
Any `z : β` can be moved to `π` by an element of `SL(2,β€)`:
`exists_smul_mem_fd (z : β) : β g : SL(2,β€), g β’ z β π`
If both `z` and `Ξ³ β’ z` are in the open domain `πα΅` then `z = Ξ³ β’ z`:
`eq_smul_self_of_mem_fdo_mem_fdo {z : β} {g : SL(2,β€)} (hz : z β πα΅) (hg : g β’ z β πα΅) : z = g β’ z`
# Discussion
Standard proofs make use of the identity
`g β’ z = a / c - 1 / (c (cz + d))`
for `g = [[a, b], [c, d]]` in `SL(2)`, but this requires separate handling of whether `c = 0`.
Instead, our proof makes use of the following perhaps novel identity (see
`modular_group.smul_eq_lc_row0_add`):
`g β’ z = (a c + b d) / (c^2 + d^2) + (d z - c) / ((c^2 + d^2) (c z + d))`
where there is no issue of division by zero.
Another feature is that we delay until the very end the consideration of special matrices
`T=[[1,1],[0,1]]` (see `modular_group.T`) and `S=[[0,-1],[1,0]]` (see `modular_group.S`), by
instead using abstract theory on the properness of certain maps (phrased in terms of the filters
`filter.cocompact`, `filter.cofinite`, etc) to deduce existence theorems, first to prove the
existence of `g` maximizing `(gβ’z).im` (see `modular_group.exists_max_im`), and then among
those, to minimize `|(gβ’z).re|` (see `modular_group.exists_row_one_eq_and_min_re`).
-/
/- Disable these instances as they are not the simp-normal form, and having them disabled ensures
we state lemmas in this file without spurious `coe_fn` terms. -/
local attribute [-instance] matrix.special_linear_group.has_coe_to_fun
local attribute [-instance] matrix.general_linear_group.has_coe_to_fun
open complex (hiding abs_one abs_two abs_mul abs_add)
open matrix (hiding mul_smul) matrix.special_linear_group upper_half_plane
noncomputable theory
local notation `SL(` n `, ` R `)`:= special_linear_group (fin n) R
local prefix `ββ`:1024 := @coe _ (matrix (fin 2) (fin 2) β€) _
open_locale upper_half_plane complex_conjugate
local attribute [instance] fintype.card_fin_even
namespace modular_group
variables {g : SL(2, β€)} (z : β)
section bottom_row
/-- The two numbers `c`, `d` in the "bottom_row" of `g=[[*,*],[c,d]]` in `SL(2, β€)` are coprime. -/
lemma bottom_row_coprime {R : Type*} [comm_ring R] (g : SL(2, R)) :
is_coprime ((βg : matrix (fin 2) (fin 2) R) 1 0) ((βg : matrix (fin 2) (fin 2) R) 1 1) :=
begin
use [- (βg : matrix (fin 2) (fin 2) R) 0 1, (βg : matrix (fin 2) (fin 2) R) 0 0],
rw [add_comm, neg_mul, βsub_eq_add_neg, βdet_fin_two],
exact g.det_coe,
end
/-- Every pair `![c, d]` of coprime integers is the "bottom_row" of some element `g=[[*,*],[c,d]]`
of `SL(2,β€)`. -/
lemma bottom_row_surj {R : Type*} [comm_ring R] :
set.surj_on (Ξ» g : SL(2, R), @coe _ (matrix (fin 2) (fin 2) R) _ g 1) set.univ
{cd | is_coprime (cd 0) (cd 1)} :=
begin
rintros cd β¨bβ, a, gcd_eqnβ©,
let A := of ![![a, -bβ], cd],
have det_A_1 : det A = 1,
{ convert gcd_eqn,
simp [A, det_fin_two, (by ring : a * (cd 1) + bβ * (cd 0) = bβ * (cd 0) + a * (cd 1))] },
refine β¨β¨A, det_A_1β©, set.mem_univ _, _β©,
ext; simp [A]
end
end bottom_row
section tendsto_lemmas
open filter continuous_linear_map
local attribute [instance] matrix.normed_add_comm_group matrix.normed_space
local attribute [simp] coe_smul
/-- The function `(c,d) β |cz+d|^2` is proper, that is, preimages of bounded-above sets are finite.
-/
lemma tendsto_norm_sq_coprime_pair :
filter.tendsto (Ξ» p : fin 2 β β€, ((p 0 : β) * z + p 1).norm_sq)
cofinite at_top :=
begin
let Οβ : (fin 2 β β) ββ[β] β := linear_map.proj 0,
let Οβ : (fin 2 β β) ββ[β] β := linear_map.proj 1,
let f : (fin 2 β β) ββ[β] β := Οβ.smul_right (z:β) + Οβ.smul_right 1,
have f_def : βf = Ξ» (p : fin 2 β β), (p 0 : β) * βz + p 1,
{ ext1,
dsimp only [linear_map.coe_proj, real_smul,
linear_map.coe_smul_right, linear_map.add_apply],
rw mul_one, },
have : (Ξ» (p : fin 2 β β€), norm_sq ((p 0 : β) * βz + β(p 1)))
= norm_sq β f β (Ξ» p : fin 2 β β€, (coe : β€ β β) β p),
{ ext1,
rw f_def,
dsimp only [function.comp],
rw [of_real_int_cast, of_real_int_cast], },
rw this,
have hf : f.ker = β₯,
{ let g : β ββ[β] (fin 2 β β) :=
linear_map.pi ![im_lm, im_lm.comp ((z:β) β’ (conj_ae : β ββ[β] β))],
suffices : ((z:β).imβ»ΒΉ β’ g).comp f = linear_map.id,
{ exact linear_map.ker_eq_bot_of_inverse this },
apply linear_map.ext,
intros c,
have hz : (z:β).im β 0 := z.2.ne',
rw [linear_map.comp_apply, linear_map.smul_apply, linear_map.id_apply],
ext i,
dsimp only [g, pi.smul_apply, linear_map.pi_apply, smul_eq_mul],
fin_cases i,
{ show ((z : β).im)β»ΒΉ * (f c).im = c 0,
rw [f_def, add_im, of_real_mul_im, of_real_im, add_zero, mul_left_comm,
inv_mul_cancel hz, mul_one], },
{ show ((z : β).im)β»ΒΉ * ((z : β) * conj (f c)).im = c 1,
rw [f_def, ring_hom.map_add, ring_hom.map_mul, mul_add, mul_left_comm, mul_conj,
conj_of_real, conj_of_real, β of_real_mul, add_im, of_real_im, zero_add,
inv_mul_eq_iff_eq_mulβ hz],
simp only [of_real_im, of_real_re, mul_im, zero_add, mul_zero] } },
have hβ := (linear_equiv.closed_embedding_of_injective hf).tendsto_cocompact,
have hβ : tendsto (Ξ» p : fin 2 β β€, (coe : β€ β β) β p) cofinite (cocompact _),
{ convert tendsto.pi_map_Coprod (Ξ» i, int.tendsto_coe_cofinite),
{ rw Coprod_cofinite },
{ rw Coprod_cocompact } },
exact tendsto_norm_sq_cocompact_at_top.comp (hβ.comp hβ)
end
/-- Given `coprime_pair` `p=(c,d)`, the matrix `[[a,b],[*,*]]` is sent to `a*c+b*d`.
This is the linear map version of this operation.
-/
def lc_row0 (p : fin 2 β β€) : (matrix (fin 2) (fin 2) β) ββ[β] β :=
((p 0:β) β’ linear_map.proj 0 + (p 1:β) β’ linear_map.proj 1 : (fin 2 β β) ββ[β] β).comp
(linear_map.proj 0)
@[simp] lemma lc_row0_apply (p : fin 2 β β€) (g : matrix (fin 2) (fin 2) β) :
lc_row0 p g = p 0 * g 0 0 + p 1 * g 0 1 :=
rfl
/-- Linear map sending the matrix [a, b; c, d] to the matrix [acβ + bdβ, - adβ + bcβ; c, d], for
some fixed `(cβ, dβ)`. -/
@[simps] def lc_row0_extend {cd : fin 2 β β€} (hcd : is_coprime (cd 0) (cd 1)) :
(matrix (fin 2) (fin 2) β) ββ[β] matrix (fin 2) (fin 2) β :=
linear_equiv.Pi_congr_right
![begin
refine linear_map.general_linear_group.general_linear_equiv β (fin 2 β β)
(general_linear_group.to_linear (plane_conformal_matrix (cd 0 : β) (-(cd 1 : β)) _)),
norm_cast,
rw neg_sq,
exact hcd.sq_add_sq_ne_zero
end,
linear_equiv.refl β (fin 2 β β)]
/-- The map `lc_row0` is proper, that is, preimages of cocompact sets are finite in
`[[* , *], [c, d]]`.-/
theorem tendsto_lc_row0 {cd : fin 2 β β€} (hcd : is_coprime (cd 0) (cd 1)) :
tendsto (Ξ» g : {g : SL(2, β€) // ββg 1 = cd}, lc_row0 cd β(βg : SL(2, β)))
cofinite (cocompact β) :=
begin
let mB : β β (matrix (fin 2) (fin 2) β) := Ξ» t, of ![![t, (-(1:β€):β)], coe β cd],
have hmB : continuous mB,
{ refine continuous_matrix _,
simp only [fin.forall_fin_two, mB, continuous_const, continuous_id', of_apply,
cons_val_zero, cons_val_one, and_self ] },
refine filter.tendsto.of_tendsto_comp _ (comap_cocompact_le hmB),
let fβ : SL(2, β€) β matrix (fin 2) (fin 2) β :=
Ξ» g, matrix.map (βg : matrix _ _ β€) (coe : β€ β β),
have cocompact_β_to_cofinite_β€_matrix :
tendsto (Ξ» m : matrix (fin 2) (fin 2) β€, matrix.map m (coe : β€ β β)) cofinite (cocompact _),
{ simpa only [Coprod_cofinite, Coprod_cocompact]
using tendsto.pi_map_Coprod (Ξ» i : fin 2, tendsto.pi_map_Coprod
(Ξ» j : fin 2, int.tendsto_coe_cofinite)) },
have hfβ : tendsto fβ cofinite (cocompact _) :=
cocompact_β_to_cofinite_β€_matrix.comp subtype.coe_injective.tendsto_cofinite,
have hfβ : closed_embedding (lc_row0_extend hcd) :=
(lc_row0_extend hcd).to_continuous_linear_equiv.to_homeomorph.closed_embedding,
convert hfβ.tendsto_cocompact.comp (hfβ.comp subtype.coe_injective.tendsto_cofinite) using 1,
ext β¨g, rflβ© i j : 3,
fin_cases i; [fin_cases j, skip],
-- the following are proved by `simp`, but it is replaced by `simp only` to avoid timeouts.
{ simp only [mB, mul_vec, dot_product, fin.sum_univ_two, _root_.coe_coe, coe_matrix_coe,
int.coe_cast_ring_hom, lc_row0_apply, function.comp_app, cons_val_zero, lc_row0_extend_apply,
linear_map.general_linear_group.coe_fn_general_linear_equiv,
general_linear_group.to_linear_apply, coe_plane_conformal_matrix, neg_neg, mul_vec_lin_apply,
cons_val_one, head_cons, of_apply] },
{ convert congr_arg (Ξ» n : β€, (-n:β)) g.det_coe.symm using 1,
simp only [fβ, mul_vec, dot_product, fin.sum_univ_two, matrix.det_fin_two, function.comp_app,
subtype.coe_mk, lc_row0_extend_apply, cons_val_zero,
linear_map.general_linear_group.coe_fn_general_linear_equiv,
general_linear_group.to_linear_apply, coe_plane_conformal_matrix, mul_vec_lin_apply,
cons_val_one, head_cons, map_apply, neg_mul, int.cast_sub, int.cast_mul, neg_sub, of_apply],
ring },
{ refl }
end
/-- This replaces `(gβ’z).re = a/c + *` in the standard theory with the following novel identity:
`g β’ z = (a c + b d) / (c^2 + d^2) + (d z - c) / ((c^2 + d^2) (c z + d))`
which does not need to be decomposed depending on whether `c = 0`. -/
lemma smul_eq_lc_row0_add {p : fin 2 β β€} (hp : is_coprime (p 0) (p 1)) (hg : ββg 1 = p) :
β(g β’ z) = ((lc_row0 p β(g : SL(2, β))) : β) / (p 0 ^ 2 + p 1 ^ 2)
+ ((p 1 : β) * z - p 0) / ((p 0 ^ 2 + p 1 ^ 2) * (p 0 * z + p 1)) :=
begin
have nonZ1 : (p 0 : β) ^ 2 + (p 1) ^ 2 β 0 := by exact_mod_cast hp.sq_add_sq_ne_zero,
have : (coe : β€ β β) β p β 0 := Ξ» h, hp.ne_zero (by ext i; simpa using congr_fun h i),
have nonZ2 : (p 0 : β) * z + p 1 β 0 := by simpa using linear_ne_zero _ z this,
field_simp [nonZ1, nonZ2, denom_ne_zero, -upper_half_plane.denom, -denom_apply],
rw (by simp : (p 1 : β) * z - p 0 = ((p 1) * z - p 0) * β(det (βg : matrix (fin 2) (fin 2) β€))),
rw [βhg, det_fin_two],
simp only [int.coe_cast_ring_hom, coe_matrix_coe, int.cast_mul, of_real_int_cast, map_apply,
denom, int.cast_sub, _root_.coe_coe,coe_GL_pos_coe_GL_coe_matrix],
ring,
end
lemma tendsto_abs_re_smul {p : fin 2 β β€} (hp : is_coprime (p 0) (p 1)) :
tendsto (Ξ» g : {g : SL(2, β€) // ββg 1 = p}, |((g : SL(2, β€)) β’ z).re|)
cofinite at_top :=
begin
suffices : tendsto (Ξ» g : (Ξ» g : SL(2, β€), ββg 1) β»ΒΉ' {p}, (((g : SL(2, β€)) β’ z).re))
cofinite (cocompact β),
{ exact tendsto_norm_cocompact_at_top.comp this },
have : ((p 0 : β) ^ 2 + p 1 ^ 2)β»ΒΉ β 0,
{ apply inv_ne_zero,
exact_mod_cast hp.sq_add_sq_ne_zero },
let f := homeomorph.mul_rightβ _ this,
let ff := homeomorph.add_right (((p 1:β)* z - p 0) / ((p 0 ^ 2 + p 1 ^ 2) * (p 0 * z + p 1))).re,
convert ((f.trans ff).closed_embedding.tendsto_cocompact).comp (tendsto_lc_row0 hp),
ext g,
change ((g : SL(2, β€)) β’ z).re = (lc_row0 p β(βg : SL(2, β))) / (p 0 ^ 2 + p 1 ^ 2)
+ (((p 1:β )* z - p 0) / ((p 0 ^ 2 + p 1 ^ 2) * (p 0 * z + p 1))).re,
exact_mod_cast (congr_arg complex.re (smul_eq_lc_row0_add z hp g.2))
end
end tendsto_lemmas
section fundamental_domain
local attribute [simp] coe_smul re_smul
/-- For `z : β`, there is a `g : SL(2,β€)` maximizing `(gβ’z).im` -/
lemma exists_max_im :
β g : SL(2, β€), β g' : SL(2, β€), (g' β’ z).im β€ (g β’ z).im :=
begin
classical,
let s : set (fin 2 β β€) := {cd | is_coprime (cd 0) (cd 1)},
have hs : s.nonempty := β¨![1, 1], is_coprime_one_leftβ©,
obtain β¨p, hp_coprime, hpβ© :=
filter.tendsto.exists_within_forall_le hs (tendsto_norm_sq_coprime_pair z),
obtain β¨g, -, hgβ© := bottom_row_surj hp_coprime,
refine β¨g, Ξ» g', _β©,
rw [special_linear_group.im_smul_eq_div_norm_sq, special_linear_group.im_smul_eq_div_norm_sq,
div_le_div_left],
{ simpa [β hg] using hp (ββg' 1) (bottom_row_coprime g') },
{ exact z.im_pos },
{ exact norm_sq_denom_pos g' z },
{ exact norm_sq_denom_pos g z },
end
/-- Given `z : β` and a bottom row `(c,d)`, among the `g : SL(2,β€)` with this bottom row, minimize
`|(gβ’z).re|`. -/
lemma exists_row_one_eq_and_min_re {cd : fin 2 β β€} (hcd : is_coprime (cd 0) (cd 1)) :
β g : SL(2,β€), ββg 1 = cd β§ (β g' : SL(2,β€), ββg 1 = ββg' 1 β
|(g β’ z).re| β€ |(g' β’ z).re|) :=
begin
haveI : nonempty {g : SL(2, β€) // ββg 1 = cd} :=
let β¨x, hxβ© := bottom_row_surj hcd in β¨β¨x, hx.2β©β©,
obtain β¨g, hgβ© := filter.tendsto.exists_forall_le (tendsto_abs_re_smul z hcd),
refine β¨g, g.2, _β©,
{ intros g1 hg1,
have : g1 β ((Ξ» g : SL(2, β€), ββg 1) β»ΒΉ' {cd}),
{ rw [set.mem_preimage, set.mem_singleton_iff],
exact eq.trans hg1.symm (set.mem_singleton_iff.mp (set.mem_preimage.mp g.2)) },
exact hg β¨g1, thisβ© },
end
/-- The matrix `T = [[1,1],[0,1]]` as an element of `SL(2,β€)` -/
def T : SL(2,β€) := β¨!![1, 1; 0, 1], by norm_num [matrix.det_fin_two_of]β©
/-- The matrix `S = [[0,-1],[1,0]]` as an element of `SL(2,β€)` -/
def S : SL(2,β€) := β¨!![0, -1; 1, 0], by norm_num [matrix.det_fin_two_of]β©
lemma coe_S : ββS = !![0, -1; 1, 0] := rfl
lemma coe_T : ββT = !![1, 1; 0, 1] := rfl
lemma coe_T_inv : ββ(Tβ»ΒΉ) = !![1, -1; 0, 1] := by simp [coe_inv, coe_T, adjugate_fin_two]
lemma coe_T_zpow (n : β€) : ββ(T ^ n) = !![1, n; 0, 1] :=
begin
induction n using int.induction_on with n h n h,
{ rw [zpow_zero, coe_one, matrix.one_fin_two] },
{ simp_rw [zpow_add, zpow_one, coe_mul, h, coe_T, matrix.mul_fin_two],
congrm !![_, _; _, _],
rw [mul_one, mul_one, add_comm] },
{ simp_rw [zpow_sub, zpow_one, coe_mul, h, coe_T_inv, matrix.mul_fin_two],
congrm !![_, _; _, _]; ring },
end
@[simp] lemma T_pow_mul_apply_one (n : β€) (g : SL(2, β€)) : ββ(T ^ n * g) 1 = ββg 1 :=
by simp [coe_T_zpow, matrix.mul, matrix.dot_product, fin.sum_univ_succ]
@[simp] lemma T_mul_apply_one (g : SL(2, β€)) : ββ(T * g) 1 = ββg 1 :=
by simpa using T_pow_mul_apply_one 1 g
@[simp] lemma T_inv_mul_apply_one (g : SL(2, β€)) : ββ(Tβ»ΒΉ * g) 1 = ββg 1 :=
by simpa using T_pow_mul_apply_one (-1) g
lemma coe_T_zpow_smul_eq {n : β€} : (β((T^n) β’ z) : β) = z + n :=
by simp [coe_T_zpow]
lemma re_T_zpow_smul (n : β€) : ((T^n) β’ z).re = z.re + n :=
by rw [βcoe_re, coe_T_zpow_smul_eq, add_re, int_cast_re, coe_re]
lemma im_T_zpow_smul (n : β€) : ((T^n) β’ z).im = z.im :=
by rw [βcoe_im, coe_T_zpow_smul_eq, add_im, int_cast_im, add_zero, coe_im]
lemma re_T_smul : (T β’ z).re = z.re + 1 := by simpa using re_T_zpow_smul z 1
lemma im_T_smul : (T β’ z).im = z.im := by simpa using im_T_zpow_smul z 1
lemma re_T_inv_smul : (Tβ»ΒΉ β’ z).re = z.re - 1 := by simpa using re_T_zpow_smul z (-1)
lemma im_T_inv_smul : (Tβ»ΒΉ β’ z).im = z.im := by simpa using im_T_zpow_smul z (-1)
variables {z}
-- If instead we had `g` and `T` of type `PSL(2, β€)`, then we could simply state `g = T^n`.
lemma exists_eq_T_zpow_of_c_eq_zero (hc : ββg 1 0 = 0) :
β (n : β€), β (z : β), g β’ z = T^n β’ z :=
begin
have had := g.det_coe,
replace had : ββg 0 0 * ββg 1 1 = 1, { rw [det_fin_two, hc] at had, linarith, },
rcases int.eq_one_or_neg_one_of_mul_eq_one' had with β¨ha, hdβ© | β¨ha, hdβ©,
{ use ββg 0 1,
suffices : g = T^(ββg 0 1), { intros z, conv_lhs { rw this, }, },
ext i j, fin_cases i; fin_cases j;
simp [ha, hc, hd, coe_T_zpow], },
{ use -ββg 0 1,
suffices : g = -T^(-ββg 0 1), { intros z, conv_lhs { rw [this, SL_neg_smul], }, },
ext i j, fin_cases i; fin_cases j;
simp [ha, hc, hd, coe_T_zpow], },
end
/- If `c = 1`, then `g` factorises into a product terms involving only `T` and `S`. -/
lemma g_eq_of_c_eq_one (hc : ββg 1 0 = 1) :
g = T^(ββg 0 0) * S * T^(ββg 1 1) :=
begin
have hg := g.det_coe.symm,
replace hg : ββg 0 1 = ββg 0 0 * ββg 1 1 - 1, { rw [det_fin_two, hc] at hg, linarith, },
refine subtype.ext _,
conv_lhs { rw matrix.eta_fin_two ββg },
rw [hc, hg],
simp only [coe_mul, coe_T_zpow, coe_S, mul_fin_two],
congrm !![_, _; _, _]; ring
end
/-- If `1 < |z|`, then `|S β’ z| < 1`. -/
lemma norm_sq_S_smul_lt_one (h: 1 < norm_sq z) : norm_sq β(S β’ z) < 1 :=
by simpa [coe_S] using (inv_lt_inv z.norm_sq_pos zero_lt_one).mpr h
/-- If `|z| < 1`, then applying `S` strictly decreases `im`. -/
lemma im_lt_im_S_smul (h: norm_sq z < 1) : z.im < (S β’ z).im :=
begin
have : z.im < z.im / norm_sq (z:β),
{ have imz : 0 < z.im := im_pos z,
apply (lt_div_iff z.norm_sq_pos).mpr,
nlinarith },
convert this,
simp only [special_linear_group.im_smul_eq_div_norm_sq],
field_simp [norm_sq_denom_ne_zero, norm_sq_ne_zero, S]
end
/-- The standard (closed) fundamental domain of the action of `SL(2,β€)` on `β`. -/
def fd : set β :=
{z | 1 β€ (z : β).norm_sq β§ |z.re| β€ (1 : β) / 2}
/-- The standard open fundamental domain of the action of `SL(2,β€)` on `β`. -/
def fdo : set β :=
{z | 1 < (z : β).norm_sq β§ |z.re| < (1 : β) / 2}
localized "notation `π` := modular_group.fd" in modular
localized "notation `πα΅` := modular_group.fdo" in modular
lemma abs_two_mul_re_lt_one_of_mem_fdo (h : z β πα΅) : |2 * z.re| < 1 :=
begin
rw [abs_mul, abs_two, β lt_div_iff' (@two_pos β _ _)],
exact h.2,
end
lemma three_lt_four_mul_im_sq_of_mem_fdo (h : z β πα΅) : 3 < 4 * z.im^2 :=
begin
have : 1 < z.re * z.re + z.im * z.im := by simpa [complex.norm_sq_apply] using h.1,
have := h.2,
cases abs_cases z.re;
nlinarith,
end
/-- If `z β πα΅`, and `n : β€`, then `|z + n| > 1`. -/
lemma one_lt_norm_sq_T_zpow_smul (hz : z β πα΅) (n : β€) : 1 < norm_sq (((T^n) β’ z) : β) :=
begin
have hzβ : 1 < z.re * z.re + z.im * z.im := hz.1,
have hzn := int.nneg_mul_add_sq_of_abs_le_one n (abs_two_mul_re_lt_one_of_mem_fdo hz).le,
have : 1 < (z.re + βn) * (z.re + βn) + z.im * z.im, { linarith, },
simpa [coe_T_zpow, norm_sq],
end
lemma eq_zero_of_mem_fdo_of_T_zpow_mem_fdo {n : β€} (hz : z β πα΅) (hg : (T^n) β’ z β πα΅) : n = 0 :=
begin
suffices : |(n : β)| < 1,
{ rwa [β int.cast_abs, β int.cast_one, int.cast_lt, int.abs_lt_one_iff] at this, },
have hβ := hz.2,
have hβ := hg.2,
rw [re_T_zpow_smul] at hβ,
calc |(n : β)| β€ |z.re| + |z.re + (n : β)| : abs_add' (n : β) z.re
... < 1/2 + 1/2 : add_lt_add hβ hβ
... = 1 : add_halves 1,
end
/-- Any `z : β` can be moved to `π` by an element of `SL(2,β€)` -/
lemma exists_smul_mem_fd (z : β) : β g : SL(2,β€), g β’ z β π :=
begin
-- obtain a gβ which maximizes im (g β’ z),
obtain β¨gβ, hgββ© := exists_max_im z,
-- then among those, minimize re
obtain β¨g, hg, hg'β© := exists_row_one_eq_and_min_re z (bottom_row_coprime gβ),
refine β¨g, _β©,
-- `g` has same max im property as `gβ`
have hgβ' : β (g' : SL(2,β€)), (g' β’ z).im β€ (g β’ z).im,
{ have hg'' : (g β’ z).im = (gβ β’ z).im,
{ rw [special_linear_group.im_smul_eq_div_norm_sq, special_linear_group.im_smul_eq_div_norm_sq,
denom_apply, denom_apply, hg]},
simpa only [hg''] using hgβ },
split,
{ -- Claim: `1 β€ βnorm_sq β(g β’ z)`. If not, then `Sβ’gβ’z` has larger imaginary part
contrapose! hgβ',
refine β¨S * g, _β©,
rw mul_smul,
exact im_lt_im_S_smul hgβ' },
{ show |(g β’ z).re| β€ 1 / 2, -- if not, then either `T` or `T'` decrease |Re|.
rw abs_le,
split,
{ contrapose! hg',
refine β¨T * g, (T_mul_apply_one _).symm, _β©,
rw [mul_smul, re_T_smul],
cases abs_cases ((g β’ z).re + 1); cases abs_cases (g β’ z).re; linarith },
{ contrapose! hg',
refine β¨Tβ»ΒΉ * g, (T_inv_mul_apply_one _).symm, _β©,
rw [mul_smul, re_T_inv_smul],
cases abs_cases ((g β’ z).re - 1); cases abs_cases (g β’ z).re; linarith } }
end
section unique_representative
variables {z}
/-- An auxiliary result en route to `modular_group.c_eq_zero`. -/
lemma abs_c_le_one (hz : z β πα΅) (hg : g β’ z β πα΅) : |ββg 1 0| β€ 1 :=
begin
let c' : β€ := ββg 1 0,
let c : β := (c' : β),
suffices : 3 * c^2 < 4,
{ rw [β int.cast_pow, β int.cast_three, β int.cast_four, β int.cast_mul, int.cast_lt] at this,
replace this : c' ^ 2 β€ 1 ^ 2, { linarith, },
rwa [sq_le_sq, abs_one] at this },
suffices : c β 0 β 9 * c^4 < 16,
{ rcases eq_or_ne c 0 with hc | hc,
{ rw hc, norm_num, },
{ refine (abs_lt_of_sq_lt_sq' _ (by norm_num)).2,
specialize this hc,
linarith, }, },
intros hc,
replace hc : 0 < c^4, { rw pow_bit0_pos_iff; trivial, },
have hβ := mul_lt_mul_of_pos_right (mul_lt_mul'' (three_lt_four_mul_im_sq_of_mem_fdo hg)
(three_lt_four_mul_im_sq_of_mem_fdo hz) (by linarith) (by linarith)) hc,
have hβ : (c * z.im) ^ 4 / norm_sq (denom βg z) ^ 2 β€ 1 :=
div_le_one_of_le (pow_four_le_pow_two_of_pow_two_le
(upper_half_plane.c_mul_im_sq_le_norm_sq_denom z g)) (sq_nonneg _),
let nsq := norm_sq (denom g z),
calc 9 * c^4 < c^4 * z.im^2 * (g β’ z).im^2 * 16 : by linarith
... = c^4 * z.im^4 / nsq^2 * 16 : by { rw [special_linear_group.im_smul_eq_div_norm_sq,
div_pow], ring, }
... β€ 16 : by { rw β mul_pow, linarith, },
end
/-- An auxiliary result en route to `modular_group.eq_smul_self_of_mem_fdo_mem_fdo`. -/
lemma c_eq_zero (hz : z β πα΅) (hg : g β’ z β πα΅) : ββg 1 0 = 0 :=
begin
have hp : β {g' : SL(2, β€)} (hg' : g' β’ z β πα΅), ββg' 1 0 β 1,
{ intros,
by_contra hc,
let a := ββg' 0 0,
let d := ββg' 1 1,
have had : T^(-a) * g' = S * T^d, { rw g_eq_of_c_eq_one hc, group, },
let w := T^(-a) β’ (g' β’ z),
have hβ : w = S β’ (T^d β’ z), { simp only [w, β mul_smul, had], },
replace hβ : norm_sq w < 1 := hβ.symm βΈ norm_sq_S_smul_lt_one (one_lt_norm_sq_T_zpow_smul hz d),
have hβ : 1 < norm_sq w := one_lt_norm_sq_T_zpow_smul hg' (-a),
linarith, },
have hn : ββg 1 0 β -1,
{ intros hc,
replace hc : ββ(-g) 1 0 = 1, { simp [eq_neg_of_eq_neg hc], },
replace hg : (-g) β’ z β πα΅ := (SL_neg_smul g z).symm βΈ hg,
exact hp hg hc, },
specialize hp hg,
rcases (int.abs_le_one_iff.mp $ abs_c_le_one hz hg);
tauto,
end
/-- Second Main Fundamental Domain Lemma: if both `z` and `g β’ z` are in the open domain `πα΅`,
where `z : β` and `g : SL(2,β€)`, then `z = g β’ z`. -/
lemma eq_smul_self_of_mem_fdo_mem_fdo (hz : z β πα΅) (hg : g β’ z β πα΅) : z = g β’ z :=
begin
obtain β¨n, hnβ© := exists_eq_T_zpow_of_c_eq_zero (c_eq_zero hz hg),
rw hn at hg β’,
simp [eq_zero_of_mem_fdo_of_T_zpow_mem_fdo hz hg, one_smul],
end
end unique_representative
end fundamental_domain
end modular_group
|