Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 31,713 Bytes
4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 |
/-
Copyright (c) 2022 Anne Baanen. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Anne Baanen
-/
import algebra.is_prime_pow
import field_theory.separable
import linear_algebra.free_module.finite.rank
import linear_algebra.free_module.pid
import linear_algebra.matrix.nonsingular_inverse
import ring_theory.dedekind_domain.ideal
import ring_theory.localization.module
/-!
# Ramification index and inertia degree
Given `P : ideal S` lying over `p : ideal R` for the ring extension `f : R →+* S`
(assuming `P` and `p` are prime or maximal where needed),
the **ramification index** `ideal.ramification_idx f p P` is the multiplicity of `P` in `map f p`,
and the **inertia degree** `ideal.inertia_deg f p P` is the degree of the field extension
`(S / P) : (R / p)`.
## TODO (#12287)
The main theorem `ideal.sum_ramification_inertia` states that for all coprime `P` lying over `p`,
`Σ P, ramification_idx f p P * inertia_deg f p P` equals the degree of the field extension
`Frac(S) : Frac(R)`.
## Implementation notes
Often the above theory is set up in the case where:
* `R` is the ring of integers of a number field `K`,
* `L` is a finite separable extension of `K`,
* `S` is the integral closure of `R` in `L`,
* `p` and `P` are maximal ideals,
* `P` is an ideal lying over `p`
We will try to relax the above hypotheses as much as possible.
## Notation
In this file, `e` stands for the ramification index and `f` for the inertia degree of `P` over `p`,
leaving `p` and `P` implicit.
-/
namespace ideal
universes u v
variables {R : Type u} [comm_ring R]
variables {S : Type v} [comm_ring S] (f : R →+* S)
variables (p : ideal R) (P : ideal S)
open finite_dimensional
open unique_factorization_monoid
section dec_eq
open_locale classical
/-- The ramification index of `P` over `p` is the largest exponent `n` such that
`p` is contained in `P^n`.
In particular, if `p` is not contained in `P^n`, then the ramification index is 0.
If there is no largest such `n` (e.g. because `p = ⊥`), then `ramification_idx` is
defined to be 0.
-/
noncomputable def ramification_idx : ℕ :=
Sup {n | map f p ≤ P ^ n}
variables {f p P}
lemma ramification_idx_eq_find (h : ∃ n, ∀ k, map f p ≤ P ^ k → k ≤ n) :
ramification_idx f p P = nat.find h :=
nat.Sup_def h
lemma ramification_idx_eq_zero (h : ∀ n : ℕ, ∃ k, map f p ≤ P ^ k ∧ n < k) :
ramification_idx f p P = 0 :=
dif_neg (by push_neg; exact h)
lemma ramification_idx_spec {n : ℕ} (hle : map f p ≤ P ^ n) (hgt : ¬ map f p ≤ P ^ (n + 1)) :
ramification_idx f p P = n :=
begin
have : ∀ (k : ℕ), map f p ≤ P ^ k → k ≤ n,
{ intros k hk,
refine le_of_not_lt (λ hnk, _),
exact hgt (hk.trans (ideal.pow_le_pow hnk)) },
rw ramification_idx_eq_find ⟨n, this⟩,
{ refine le_antisymm (nat.find_min' _ this) (le_of_not_gt (λ (h : nat.find _ < n), _)),
obtain this' := nat.find_spec ⟨n, this⟩,
exact h.not_le (this' _ hle) },
end
lemma ramification_idx_lt {n : ℕ} (hgt : ¬ (map f p ≤ P ^ n)) :
ramification_idx f p P < n :=
begin
cases n,
{ simpa using hgt },
rw nat.lt_succ_iff,
have : ∀ k, map f p ≤ P ^ k → k ≤ n,
{ refine λ k hk, le_of_not_lt (λ hnk, _),
exact hgt (hk.trans (ideal.pow_le_pow hnk)) },
rw ramification_idx_eq_find ⟨n, this⟩,
exact nat.find_min' ⟨n, this⟩ this
end
@[simp] lemma ramification_idx_bot : ramification_idx f ⊥ P = 0 :=
dif_neg $ not_exists.mpr $ λ n hn, n.lt_succ_self.not_le (hn _ (by simp))
@[simp] lemma ramification_idx_of_not_le (h : ¬ map f p ≤ P) : ramification_idx f p P = 0 :=
ramification_idx_spec (by simp) (by simpa using h)
lemma ramification_idx_ne_zero {e : ℕ} (he : e ≠ 0)
(hle : map f p ≤ P ^ e) (hnle : ¬ map f p ≤ P ^ (e + 1)):
ramification_idx f p P ≠ 0 :=
by rwa ramification_idx_spec hle hnle
lemma le_pow_of_le_ramification_idx {n : ℕ} (hn : n ≤ ramification_idx f p P) :
map f p ≤ P ^ n :=
begin
contrapose! hn,
exact ramification_idx_lt hn
end
lemma le_pow_ramification_idx :
map f p ≤ P ^ ramification_idx f p P :=
le_pow_of_le_ramification_idx (le_refl _)
lemma le_comap_of_ramification_idx_ne_zero (h : ramification_idx f p P ≠ 0) : p ≤ comap f P :=
ideal.map_le_iff_le_comap.mp $ le_pow_ramification_idx.trans $ ideal.pow_le_self $ h
namespace is_dedekind_domain
variables [is_domain S] [is_dedekind_domain S]
lemma ramification_idx_eq_normalized_factors_count
(hp0 : map f p ≠ ⊥) (hP : P.is_prime) (hP0 : P ≠ ⊥) :
ramification_idx f p P = (normalized_factors (map f p)).count P :=
begin
have hPirr := (ideal.prime_of_is_prime hP0 hP).irreducible,
refine ramification_idx_spec (ideal.le_of_dvd _) (mt ideal.dvd_iff_le.mpr _);
rw [dvd_iff_normalized_factors_le_normalized_factors (pow_ne_zero _ hP0) hp0,
normalized_factors_pow, normalized_factors_irreducible hPirr, normalize_eq,
multiset.nsmul_singleton, ← multiset.le_count_iff_repeat_le],
{ exact (nat.lt_succ_self _).not_le },
end
lemma ramification_idx_eq_factors_count (hp0 : map f p ≠ ⊥) (hP : P.is_prime) (hP0 : P ≠ ⊥) :
ramification_idx f p P = (factors (map f p)).count P :=
by rw [is_dedekind_domain.ramification_idx_eq_normalized_factors_count hp0 hP hP0,
factors_eq_normalized_factors]
lemma ramification_idx_ne_zero (hp0 : map f p ≠ ⊥) (hP : P.is_prime) (le : map f p ≤ P) :
ramification_idx f p P ≠ 0 :=
begin
have hP0 : P ≠ ⊥,
{ unfreezingI { rintro rfl },
have := le_bot_iff.mp le,
contradiction },
have hPirr := (ideal.prime_of_is_prime hP0 hP).irreducible,
rw is_dedekind_domain.ramification_idx_eq_normalized_factors_count hp0 hP hP0,
obtain ⟨P', hP', P'_eq⟩ :=
exists_mem_normalized_factors_of_dvd hp0 hPirr (ideal.dvd_iff_le.mpr le),
rwa [multiset.count_ne_zero, associated_iff_eq.mp P'_eq],
end
end is_dedekind_domain
variables (f p P)
local attribute [instance] ideal.quotient.field
/-- The inertia degree of `P : ideal S` lying over `p : ideal R` is the degree of the
extension `(S / P) : (R / p)`.
We do not assume `P` lies over `p` in the definition; we return `0` instead.
See `inertia_deg_algebra_map` for the common case where `f = algebra_map R S`
and there is an algebra structure `R / p → S / P`.
-/
noncomputable def inertia_deg [hp : p.is_maximal] : ℕ :=
if hPp : comap f P = p
then @finrank (R ⧸ p) (S ⧸ P) _ _ $ @algebra.to_module _ _ _ _ $ ring_hom.to_algebra $
ideal.quotient.lift p (P^.quotient.mk^.comp f) $
λ a ha, quotient.eq_zero_iff_mem.mpr $ mem_comap.mp $ hPp.symm ▸ ha
else 0
-- Useful for the `nontriviality` tactic using `comap_eq_of_scalar_tower_quotient`.
@[simp] lemma inertia_deg_of_subsingleton [hp : p.is_maximal] [hQ : subsingleton (S ⧸ P)] :
inertia_deg f p P = 0 :=
begin
have := ideal.quotient.subsingleton_iff.mp hQ,
unfreezingI { subst this },
exact dif_neg (λ h, hp.ne_top $ h.symm.trans comap_top)
end
@[simp] lemma inertia_deg_algebra_map [algebra R S] [algebra (R ⧸ p) (S ⧸ P)]
[is_scalar_tower R (R ⧸ p) (S ⧸ P)]
[hp : p.is_maximal] :
inertia_deg (algebra_map R S) p P = finrank (R ⧸ p) (S ⧸ P) :=
begin
nontriviality (S ⧸ P) using [inertia_deg_of_subsingleton, finrank_zero_of_subsingleton],
have := comap_eq_of_scalar_tower_quotient (algebra_map (R ⧸ p) (S ⧸ P)).injective,
rw [inertia_deg, dif_pos this],
congr,
refine algebra.algebra_ext _ _ (λ x', quotient.induction_on' x' $ λ x, _),
change ideal.quotient.lift p _ _ (ideal.quotient.mk p x) =
algebra_map _ _ (ideal.quotient.mk p x),
rw [ideal.quotient.lift_mk, ← ideal.quotient.algebra_map_eq, ← is_scalar_tower.algebra_map_eq,
← ideal.quotient.algebra_map_eq, ← is_scalar_tower.algebra_map_apply]
end
end dec_eq
section finrank_quotient_map
open_locale big_operators
open_locale non_zero_divisors
variables [algebra R S]
variables {K : Type*} [field K] [algebra R K] [hRK : is_fraction_ring R K]
variables {L : Type*} [field L] [algebra S L] [is_fraction_ring S L]
variables {V V' V'' : Type*}
variables [add_comm_group V] [module R V] [module K V] [is_scalar_tower R K V]
variables [add_comm_group V'] [module R V'] [module S V'] [is_scalar_tower R S V']
variables [add_comm_group V''] [module R V'']
variables (K)
include hRK
/-- Let `V` be a vector space over `K = Frac(R)`, `S / R` a ring extension
and `V'` a module over `S`. If `b`, in the intersection `V''` of `V` and `V'`,
is linear independent over `S` in `V'`, then it is linear independent over `R` in `V`.
The statement we prove is actually slightly more general:
* it suffices that the inclusion `algebra_map R S : R → S` is nontrivial
* the function `f' : V'' → V'` doesn't need to be injective
-/
lemma finrank_quotient_map.linear_independent_of_nontrivial
[is_domain R] [is_dedekind_domain R] (hRS : (algebra_map R S).ker ≠ ⊤)
(f : V'' →ₗ[R] V) (hf : function.injective f) (f' : V'' →ₗ[R] V')
{ι : Type*} {b : ι → V''} (hb' : linear_independent S (f' ∘ b)) :
linear_independent K (f ∘ b) :=
begin
contrapose! hb' with hb,
-- Informally, if we have a nontrivial linear dependence with coefficients `g` in `K`,
-- then we can find a linear dependence with coefficients `I.quotient.mk g'` in `R/I`,
-- where `I = ker (algebra_map R S)`.
-- We make use of the same principle but stay in `R` everywhere.
simp only [linear_independent_iff', not_forall] at hb ⊢,
obtain ⟨s, g, eq, j', hj's, hj'g⟩ := hb,
use s,
obtain ⟨a, hag, j, hjs, hgI⟩ :=
ideal.exist_integer_multiples_not_mem hRS s g hj's hj'g,
choose g'' hg'' using hag,
letI := classical.prop_decidable,
let g' := λ i, if h : i ∈ s then g'' i h else 0,
have hg' : ∀ i ∈ s, algebra_map _ _ (g' i) = a * g i,
{ intros i hi, exact (congr_arg _ (dif_pos hi)).trans (hg'' i hi) },
-- Because `R/I` is nontrivial, we can lift `g` to a nontrivial linear dependence in `S`.
have hgI : algebra_map R S (g' j) ≠ 0,
{ simp only [fractional_ideal.mem_coe_ideal, not_exists, not_and'] at hgI,
exact hgI _ (hg' j hjs) },
refine ⟨λ i, algebra_map R S (g' i), _, j, hjs, hgI⟩,
have eq : f (∑ i in s, g' i • (b i)) = 0,
{ rw [linear_map.map_sum, ← smul_zero a, ← eq, finset.smul_sum, finset.sum_congr rfl],
intros i hi,
rw [linear_map.map_smul, ← is_scalar_tower.algebra_map_smul K, hg' i hi, ← smul_assoc,
smul_eq_mul],
apply_instance },
simp only [is_scalar_tower.algebra_map_smul, ← linear_map.map_smul, ← linear_map.map_sum,
(f.map_eq_zero_iff hf).mp eq, linear_map.map_zero],
end
open_locale matrix
variables {K}
omit hRK
/-- If `b` mod `p` spans `S/p` as `R/p`-space, then `b` itself spans `Frac(S)` as `K`-space.
Here,
* `p` is an ideal of `R` such that `R / p` is nontrivial
* `K` is a field that has an embedding of `R` (in particular we can take `K = Frac(R)`)
* `L` is a field extension of `K`
* `S` is the integral closure of `R` in `L`
More precisely, we avoid quotients in this statement and instead require that `b ∪ pS` spans `S`.
-/
lemma finrank_quotient_map.span_eq_top [is_domain R] [is_domain S] [algebra K L] [is_noetherian R S]
[algebra R L] [is_scalar_tower R S L] [is_scalar_tower R K L] [is_integral_closure S R L]
[no_zero_smul_divisors R K]
(hp : p ≠ ⊤)
(b : set S) (hb' : submodule.span R b ⊔ (p.map (algebra_map R S)).restrict_scalars R = ⊤) :
submodule.span K (algebra_map S L '' b) = ⊤ :=
begin
have hRL : function.injective (algebra_map R L),
{ rw is_scalar_tower.algebra_map_eq R K L,
exact (algebra_map K L).injective.comp (no_zero_smul_divisors.algebra_map_injective R K) },
-- Let `M` be the `R`-module spanned by the proposed basis elements.
set M : submodule R S := submodule.span R b with hM,
-- Then `S / M` is generated by some finite set of `n` vectors `a`.
letI h : module.finite R (S ⧸ M) :=
module.finite.of_surjective (submodule.mkq _) (submodule.quotient.mk_surjective _),
obtain ⟨n, a, ha⟩ := @@module.finite.exists_fin _ _ _ h,
-- Because the image of `p` in `S / M` is `⊤`,
have smul_top_eq : p • (⊤ : submodule R (S ⧸ M)) = ⊤,
{ calc p • ⊤ = submodule.map M.mkq (p • ⊤) :
by rw [submodule.map_smul'', submodule.map_top, M.range_mkq]
... = ⊤ : by rw [ideal.smul_top_eq_map, (submodule.map_mkq_eq_top M _).mpr hb'] },
-- we can write the elements of `a` as `p`-linear combinations of other elements of `a`.
have exists_sum : ∀ x : (S ⧸ M), ∃ a' : fin n → R, (∀ i, a' i ∈ p) ∧ ∑ i, a' i • a i = x,
{ intro x,
obtain ⟨a'', ha'', hx⟩ := (submodule.mem_ideal_smul_span_iff_exists_sum p a x).1 _,
{ refine ⟨λ i, a'' i, λ i, ha'' _, _⟩,
rw [← hx, finsupp.sum_fintype],
exact λ _, zero_smul _ _ },
{ rw [ha, smul_top_eq],
exact submodule.mem_top } },
choose A' hA'p hA' using λ i, exists_sum (a i),
-- This gives us a(n invertible) matrix `A` such that `det A ∈ (M = span R b)`,
let A : matrix (fin n) (fin n) R := A' - 1,
let B := A.adjugate,
have A_smul : ∀ i, ∑ j, A i j • a j = 0,
{ intros,
simp only [A, pi.sub_apply, sub_smul, finset.sum_sub_distrib, hA', matrix.one_apply, ite_smul,
one_smul, zero_smul, finset.sum_ite_eq, finset.mem_univ, if_true, sub_self] },
-- since `span S {det A} / M = 0`.
have d_smul : ∀ i, A.det • a i = 0,
{ intro i,
calc A.det • a i = ∑ j, (B ⬝ A) i j • a j : _
... = ∑ k, B i k • ∑ j, (A k j • a j) : _
... = 0 : finset.sum_eq_zero (λ k _, _),
{ simp only [matrix.adjugate_mul, pi.smul_apply, matrix.one_apply, mul_ite, ite_smul,
smul_eq_mul, mul_one, mul_zero, one_smul, zero_smul, finset.sum_ite_eq, finset.mem_univ,
if_true] },
{ simp only [matrix.mul_apply, finset.smul_sum, finset.sum_smul, smul_smul],
rw finset.sum_comm },
{ rw [A_smul, smul_zero] } },
-- In the rings of integers we have the desired inclusion.
have span_d : (submodule.span S ({algebra_map R S A.det} : set S)).restrict_scalars R ≤ M,
{ intros x hx,
rw submodule.restrict_scalars_mem at hx,
obtain ⟨x', rfl⟩ := submodule.mem_span_singleton.mp hx,
rw [smul_eq_mul, mul_comm, ← algebra.smul_def] at ⊢ hx,
rw [← submodule.quotient.mk_eq_zero, submodule.quotient.mk_smul],
obtain ⟨a', _, quot_x_eq⟩ := exists_sum (submodule.quotient.mk x'),
simp_rw [← quot_x_eq, finset.smul_sum, smul_comm A.det, d_smul, smul_zero,
finset.sum_const_zero] },
-- So now we lift everything to the fraction field.
refine top_le_iff.mp (calc ⊤ = (ideal.span {algebra_map R L A.det}).restrict_scalars K : _
... ≤ submodule.span K (algebra_map S L '' b) : _),
-- Because `det A ≠ 0`, we have `span L {det A} = ⊤`.
{ rw [eq_comm, submodule.restrict_scalars_eq_top_iff, ideal.span_singleton_eq_top],
refine is_unit.mk0 _ ((map_ne_zero_iff ((algebra_map R L)) hRL).mpr (
@ne_zero_of_map _ _ _ _ _ _ (ideal.quotient.mk p) _ _)),
haveI := ideal.quotient.nontrivial hp,
calc ideal.quotient.mk p (A.det)
= matrix.det ((ideal.quotient.mk p).map_matrix A) :
by rw [ring_hom.map_det, ring_hom.map_matrix_apply]
... = matrix.det ((ideal.quotient.mk p).map_matrix (A' - 1)) : rfl
... = matrix.det (λ i j, (ideal.quotient.mk p) (A' i j) -
(1 : matrix (fin n) (fin n) (R ⧸ p)) i j) : _
... = matrix.det (-1 : matrix (fin n) (fin n) (R ⧸ p)) : _
... = (-1 : R ⧸ p) ^ n : by rw [matrix.det_neg, fintype.card_fin, matrix.det_one, mul_one]
... ≠ 0 : is_unit.ne_zero (is_unit_one.neg.pow _),
{ refine congr_arg matrix.det (matrix.ext (λ i j, _)),
rw [map_sub, ring_hom.map_matrix_apply, map_one],
refl },
{ refine congr_arg matrix.det (matrix.ext (λ i j, _)),
rw [ideal.quotient.eq_zero_iff_mem.mpr (hA'p i j), zero_sub],
refl } },
-- And we conclude `L = span L {det A} ≤ span K b`, so `span K b` spans everything.
{ intros x hx,
rw [submodule.restrict_scalars_mem, is_scalar_tower.algebra_map_apply R S L] at hx,
refine is_fraction_ring.ideal_span_singleton_map_subset R _ hRL span_d hx,
haveI : no_zero_smul_divisors R L := no_zero_smul_divisors.of_algebra_map_injective hRL,
rw ← is_fraction_ring.is_algebraic_iff' R S,
intros x,
exact is_integral.is_algebraic _ (is_integral_of_noetherian infer_instance _) },
end
include hRK
variables (K L)
/-- If `p` is a maximal ideal of `R`, and `S` is the integral closure of `R` in `L`,
then the dimension `[S/pS : R/p]` is equal to `[Frac(S) : Frac(R)]`. -/
lemma finrank_quotient_map [is_domain R] [is_domain S] [is_dedekind_domain R]
[algebra K L] [algebra R L] [is_scalar_tower R K L] [is_scalar_tower R S L]
[is_integral_closure S R L]
[hp : p.is_maximal] [is_noetherian R S] :
finrank (R ⧸ p) (S ⧸ map (algebra_map R S) p) = finrank K L :=
begin
-- Choose an arbitrary basis `b` for `[S/pS : R/p]`.
-- We'll use the previous results to turn it into a basis on `[Frac(S) : Frac(R)]`.
letI : field (R ⧸ p) := ideal.quotient.field _,
let ι := module.free.choose_basis_index (R ⧸ p) (S ⧸ map (algebra_map R S) p),
let b : basis ι (R ⧸ p) (S ⧸ map (algebra_map R S) p) := module.free.choose_basis _ _,
-- Namely, choose a representative `b' i : S` for each `b i : S / pS`.
let b' : ι → S := λ i, (ideal.quotient.mk_surjective (b i)).some,
have b_eq_b' : ⇑ b = (submodule.mkq _).restrict_scalars R ∘ b' :=
funext (λ i, (ideal.quotient.mk_surjective (b i)).some_spec.symm),
-- We claim `b'` is a basis for `Frac(S)` over `Frac(R)` because it is linear independent
-- and spans the whole of `Frac(S)`.
let b'' : ι → L := algebra_map S L ∘ b',
have b''_li : linear_independent _ b'' := _,
have b''_sp : submodule.span _ (set.range b'') = ⊤ := _,
-- Since the two bases have the same index set, the spaces have the same dimension.
let c : basis ι K L := basis.mk b''_li b''_sp.ge,
rw [finrank_eq_card_basis b, finrank_eq_card_basis c],
-- It remains to show that the basis is indeed linear independent and spans the whole space.
{ rw set.range_comp,
refine finrank_quotient_map.span_eq_top p hp.ne_top _ (top_le_iff.mp _),
-- The nicest way to show `S ≤ span b' ⊔ pS` is by reducing both sides modulo pS.
-- However, this would imply distinguishing between `pS` as `S`-ideal,
-- and `pS` as `R`-submodule, since they have different (non-defeq) quotients.
-- Instead we'll lift `x mod pS ∈ span b` to `y ∈ span b'` for some `y - x ∈ pS`.
intros x hx,
have mem_span_b :
((submodule.mkq (map (algebra_map R S) p)) x :
S ⧸ map (algebra_map R S) p) ∈ submodule.span (R ⧸ p) (set.range b) := b.mem_span _,
rw [← @submodule.restrict_scalars_mem R, algebra.span_restrict_scalars_eq_span_of_surjective
(show function.surjective (algebra_map R (R ⧸ p)), from ideal.quotient.mk_surjective) _,
b_eq_b', set.range_comp, ← submodule.map_span]
at mem_span_b,
obtain ⟨y, y_mem, y_eq⟩ := submodule.mem_map.mp mem_span_b,
suffices : y + -(y - x) ∈ _, { simpa },
rw [linear_map.restrict_scalars_apply, submodule.mkq_apply, submodule.mkq_apply,
submodule.quotient.eq] at y_eq,
exact add_mem (submodule.mem_sup_left y_mem) (neg_mem $ submodule.mem_sup_right y_eq) },
{ have := b.linear_independent, rw b_eq_b' at this,
convert finrank_quotient_map.linear_independent_of_nontrivial K _
((algebra.linear_map S L).restrict_scalars R) _
((submodule.mkq _).restrict_scalars R)
this,
{ rw [quotient.algebra_map_eq, ideal.mk_ker],
exact hp.ne_top },
{ exact is_fraction_ring.injective S L } },
end
end finrank_quotient_map
section fact_le_comap
local notation `e` := ramification_idx f p P
/-- `R / p` has a canonical map to `S / (P ^ e)`, where `e` is the ramification index
of `P` over `p`. -/
noncomputable instance quotient.algebra_quotient_pow_ramification_idx :
algebra (R ⧸ p) (S ⧸ (P ^ e)) :=
quotient.algebra_quotient_of_le_comap (ideal.map_le_iff_le_comap.mp le_pow_ramification_idx)
@[simp] lemma quotient.algebra_map_quotient_pow_ramification_idx (x : R) :
algebra_map (R ⧸ p) (S ⧸ P ^ e) (ideal.quotient.mk p x) = ideal.quotient.mk _ (f x) :=
rfl
variables [hfp : fact (ramification_idx f p P ≠ 0)]
include hfp
/-- If `P` lies over `p`, then `R / p` has a canonical map to `S / P`.
This can't be an instance since the map `f : R → S` is generally not inferrable.
-/
def quotient.algebra_quotient_of_ramification_idx_ne_zero :
algebra (R ⧸ p) (S ⧸ P) :=
quotient.algebra_quotient_of_le_comap (le_comap_of_ramification_idx_ne_zero hfp.out)
-- In this file, the value for `f` can be inferred.
local attribute [instance] ideal.quotient.algebra_quotient_of_ramification_idx_ne_zero
@[simp] lemma quotient.algebra_map_quotient_of_ramification_idx_ne_zero (x : R) :
algebra_map (R ⧸ p) (S ⧸ P) (ideal.quotient.mk p x) = ideal.quotient.mk _ (f x) :=
rfl
omit hfp
/-- The inclusion `(P^(i + 1) / P^e) ⊂ (P^i / P^e)`. -/
@[simps]
def pow_quot_succ_inclusion (i : ℕ) :
ideal.map (P^e)^.quotient.mk (P ^ (i + 1)) →ₗ[R ⧸ p] ideal.map (P^e)^.quotient.mk (P ^ i) :=
{ to_fun := λ x, ⟨x, ideal.map_mono (ideal.pow_le_pow i.le_succ) x.2⟩,
map_add' := λ x y, rfl,
map_smul' := λ c x, rfl }
lemma pow_quot_succ_inclusion_injective (i : ℕ) :
function.injective (pow_quot_succ_inclusion f p P i) :=
begin
rw [← linear_map.ker_eq_bot, linear_map.ker_eq_bot'],
rintro ⟨x, hx⟩ hx0,
rw subtype.ext_iff at hx0 ⊢,
rwa pow_quot_succ_inclusion_apply_coe at hx0
end
/-- `S ⧸ P` embeds into the quotient by `P^(i+1) ⧸ P^e` as a subspace of `P^i ⧸ P^e`.
See `quotient_to_quotient_range_pow_quot_succ` for this as a linear map,
and `quotient_range_pow_quot_succ_inclusion_equiv` for this as a linear equivalence.
-/
noncomputable def quotient_to_quotient_range_pow_quot_succ_aux {i : ℕ} {a : S} (a_mem : a ∈ P^i) :
S ⧸ P → ((P ^ i).map (P ^ e)^.quotient.mk ⧸ (pow_quot_succ_inclusion f p P i).range) :=
quotient.map' (λ (x : S), ⟨_, ideal.mem_map_of_mem _ (ideal.mul_mem_left _ x a_mem)⟩)
(λ x y h, begin
rw submodule.quotient_rel_r_def at ⊢ h,
simp only [_root_.map_mul, linear_map.mem_range],
refine ⟨⟨_, ideal.mem_map_of_mem _ (ideal.mul_mem_mul h a_mem)⟩, _⟩,
ext,
rw [pow_quot_succ_inclusion_apply_coe, subtype.coe_mk, submodule.coe_sub, subtype.coe_mk,
subtype.coe_mk, _root_.map_mul, map_sub, sub_mul]
end)
lemma quotient_to_quotient_range_pow_quot_succ_aux_mk {i : ℕ} {a : S} (a_mem : a ∈ P^i) (x : S) :
quotient_to_quotient_range_pow_quot_succ_aux f p P a_mem (submodule.quotient.mk x) =
submodule.quotient.mk ⟨_, ideal.mem_map_of_mem _ (ideal.mul_mem_left _ x a_mem)⟩ :=
by apply quotient.map'_mk'
include hfp
/-- `S ⧸ P` embeds into the quotient by `P^(i+1) ⧸ P^e` as a subspace of `P^i ⧸ P^e`. -/
noncomputable def quotient_to_quotient_range_pow_quot_succ {i : ℕ} {a : S} (a_mem : a ∈ P^i) :
S ⧸ P →ₗ[R ⧸ p] ((P ^ i).map (P ^ e)^.quotient.mk ⧸ (pow_quot_succ_inclusion f p P i).range) :=
{ to_fun := quotient_to_quotient_range_pow_quot_succ_aux f p P a_mem,
map_add' := begin
intros x y, refine quotient.induction_on' x (λ x, quotient.induction_on' y (λ y, _)),
simp only [submodule.quotient.mk'_eq_mk, ← submodule.quotient.mk_add,
quotient_to_quotient_range_pow_quot_succ_aux_mk, add_mul],
refine congr_arg submodule.quotient.mk _,
ext,
refl
end,
map_smul' := begin
intros x y, refine quotient.induction_on' x (λ x, quotient.induction_on' y (λ y, _)),
simp only [submodule.quotient.mk'_eq_mk, ← submodule.quotient.mk_add,
quotient_to_quotient_range_pow_quot_succ_aux_mk, ring_hom.id_apply],
refine congr_arg submodule.quotient.mk _,
ext,
simp only [subtype.coe_mk, _root_.map_mul, algebra.smul_def, submodule.coe_mk, mul_assoc,
ideal.quotient.mk_eq_mk, submodule.coe_smul_of_tower,
ideal.quotient.algebra_map_quotient_pow_ramification_idx]
end }
lemma quotient_to_quotient_range_pow_quot_succ_mk {i : ℕ} {a : S} (a_mem : a ∈ P^i) (x : S) :
quotient_to_quotient_range_pow_quot_succ f p P a_mem (submodule.quotient.mk x) =
submodule.quotient.mk ⟨_, ideal.mem_map_of_mem _ (ideal.mul_mem_left _ x a_mem)⟩ :=
quotient_to_quotient_range_pow_quot_succ_aux_mk f p P a_mem x
lemma quotient_to_quotient_range_pow_quot_succ_injective [is_domain S] [is_dedekind_domain S]
[P.is_prime] {i : ℕ} (hi : i < e) {a : S} (a_mem : a ∈ P^i) (a_not_mem : a ∉ P^(i + 1)) :
function.injective (quotient_to_quotient_range_pow_quot_succ f p P a_mem) :=
λ x, quotient.induction_on' x $ λ x y, quotient.induction_on' y $ λ y h,
begin
have Pe_le_Pi1 : P^e ≤ P^(i + 1) := ideal.pow_le_pow hi,
simp only [submodule.quotient.mk'_eq_mk, quotient_to_quotient_range_pow_quot_succ_mk,
submodule.quotient.eq, linear_map.mem_range, subtype.ext_iff, subtype.coe_mk,
submodule.coe_sub] at ⊢ h,
rcases h with ⟨⟨⟨z⟩, hz⟩, h⟩,
rw [submodule.quotient.quot_mk_eq_mk, ideal.quotient.mk_eq_mk, ideal.mem_quotient_iff_mem_sup,
sup_eq_left.mpr Pe_le_Pi1] at hz,
rw [pow_quot_succ_inclusion_apply_coe, subtype.coe_mk, submodule.quotient.quot_mk_eq_mk,
ideal.quotient.mk_eq_mk, ← map_sub, ideal.quotient.eq, ← sub_mul] at h,
exact (ideal.is_prime.mul_mem_pow _
((submodule.sub_mem_iff_right _ hz).mp (Pe_le_Pi1 h))).resolve_right a_not_mem,
end
lemma quotient_to_quotient_range_pow_quot_succ_surjective [is_domain S] [is_dedekind_domain S]
(hP0 : P ≠ ⊥) [hP : P.is_prime] {i : ℕ} (hi : i < e)
{a : S} (a_mem : a ∈ P^i) (a_not_mem : a ∉ P^(i + 1)) :
function.surjective (quotient_to_quotient_range_pow_quot_succ f p P a_mem) :=
begin
rintro ⟨⟨⟨x⟩, hx⟩⟩,
have Pe_le_Pi : P^e ≤ P^i := ideal.pow_le_pow hi.le,
have Pe_le_Pi1 : P^e ≤ P^(i + 1) := ideal.pow_le_pow hi,
rw [submodule.quotient.quot_mk_eq_mk, ideal.quotient.mk_eq_mk, ideal.mem_quotient_iff_mem_sup,
sup_eq_left.mpr Pe_le_Pi] at hx,
suffices hx' : x ∈ ideal.span {a} ⊔ P^(i+1),
{ obtain ⟨y', hy', z, hz, rfl⟩ := submodule.mem_sup.mp hx',
obtain ⟨y, rfl⟩ := ideal.mem_span_singleton.mp hy',
refine ⟨submodule.quotient.mk y, _⟩,
simp only [submodule.quotient.quot_mk_eq_mk, quotient_to_quotient_range_pow_quot_succ_mk,
submodule.quotient.eq, linear_map.mem_range, subtype.ext_iff, subtype.coe_mk,
submodule.coe_sub],
refine ⟨⟨_, ideal.mem_map_of_mem _ (submodule.neg_mem _ hz)⟩, _⟩,
rw [pow_quot_succ_inclusion_apply_coe, subtype.coe_mk, ideal.quotient.mk_eq_mk, map_add,
mul_comm y a, sub_add_cancel', map_neg] },
letI := classical.dec_eq (ideal S),
rw [sup_eq_prod_inf_factors _ (pow_ne_zero _ hP0), normalized_factors_pow,
normalized_factors_irreducible ((ideal.prime_iff_is_prime hP0).mpr hP).irreducible,
normalize_eq, multiset.nsmul_singleton, multiset.inter_repeat, multiset.prod_repeat],
rw [← submodule.span_singleton_le_iff_mem, ideal.submodule_span_eq] at a_mem a_not_mem,
rwa [ideal.count_normalized_factors_eq a_mem a_not_mem, min_eq_left i.le_succ],
{ intro ha,
rw ideal.span_singleton_eq_bot.mp ha at a_not_mem,
have := (P^(i+1)).zero_mem,
contradiction },
end
/-- Quotienting `P^i / P^e` by its subspace `P^(i+1) ⧸ P^e` is
`R ⧸ p`-linearly isomorphic to `S ⧸ P`. -/
noncomputable def quotient_range_pow_quot_succ_inclusion_equiv [is_domain S] [is_dedekind_domain S]
[P.is_prime] (hP : P ≠ ⊥) {i : ℕ} (hi : i < e) :
((P ^ i).map (P ^ e)^.quotient.mk ⧸ (pow_quot_succ_inclusion f p P i).range) ≃ₗ[R ⧸ p] S ⧸ P :=
begin
choose a a_mem a_not_mem using set_like.exists_of_lt
(ideal.strict_anti_pow P hP (ideal.is_prime.ne_top infer_instance) (le_refl i.succ)),
refine (linear_equiv.of_bijective _ _ _).symm,
{ exact quotient_to_quotient_range_pow_quot_succ f p P a_mem },
{ exact quotient_to_quotient_range_pow_quot_succ_injective f p P hi a_mem a_not_mem },
{ exact quotient_to_quotient_range_pow_quot_succ_surjective f p P hP hi a_mem a_not_mem }
end
/-- Since the inclusion `(P^(i + 1) / P^e) ⊂ (P^i / P^e)` has a kernel isomorphic to `P / S`,
`[P^i / P^e : R / p] = [P^(i+1) / P^e : R / p] + [P / S : R / p]` -/
lemma dim_pow_quot_aux [is_domain S] [is_dedekind_domain S] [p.is_maximal] [P.is_prime]
(hP0 : P ≠ ⊥) {i : ℕ} (hi : i < e) :
module.rank (R ⧸ p) (ideal.map (P^e)^.quotient.mk (P ^ i)) =
module.rank (R ⧸ p) (S ⧸ P) + module.rank (R ⧸ p) (ideal.map (P^e)^.quotient.mk (P ^ (i + 1))) :=
begin
letI : field (R ⧸ p) := ideal.quotient.field _,
rw [dim_eq_of_injective _ (pow_quot_succ_inclusion_injective f p P i),
(quotient_range_pow_quot_succ_inclusion_equiv f p P hP0 hi).symm.dim_eq],
exact (dim_quotient_add_dim (linear_map.range (pow_quot_succ_inclusion f p P i))).symm,
end
lemma dim_pow_quot [is_domain S] [is_dedekind_domain S] [p.is_maximal] [P.is_prime]
(hP0 : P ≠ ⊥) (i : ℕ) (hi : i ≤ e) :
module.rank (R ⧸ p) (ideal.map (P^e)^.quotient.mk (P ^ i)) =
(e - i) • module.rank (R ⧸ p) (S ⧸ P) :=
begin
refine @nat.decreasing_induction' _ i e (λ j lt_e le_j ih, _) hi _,
{ rw [dim_pow_quot_aux f p P _ lt_e, ih, ← succ_nsmul, nat.sub_succ, ← nat.succ_eq_add_one,
nat.succ_pred_eq_of_pos (nat.sub_pos_of_lt lt_e)],
assumption },
{ rw [nat.sub_self, zero_nsmul, map_quotient_self],
exact dim_bot (R ⧸ p) (S ⧸ (P^e)) }
end
omit hfp
/-- If `p` is a maximal ideal of `R`, `S` extends `R` and `P^e` lies over `p`,
then the dimension `[S/(P^e) : R/p]` is equal to `e * [S/P : R/p]`. -/
lemma dim_prime_pow_ramification_idx [is_domain S] [is_dedekind_domain S] [p.is_maximal]
[P.is_prime] (hP0 : P ≠ ⊥) (he : e ≠ 0) :
module.rank (R ⧸ p) (S ⧸ P^e) =
e • @module.rank (R ⧸ p) (S ⧸ P) _ _ (@algebra.to_module _ _ _ _ $
@@quotient.algebra_quotient_of_ramification_idx_ne_zero _ _ _ _ _ ⟨he⟩) :=
begin
letI : fact (e ≠ 0) := ⟨he⟩,
have := dim_pow_quot f p P hP0 0 (nat.zero_le e),
rw [pow_zero, nat.sub_zero, ideal.one_eq_top, ideal.map_top] at this,
exact (dim_top (R ⧸ p) _).symm.trans this
end
/-- If `p` is a maximal ideal of `R`, `S` extends `R` and `P^e` lies over `p`,
then the dimension `[S/(P^e) : R/p]`, as a natural number, is equal to `e * [S/P : R/p]`. -/
lemma finrank_prime_pow_ramification_idx [is_domain S] [is_dedekind_domain S]
(hP0 : P ≠ ⊥) [p.is_maximal] [P.is_prime] (he : e ≠ 0) :
finrank (R ⧸ p) (S ⧸ P^e) =
e * @finrank (R ⧸ p) (S ⧸ P) _ _ (@algebra.to_module _ _ _ _ $
@@quotient.algebra_quotient_of_ramification_idx_ne_zero _ _ _ _ _ ⟨he⟩) :=
begin
letI : fact (e ≠ 0) := ⟨he⟩,
letI : algebra (R ⧸ p) (S ⧸ P) := quotient.algebra_quotient_of_ramification_idx_ne_zero f p P,
letI := ideal.quotient.field p,
have hdim := dim_prime_pow_ramification_idx _ _ _ hP0 he,
by_cases hP : finite_dimensional (R ⧸ p) (S ⧸ P),
{ haveI := hP,
haveI := (finite_dimensional_iff_of_rank_eq_nsmul he hdim).mpr hP,
refine cardinal.nat_cast_injective _,
rw [finrank_eq_dim, nat.cast_mul, finrank_eq_dim, hdim, nsmul_eq_mul] },
have hPe := mt (finite_dimensional_iff_of_rank_eq_nsmul he hdim).mp hP,
simp only [finrank_of_infinite_dimensional hP, finrank_of_infinite_dimensional hPe, mul_zero],
end
end fact_le_comap
end ideal
|