Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 61,931 Bytes
4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 |
/-
Copyright (c) 2021 Kexing Ying. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kexing Ying
-/
import measure_theory.function.conditional_expectation.real
import topology.instances.discrete
/-!
# Filtration and stopping time
This file defines some standard definition from the theory of stochastic processes including
filtrations and stopping times. These definitions are used to model the amount of information
at a specific time and is the first step in formalizing stochastic processes.
## Main definitions
* `measure_theory.filtration`: a filtration on a measurable space
* `measure_theory.adapted`: a sequence of functions `u` is said to be adapted to a
filtration `f` if at each point in time `i`, `u i` is `f i`-strongly measurable
* `measure_theory.prog_measurable`: a sequence of functions `u` is said to be progressively
measurable with respect to a filtration `f` if at each point in time `i`, `u` restricted to
`set.Iic i × Ω` is strongly measurable with respect to the product `measurable_space` structure
where the σ-algebra used for `Ω` is `f i`.
* `measure_theory.filtration.natural`: the natural filtration with respect to a sequence of
measurable functions is the smallest filtration to which it is adapted to
* `measure_theory.is_stopping_time`: a stopping time with respect to some filtration `f` is a
function `τ` such that for all `i`, the preimage of `{j | j ≤ i}` along `τ` is
`f i`-measurable
* `measure_theory.is_stopping_time.measurable_space`: the σ-algebra associated with a stopping time
## Main results
* `adapted.prog_measurable_of_continuous`: a continuous adapted process is progressively measurable.
* `prog_measurable.stopped_process`: the stopped process of a progressively measurable process is
progressively measurable.
* `mem_ℒp_stopped_process`: if a process belongs to `ℒp` at every time in `ℕ`, then its stopped
process belongs to `ℒp` as well.
## Tags
filtration, stopping time, stochastic process
-/
open filter order topological_space
open_locale classical measure_theory nnreal ennreal topological_space big_operators
namespace measure_theory
/-! ### Filtrations -/
/-- A `filtration` on measurable space `Ω` with σ-algebra `m` is a monotone
sequence of sub-σ-algebras of `m`. -/
structure filtration {Ω : Type*} (ι : Type*) [preorder ι] (m : measurable_space Ω) :=
(seq : ι → measurable_space Ω)
(mono' : monotone seq)
(le' : ∀ i : ι, seq i ≤ m)
variables {Ω β ι : Type*} {m : measurable_space Ω}
instance [preorder ι] : has_coe_to_fun (filtration ι m) (λ _, ι → measurable_space Ω) :=
⟨λ f, f.seq⟩
namespace filtration
variables [preorder ι]
protected lemma mono {i j : ι} (f : filtration ι m) (hij : i ≤ j) : f i ≤ f j := f.mono' hij
protected lemma le (f : filtration ι m) (i : ι) : f i ≤ m := f.le' i
@[ext] protected lemma ext {f g : filtration ι m} (h : (f : ι → measurable_space Ω) = g) : f = g :=
by { cases f, cases g, simp only, exact h, }
variable (ι)
/-- The constant filtration which is equal to `m` for all `i : ι`. -/
def const (m' : measurable_space Ω) (hm' : m' ≤ m) : filtration ι m :=
⟨λ _, m', monotone_const, λ _, hm'⟩
variable {ι}
@[simp]
lemma const_apply {m' : measurable_space Ω} {hm' : m' ≤ m} (i : ι) : const ι m' hm' i = m' := rfl
instance : inhabited (filtration ι m) := ⟨const ι m le_rfl⟩
instance : has_le (filtration ι m) := ⟨λ f g, ∀ i, f i ≤ g i⟩
instance : has_bot (filtration ι m) := ⟨const ι ⊥ bot_le⟩
instance : has_top (filtration ι m) := ⟨const ι m le_rfl⟩
instance : has_sup (filtration ι m) := ⟨λ f g,
{ seq := λ i, f i ⊔ g i,
mono' := λ i j hij, sup_le ((f.mono hij).trans le_sup_left) ((g.mono hij).trans le_sup_right),
le' := λ i, sup_le (f.le i) (g.le i) }⟩
@[norm_cast] lemma coe_fn_sup {f g : filtration ι m} : ⇑(f ⊔ g) = f ⊔ g := rfl
instance : has_inf (filtration ι m) := ⟨λ f g,
{ seq := λ i, f i ⊓ g i,
mono' := λ i j hij, le_inf (inf_le_left.trans (f.mono hij)) (inf_le_right.trans (g.mono hij)),
le' := λ i, inf_le_left.trans (f.le i) }⟩
@[norm_cast] lemma coe_fn_inf {f g : filtration ι m} : ⇑(f ⊓ g) = f ⊓ g := rfl
instance : has_Sup (filtration ι m) := ⟨λ s,
{ seq := λ i, Sup ((λ f : filtration ι m, f i) '' s),
mono' := λ i j hij,
begin
refine Sup_le (λ m' hm', _),
rw [set.mem_image] at hm',
obtain ⟨f, hf_mem, hfm'⟩ := hm',
rw ← hfm',
refine (f.mono hij).trans _,
have hfj_mem : f j ∈ ((λ g : filtration ι m, g j) '' s), from ⟨f, hf_mem, rfl⟩,
exact le_Sup hfj_mem,
end,
le' := λ i,
begin
refine Sup_le (λ m' hm', _),
rw [set.mem_image] at hm',
obtain ⟨f, hf_mem, hfm'⟩ := hm',
rw ← hfm',
exact f.le i,
end, }⟩
lemma Sup_def (s : set (filtration ι m)) (i : ι) :
Sup s i = Sup ((λ f : filtration ι m, f i) '' s) :=
rfl
noncomputable
instance : has_Inf (filtration ι m) := ⟨λ s,
{ seq := λ i, if set.nonempty s then Inf ((λ f : filtration ι m, f i) '' s) else m,
mono' := λ i j hij,
begin
by_cases h_nonempty : set.nonempty s,
swap, { simp only [h_nonempty, set.nonempty_image_iff, if_false, le_refl], },
simp only [h_nonempty, if_true, le_Inf_iff, set.mem_image, forall_exists_index, and_imp,
forall_apply_eq_imp_iff₂],
refine λ f hf_mem, le_trans _ (f.mono hij),
have hfi_mem : f i ∈ ((λ g : filtration ι m, g i) '' s), from ⟨f, hf_mem, rfl⟩,
exact Inf_le hfi_mem,
end,
le' := λ i,
begin
by_cases h_nonempty : set.nonempty s,
swap, { simp only [h_nonempty, if_false, le_refl], },
simp only [h_nonempty, if_true],
obtain ⟨f, hf_mem⟩ := h_nonempty,
exact le_trans (Inf_le ⟨f, hf_mem, rfl⟩) (f.le i),
end, }⟩
lemma Inf_def (s : set (filtration ι m)) (i : ι) :
Inf s i = if set.nonempty s then Inf ((λ f : filtration ι m, f i) '' s) else m :=
rfl
noncomputable
instance : complete_lattice (filtration ι m) :=
{ le := (≤),
le_refl := λ f i, le_rfl,
le_trans := λ f g h h_fg h_gh i, (h_fg i).trans (h_gh i),
le_antisymm := λ f g h_fg h_gf, filtration.ext $ funext $ λ i, (h_fg i).antisymm (h_gf i),
sup := (⊔),
le_sup_left := λ f g i, le_sup_left,
le_sup_right := λ f g i, le_sup_right,
sup_le := λ f g h h_fh h_gh i, sup_le (h_fh i) (h_gh _),
inf := (⊓),
inf_le_left := λ f g i, inf_le_left,
inf_le_right := λ f g i, inf_le_right,
le_inf := λ f g h h_fg h_fh i, le_inf (h_fg i) (h_fh i),
Sup := Sup,
le_Sup := λ s f hf_mem i, le_Sup ⟨f, hf_mem, rfl⟩,
Sup_le := λ s f h_forall i, Sup_le $ λ m' hm',
begin
obtain ⟨g, hg_mem, hfm'⟩ := hm',
rw ← hfm',
exact h_forall g hg_mem i,
end,
Inf := Inf,
Inf_le := λ s f hf_mem i,
begin
have hs : s.nonempty := ⟨f, hf_mem⟩,
simp only [Inf_def, hs, if_true],
exact Inf_le ⟨f, hf_mem, rfl⟩,
end,
le_Inf := λ s f h_forall i,
begin
by_cases hs : s.nonempty,
swap, { simp only [Inf_def, hs, if_false], exact f.le i, },
simp only [Inf_def, hs, if_true, le_Inf_iff, set.mem_image, forall_exists_index, and_imp,
forall_apply_eq_imp_iff₂],
exact λ g hg_mem, h_forall g hg_mem i,
end,
top := ⊤,
bot := ⊥,
le_top := λ f i, f.le' i,
bot_le := λ f i, bot_le, }
end filtration
lemma measurable_set_of_filtration [preorder ι] {f : filtration ι m} {s : set Ω} {i : ι}
(hs : measurable_set[f i] s) : measurable_set[m] s :=
f.le i s hs
/-- A measure is σ-finite with respect to filtration if it is σ-finite with respect
to all the sub-σ-algebra of the filtration. -/
class sigma_finite_filtration [preorder ι] (μ : measure Ω) (f : filtration ι m) : Prop :=
(sigma_finite : ∀ i : ι, sigma_finite (μ.trim (f.le i)))
instance sigma_finite_of_sigma_finite_filtration [preorder ι] (μ : measure Ω) (f : filtration ι m)
[hf : sigma_finite_filtration μ f] (i : ι) :
sigma_finite (μ.trim (f.le i)) :=
by apply hf.sigma_finite -- can't exact here
@[priority 100]
instance is_finite_measure.sigma_finite_filtration [preorder ι] (μ : measure Ω) (f : filtration ι m)
[is_finite_measure μ] :
sigma_finite_filtration μ f :=
⟨λ n, by apply_instance⟩
/-- Given a integrable function `g`, the conditional expectations of `g` with respect to a
filtration is uniformly integrable. -/
lemma integrable.uniform_integrable_condexp_filtration
[preorder ι] {μ : measure Ω} [is_finite_measure μ] {f : filtration ι m}
{g : Ω → ℝ} (hg : integrable g μ) :
uniform_integrable (λ i, μ[g | f i]) 1 μ :=
hg.uniform_integrable_condexp f.le
section adapted_process
variables [topological_space β] [preorder ι]
{u v : ι → Ω → β} {f : filtration ι m}
/-- A sequence of functions `u` is adapted to a filtration `f` if for all `i`,
`u i` is `f i`-measurable. -/
def adapted (f : filtration ι m) (u : ι → Ω → β) : Prop :=
∀ i : ι, strongly_measurable[f i] (u i)
namespace adapted
@[protected, to_additive] lemma mul [has_mul β] [has_continuous_mul β]
(hu : adapted f u) (hv : adapted f v) :
adapted f (u * v) :=
λ i, (hu i).mul (hv i)
@[protected, to_additive] lemma inv [group β] [topological_group β] (hu : adapted f u) :
adapted f u⁻¹ :=
λ i, (hu i).inv
@[protected] lemma smul [has_smul ℝ β] [has_continuous_smul ℝ β] (c : ℝ) (hu : adapted f u) :
adapted f (c • u) :=
λ i, (hu i).const_smul c
@[protected] lemma strongly_measurable {i : ι} (hf : adapted f u) :
strongly_measurable[m] (u i) :=
(hf i).mono (f.le i)
lemma strongly_measurable_le {i j : ι} (hf : adapted f u) (hij : i ≤ j) :
strongly_measurable[f j] (u i) :=
(hf i).mono (f.mono hij)
end adapted
lemma adapted_const (f : filtration ι m) (x : β) : adapted f (λ _ _, x) :=
λ i, strongly_measurable_const
variable (β)
lemma adapted_zero [has_zero β] (f : filtration ι m) : adapted f (0 : ι → Ω → β) :=
λ i, @strongly_measurable_zero Ω β (f i) _ _
variable {β}
/-- Progressively measurable process. A sequence of functions `u` is said to be progressively
measurable with respect to a filtration `f` if at each point in time `i`, `u` restricted to
`set.Iic i × Ω` is measurable with respect to the product `measurable_space` structure where the
σ-algebra used for `Ω` is `f i`.
The usual definition uses the interval `[0,i]`, which we replace by `set.Iic i`. We recover the
usual definition for index types `ℝ≥0` or `ℕ`. -/
def prog_measurable [measurable_space ι] (f : filtration ι m) (u : ι → Ω → β) : Prop :=
∀ i, strongly_measurable[subtype.measurable_space.prod (f i)] (λ p : set.Iic i × Ω, u p.1 p.2)
lemma prog_measurable_const [measurable_space ι] (f : filtration ι m) (b : β) :
prog_measurable f ((λ _ _, b) : ι → Ω → β) :=
λ i, @strongly_measurable_const _ _ (subtype.measurable_space.prod (f i)) _ _
namespace prog_measurable
variables [measurable_space ι]
protected lemma adapted (h : prog_measurable f u) : adapted f u :=
begin
intro i,
have : u i = (λ p : set.Iic i × Ω, u p.1 p.2) ∘ (λ x, (⟨i, set.mem_Iic.mpr le_rfl⟩, x)) := rfl,
rw this,
exact (h i).comp_measurable measurable_prod_mk_left,
end
protected lemma comp {t : ι → Ω → ι} [topological_space ι] [borel_space ι] [metrizable_space ι]
(h : prog_measurable f u) (ht : prog_measurable f t)
(ht_le : ∀ i ω, t i ω ≤ i) :
prog_measurable f (λ i ω, u (t i ω) ω) :=
begin
intro i,
have : (λ p : ↥(set.Iic i) × Ω, u (t (p.fst : ι) p.snd) p.snd)
= (λ p : ↥(set.Iic i) × Ω, u (p.fst : ι) p.snd) ∘ (λ p : ↥(set.Iic i) × Ω,
(⟨t (p.fst : ι) p.snd, set.mem_Iic.mpr ((ht_le _ _).trans p.fst.prop)⟩, p.snd)) := rfl,
rw this,
exact (h i).comp_measurable ((ht i).measurable.subtype_mk.prod_mk measurable_snd),
end
section arithmetic
@[to_additive] protected lemma mul [has_mul β] [has_continuous_mul β]
(hu : prog_measurable f u) (hv : prog_measurable f v) :
prog_measurable f (λ i ω, u i ω * v i ω) :=
λ i, (hu i).mul (hv i)
@[to_additive] protected lemma finset_prod' {γ} [comm_monoid β] [has_continuous_mul β]
{U : γ → ι → Ω → β} {s : finset γ} (h : ∀ c ∈ s, prog_measurable f (U c)) :
prog_measurable f (∏ c in s, U c) :=
finset.prod_induction U (prog_measurable f) (λ _ _, prog_measurable.mul)
(prog_measurable_const _ 1) h
@[to_additive] protected lemma finset_prod {γ} [comm_monoid β] [has_continuous_mul β]
{U : γ → ι → Ω → β} {s : finset γ} (h : ∀ c ∈ s, prog_measurable f (U c)) :
prog_measurable f (λ i a, ∏ c in s, U c i a) :=
by { convert prog_measurable.finset_prod' h, ext i a, simp only [finset.prod_apply], }
@[to_additive] protected lemma inv [group β] [topological_group β] (hu : prog_measurable f u) :
prog_measurable f (λ i ω, (u i ω)⁻¹) :=
λ i, (hu i).inv
@[to_additive] protected lemma div [group β] [topological_group β]
(hu : prog_measurable f u) (hv : prog_measurable f v) :
prog_measurable f (λ i ω, u i ω / v i ω) :=
λ i, (hu i).div (hv i)
end arithmetic
end prog_measurable
lemma prog_measurable_of_tendsto' {γ} [measurable_space ι] [metrizable_space β]
(fltr : filter γ) [fltr.ne_bot] [fltr.is_countably_generated] {U : γ → ι → Ω → β}
(h : ∀ l, prog_measurable f (U l)) (h_tendsto : tendsto U fltr (𝓝 u)) :
prog_measurable f u :=
begin
assume i,
apply @strongly_measurable_of_tendsto (set.Iic i × Ω) β γ (measurable_space.prod _ (f i))
_ _ fltr _ _ _ _ (λ l, h l i),
rw tendsto_pi_nhds at h_tendsto ⊢,
intro x,
specialize h_tendsto x.fst,
rw tendsto_nhds at h_tendsto ⊢,
exact λ s hs h_mem, h_tendsto {g | g x.snd ∈ s} (hs.preimage (continuous_apply x.snd)) h_mem,
end
lemma prog_measurable_of_tendsto [measurable_space ι] [metrizable_space β]
{U : ℕ → ι → Ω → β}
(h : ∀ l, prog_measurable f (U l)) (h_tendsto : tendsto U at_top (𝓝 u)) :
prog_measurable f u :=
prog_measurable_of_tendsto' at_top h h_tendsto
/-- A continuous and adapted process is progressively measurable. -/
theorem adapted.prog_measurable_of_continuous
[topological_space ι] [metrizable_space ι] [measurable_space ι]
[second_countable_topology ι] [opens_measurable_space ι] [metrizable_space β]
(h : adapted f u) (hu_cont : ∀ ω, continuous (λ i, u i ω)) :
prog_measurable f u :=
λ i, @strongly_measurable_uncurry_of_continuous_of_strongly_measurable _ _ (set.Iic i) _ _ _ _ _ _ _
(f i) _ (λ ω, (hu_cont ω).comp continuous_induced_dom) (λ j, (h j).mono (f.mono j.prop))
end adapted_process
namespace filtration
variables [topological_space β] [metrizable_space β] [mβ : measurable_space β] [borel_space β]
[preorder ι]
include mβ
/-- Given a sequence of functions, the natural filtration is the smallest sequence
of σ-algebras such that that sequence of functions is measurable with respect to
the filtration. -/
def natural (u : ι → Ω → β) (hum : ∀ i, strongly_measurable (u i)) : filtration ι m :=
{ seq := λ i, ⨆ j ≤ i, measurable_space.comap (u j) mβ,
mono' := λ i j hij, bsupr_mono $ λ k, ge_trans hij,
le' := λ i,
begin
refine supr₂_le _,
rintros j hj s ⟨t, ht, rfl⟩,
exact (hum j).measurable ht,
end }
lemma adapted_natural {u : ι → Ω → β} (hum : ∀ i, strongly_measurable[m] (u i)) :
adapted (natural u hum) u :=
begin
assume i,
refine strongly_measurable.mono _ (le_supr₂_of_le i (le_refl i) le_rfl),
rw strongly_measurable_iff_measurable_separable,
exact ⟨measurable_iff_comap_le.2 le_rfl, (hum i).is_separable_range⟩
end
section limit
omit mβ
variables {E : Type*} [has_zero E] [topological_space E]
{ℱ : filtration ι m} {f : ι → Ω → E} {μ : measure Ω}
/-- Given a process `f` and a filtration `ℱ`, if `f` converges to some `g` almost everywhere and
`g` is `⨆ n, ℱ n`-measurable, then `limit_process f ℱ μ` chooses said `g`, else it returns 0.
This definition is used to phrase the a.e. martingale convergence theorem
`submartingale.ae_tendsto_limit_process` where an L¹-bounded submartingale `f` adapted to `ℱ`
converges to `limit_process f ℱ μ` `μ`-almost everywhere. -/
noncomputable
def limit_process (f : ι → Ω → E) (ℱ : filtration ι m) (μ : measure Ω . volume_tac) :=
if h : ∃ g : Ω → E, strongly_measurable[⨆ n, ℱ n] g ∧
∀ᵐ ω ∂μ, tendsto (λ n, f n ω) at_top (𝓝 (g ω)) then classical.some h else 0
lemma strongly_measurable_limit_process :
strongly_measurable[⨆ n, ℱ n] (limit_process f ℱ μ) :=
begin
rw limit_process,
split_ifs with h h,
exacts [(classical.some_spec h).1, strongly_measurable_zero]
end
lemma strongly_measurable_limit_process' :
strongly_measurable[m] (limit_process f ℱ μ) :=
strongly_measurable_limit_process.mono (Sup_le (λ m ⟨n, hn⟩, hn ▸ ℱ.le _))
lemma mem_ℒp_limit_process_of_snorm_bdd {R : ℝ≥0} {p : ℝ≥0∞}
{F : Type*} [normed_add_comm_group F] {ℱ : filtration ℕ m} {f : ℕ → Ω → F}
(hfm : ∀ n, ae_strongly_measurable (f n) μ) (hbdd : ∀ n, snorm (f n) p μ ≤ R) :
mem_ℒp (limit_process f ℱ μ) p μ :=
begin
rw limit_process,
split_ifs with h,
{ refine ⟨strongly_measurable.ae_strongly_measurable
((classical.some_spec h).1.mono (Sup_le (λ m ⟨n, hn⟩, hn ▸ ℱ.le _))),
lt_of_le_of_lt (Lp.snorm_lim_le_liminf_snorm hfm _ (classical.some_spec h).2)
(lt_of_le_of_lt _ (ennreal.coe_lt_top : ↑R < ∞))⟩,
simp_rw [liminf_eq, eventually_at_top],
exact Sup_le (λ b ⟨a, ha⟩, (ha a le_rfl).trans (hbdd _)) },
{ exact zero_mem_ℒp }
end
end limit
end filtration
/-! ### Stopping times -/
/-- A stopping time with respect to some filtration `f` is a function
`τ` such that for all `i`, the preimage of `{j | j ≤ i}` along `τ` is measurable
with respect to `f i`.
Intuitively, the stopping time `τ` describes some stopping rule such that at time
`i`, we may determine it with the information we have at time `i`. -/
def is_stopping_time [preorder ι] (f : filtration ι m) (τ : Ω → ι) :=
∀ i : ι, measurable_set[f i] $ {ω | τ ω ≤ i}
lemma is_stopping_time_const [preorder ι] (f : filtration ι m) (i : ι) :
is_stopping_time f (λ x, i) :=
λ j, by simp only [measurable_set.const]
section measurable_set
section preorder
variables [preorder ι] {f : filtration ι m} {τ : Ω → ι}
protected lemma is_stopping_time.measurable_set_le (hτ : is_stopping_time f τ) (i : ι) :
measurable_set[f i] {ω | τ ω ≤ i} :=
hτ i
lemma is_stopping_time.measurable_set_lt_of_pred [pred_order ι]
(hτ : is_stopping_time f τ) (i : ι) :
measurable_set[f i] {ω | τ ω < i} :=
begin
by_cases hi_min : is_min i,
{ suffices : {ω : Ω | τ ω < i} = ∅, by { rw this, exact @measurable_set.empty _ (f i), },
ext1 ω,
simp only [set.mem_set_of_eq, set.mem_empty_eq, iff_false],
rw is_min_iff_forall_not_lt at hi_min,
exact hi_min (τ ω), },
have : {ω : Ω | τ ω < i} = τ ⁻¹' (set.Iio i) := rfl,
rw [this, ←Iic_pred_of_not_is_min hi_min],
exact f.mono (pred_le i) _ (hτ.measurable_set_le $ pred i),
end
end preorder
section countable_stopping_time
namespace is_stopping_time
variables [partial_order ι] {τ : Ω → ι} {f : filtration ι m}
protected lemma measurable_set_eq_of_countable
(hτ : is_stopping_time f τ) (h_countable : (set.range τ).countable) (i : ι) :
measurable_set[f i] {ω | τ ω = i} :=
begin
have : {ω | τ ω = i} = {ω | τ ω ≤ i} \ (⋃ (j ∈ set.range τ) (hj : j < i), {ω | τ ω ≤ j}),
{ ext1 a,
simp only [set.mem_set_of_eq, set.mem_range, set.Union_exists, set.Union_Union_eq',
set.mem_diff, set.mem_Union, exists_prop, not_exists, not_and, not_le],
split; intro h,
{ simp only [h, lt_iff_le_not_le, le_refl, and_imp, imp_self, implies_true_iff, and_self], },
{ have h_lt_or_eq : τ a < i ∨ τ a = i := lt_or_eq_of_le h.1,
rcases h_lt_or_eq with h_lt | rfl,
{ exfalso,
exact h.2 a h_lt (le_refl (τ a)), },
{ refl, }, }, },
rw this,
refine (hτ.measurable_set_le i).diff _,
refine measurable_set.bUnion h_countable (λ j hj, _),
by_cases hji : j < i,
{ simp only [hji, set.Union_true],
exact f.mono hji.le _ (hτ.measurable_set_le j), },
{ simp only [hji, set.Union_false],
exact @measurable_set.empty _ (f i), },
end
protected lemma measurable_set_eq_of_encodable [encodable ι] (hτ : is_stopping_time f τ) (i : ι) :
measurable_set[f i] {ω | τ ω = i} :=
hτ.measurable_set_eq_of_countable (set.to_countable _) i
protected lemma measurable_set_lt_of_countable
(hτ : is_stopping_time f τ) (h_countable : (set.range τ).countable) (i : ι) :
measurable_set[f i] {ω | τ ω < i} :=
begin
have : {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i},
{ ext1 ω, simp [lt_iff_le_and_ne], },
rw this,
exact (hτ.measurable_set_le i).diff (hτ.measurable_set_eq_of_countable h_countable i),
end
protected lemma measurable_set_lt_of_encodable [encodable ι] (hτ : is_stopping_time f τ) (i : ι) :
measurable_set[f i] {ω | τ ω < i} :=
hτ.measurable_set_lt_of_countable (set.to_countable _) i
protected lemma measurable_set_ge_of_countable {ι} [linear_order ι] {τ : Ω → ι} {f : filtration ι m}
(hτ : is_stopping_time f τ) (h_countable : (set.range τ).countable) (i : ι) :
measurable_set[f i] {ω | i ≤ τ ω} :=
begin
have : {ω | i ≤ τ ω} = {ω | τ ω < i}ᶜ,
{ ext1 ω, simp only [set.mem_set_of_eq, set.mem_compl_eq, not_lt], },
rw this,
exact (hτ.measurable_set_lt_of_countable h_countable i).compl,
end
protected lemma measurable_set_ge_of_encodable {ι} [linear_order ι] {τ : Ω → ι} {f : filtration ι m}
[encodable ι] (hτ : is_stopping_time f τ) (i : ι) :
measurable_set[f i] {ω | i ≤ τ ω} :=
hτ.measurable_set_ge_of_countable (set.to_countable _) i
end is_stopping_time
end countable_stopping_time
section linear_order
variables [linear_order ι] {f : filtration ι m} {τ : Ω → ι}
lemma is_stopping_time.measurable_set_gt (hτ : is_stopping_time f τ) (i : ι) :
measurable_set[f i] {ω | i < τ ω} :=
begin
have : {ω | i < τ ω} = {ω | τ ω ≤ i}ᶜ,
{ ext1 ω, simp only [set.mem_set_of_eq, set.mem_compl_eq, not_le], },
rw this,
exact (hτ.measurable_set_le i).compl,
end
section topological_space
variables [topological_space ι] [order_topology ι] [first_countable_topology ι]
/-- Auxiliary lemma for `is_stopping_time.measurable_set_lt`. -/
lemma is_stopping_time.measurable_set_lt_of_is_lub
(hτ : is_stopping_time f τ) (i : ι) (h_lub : is_lub (set.Iio i) i) :
measurable_set[f i] {ω | τ ω < i} :=
begin
by_cases hi_min : is_min i,
{ suffices : {ω | τ ω < i} = ∅, by { rw this, exact @measurable_set.empty _ (f i), },
ext1 ω,
simp only [set.mem_set_of_eq, set.mem_empty_eq, iff_false],
exact is_min_iff_forall_not_lt.mp hi_min (τ ω), },
obtain ⟨seq, -, -, h_tendsto, h_bound⟩ : ∃ seq : ℕ → ι,
monotone seq ∧ (∀ j, seq j ≤ i) ∧ tendsto seq at_top (𝓝 i) ∧ (∀ j, seq j < i),
from h_lub.exists_seq_monotone_tendsto (not_is_min_iff.mp hi_min),
have h_Ioi_eq_Union : set.Iio i = ⋃ j, {k | k ≤ seq j},
{ ext1 k,
simp only [set.mem_Iio, set.mem_Union, set.mem_set_of_eq],
refine ⟨λ hk_lt_i, _, λ h_exists_k_le_seq, _⟩,
{ rw tendsto_at_top' at h_tendsto,
have h_nhds : set.Ici k ∈ 𝓝 i,
from mem_nhds_iff.mpr ⟨set.Ioi k, set.Ioi_subset_Ici le_rfl, is_open_Ioi, hk_lt_i⟩,
obtain ⟨a, ha⟩ : ∃ (a : ℕ), ∀ (b : ℕ), b ≥ a → k ≤ seq b := h_tendsto (set.Ici k) h_nhds,
exact ⟨a, ha a le_rfl⟩, },
{ obtain ⟨j, hk_seq_j⟩ := h_exists_k_le_seq,
exact hk_seq_j.trans_lt (h_bound j), }, },
have h_lt_eq_preimage : {ω | τ ω < i} = τ ⁻¹' (set.Iio i),
{ ext1 ω, simp only [set.mem_set_of_eq, set.mem_preimage, set.mem_Iio], },
rw [h_lt_eq_preimage, h_Ioi_eq_Union],
simp only [set.preimage_Union, set.preimage_set_of_eq],
exact measurable_set.Union
(λ n, f.mono (h_bound n).le _ (hτ.measurable_set_le (seq n))),
end
lemma is_stopping_time.measurable_set_lt (hτ : is_stopping_time f τ) (i : ι) :
measurable_set[f i] {ω | τ ω < i} :=
begin
obtain ⟨i', hi'_lub⟩ : ∃ i', is_lub (set.Iio i) i', from exists_lub_Iio i,
cases lub_Iio_eq_self_or_Iio_eq_Iic i hi'_lub with hi'_eq_i h_Iio_eq_Iic,
{ rw ← hi'_eq_i at hi'_lub ⊢,
exact hτ.measurable_set_lt_of_is_lub i' hi'_lub, },
{ have h_lt_eq_preimage : {ω : Ω | τ ω < i} = τ ⁻¹' (set.Iio i) := rfl,
rw [h_lt_eq_preimage, h_Iio_eq_Iic],
exact f.mono (lub_Iio_le i hi'_lub) _ (hτ.measurable_set_le i'), },
end
lemma is_stopping_time.measurable_set_ge (hτ : is_stopping_time f τ) (i : ι) :
measurable_set[f i] {ω | i ≤ τ ω} :=
begin
have : {ω | i ≤ τ ω} = {ω | τ ω < i}ᶜ,
{ ext1 ω, simp only [set.mem_set_of_eq, set.mem_compl_eq, not_lt], },
rw this,
exact (hτ.measurable_set_lt i).compl,
end
lemma is_stopping_time.measurable_set_eq (hτ : is_stopping_time f τ) (i : ι) :
measurable_set[f i] {ω | τ ω = i} :=
begin
have : {ω | τ ω = i} = {ω | τ ω ≤ i} ∩ {ω | τ ω ≥ i},
{ ext1 ω, simp only [set.mem_set_of_eq, ge_iff_le, set.mem_inter_eq, le_antisymm_iff], },
rw this,
exact (hτ.measurable_set_le i).inter (hτ.measurable_set_ge i),
end
lemma is_stopping_time.measurable_set_eq_le (hτ : is_stopping_time f τ) {i j : ι} (hle : i ≤ j) :
measurable_set[f j] {ω | τ ω = i} :=
f.mono hle _ $ hτ.measurable_set_eq i
lemma is_stopping_time.measurable_set_lt_le (hτ : is_stopping_time f τ) {i j : ι} (hle : i ≤ j) :
measurable_set[f j] {ω | τ ω < i} :=
f.mono hle _ $ hτ.measurable_set_lt i
end topological_space
end linear_order
section encodable
lemma is_stopping_time_of_measurable_set_eq [preorder ι] [encodable ι]
{f : filtration ι m} {τ : Ω → ι} (hτ : ∀ i, measurable_set[f i] {ω | τ ω = i}) :
is_stopping_time f τ :=
begin
intro i,
rw show {ω | τ ω ≤ i} = ⋃ k ≤ i, {ω | τ ω = k}, by { ext, simp },
refine measurable_set.bUnion (set.to_countable _) (λ k hk, _),
exact f.mono hk _ (hτ k),
end
end encodable
end measurable_set
namespace is_stopping_time
protected lemma max [linear_order ι] {f : filtration ι m} {τ π : Ω → ι}
(hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) :
is_stopping_time f (λ ω, max (τ ω) (π ω)) :=
begin
intro i,
simp_rw [max_le_iff, set.set_of_and],
exact (hτ i).inter (hπ i),
end
protected lemma max_const [linear_order ι] {f : filtration ι m} {τ : Ω → ι}
(hτ : is_stopping_time f τ) (i : ι) :
is_stopping_time f (λ ω, max (τ ω) i) :=
hτ.max (is_stopping_time_const f i)
protected lemma min [linear_order ι] {f : filtration ι m} {τ π : Ω → ι}
(hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) :
is_stopping_time f (λ ω, min (τ ω) (π ω)) :=
begin
intro i,
simp_rw [min_le_iff, set.set_of_or],
exact (hτ i).union (hπ i),
end
protected lemma min_const [linear_order ι] {f : filtration ι m} {τ : Ω → ι}
(hτ : is_stopping_time f τ) (i : ι) :
is_stopping_time f (λ ω, min (τ ω) i) :=
hτ.min (is_stopping_time_const f i)
lemma add_const [add_group ι] [preorder ι] [covariant_class ι ι (function.swap (+)) (≤)]
[covariant_class ι ι (+) (≤)]
{f : filtration ι m} {τ : Ω → ι} (hτ : is_stopping_time f τ) {i : ι} (hi : 0 ≤ i) :
is_stopping_time f (λ ω, τ ω + i) :=
begin
intro j,
simp_rw [← le_sub_iff_add_le],
exact f.mono (sub_le_self j hi) _ (hτ (j - i)),
end
lemma add_const_nat
{f : filtration ℕ m} {τ : Ω → ℕ} (hτ : is_stopping_time f τ) {i : ℕ} :
is_stopping_time f (λ ω, τ ω + i) :=
begin
refine is_stopping_time_of_measurable_set_eq (λ j, _),
by_cases hij : i ≤ j,
{ simp_rw [eq_comm, ← nat.sub_eq_iff_eq_add hij, eq_comm],
exact f.mono (j.sub_le i) _ (hτ.measurable_set_eq (j - i)) },
{ rw not_le at hij,
convert measurable_set.empty,
ext ω,
simp only [set.mem_empty_eq, iff_false],
rintro (hx : τ ω + i = j),
linarith },
end
-- generalize to certain encodable type?
lemma add
{f : filtration ℕ m} {τ π : Ω → ℕ} (hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) :
is_stopping_time f (τ + π) :=
begin
intro i,
rw (_ : {ω | (τ + π) ω ≤ i} = ⋃ k ≤ i, {ω | π ω = k} ∩ {ω | τ ω + k ≤ i}),
{ exact measurable_set.Union (λ k, measurable_set.Union_Prop
(λ hk, (hπ.measurable_set_eq_le hk).inter (hτ.add_const_nat i))) },
ext ω,
simp only [pi.add_apply, set.mem_set_of_eq, set.mem_Union, set.mem_inter_eq, exists_prop],
refine ⟨λ h, ⟨π ω, by linarith, rfl, h⟩, _⟩,
rintro ⟨j, hj, rfl, h⟩,
assumption
end
section preorder
variables [preorder ι] {f : filtration ι m} {τ π : Ω → ι}
/-- The associated σ-algebra with a stopping time. -/
protected def measurable_space (hτ : is_stopping_time f τ) : measurable_space Ω :=
{ measurable_set' := λ s, ∀ i : ι, measurable_set[f i] (s ∩ {ω | τ ω ≤ i}),
measurable_set_empty :=
λ i, (set.empty_inter {ω | τ ω ≤ i}).symm ▸ @measurable_set.empty _ (f i),
measurable_set_compl := λ s hs i,
begin
rw (_ : sᶜ ∩ {ω | τ ω ≤ i} = (sᶜ ∪ {ω | τ ω ≤ i}ᶜ) ∩ {ω | τ ω ≤ i}),
{ refine measurable_set.inter _ _,
{ rw ← set.compl_inter,
exact (hs i).compl },
{ exact hτ i} },
{ rw set.union_inter_distrib_right,
simp only [set.compl_inter_self, set.union_empty] }
end,
measurable_set_Union := λ s hs i,
begin
rw forall_swap at hs,
rw set.Union_inter,
exact measurable_set.Union (hs i),
end }
protected lemma measurable_set (hτ : is_stopping_time f τ) (s : set Ω) :
measurable_set[hτ.measurable_space] s ↔
∀ i : ι, measurable_set[f i] (s ∩ {ω | τ ω ≤ i}) :=
iff.rfl
lemma measurable_space_mono
(hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) (hle : τ ≤ π) :
hτ.measurable_space ≤ hπ.measurable_space :=
begin
intros s hs i,
rw (_ : s ∩ {ω | π ω ≤ i} = s ∩ {ω | τ ω ≤ i} ∩ {ω | π ω ≤ i}),
{ exact (hs i).inter (hπ i) },
{ ext,
simp only [set.mem_inter_eq, iff_self_and, and.congr_left_iff, set.mem_set_of_eq],
intros hle' _,
exact le_trans (hle _) hle' },
end
lemma measurable_space_le_of_encodable [encodable ι] (hτ : is_stopping_time f τ) :
hτ.measurable_space ≤ m :=
begin
intros s hs,
change ∀ i, measurable_set[f i] (s ∩ {ω | τ ω ≤ i}) at hs,
rw (_ : s = ⋃ i, s ∩ {ω | τ ω ≤ i}),
{ exact measurable_set.Union (λ i, f.le i _ (hs i)) },
{ ext ω, split; rw set.mem_Union,
{ exact λ hx, ⟨τ ω, hx, le_rfl⟩ },
{ rintro ⟨_, hx, _⟩,
exact hx } }
end
lemma measurable_space_le' [is_countably_generated (at_top : filter ι)] [(at_top : filter ι).ne_bot]
(hτ : is_stopping_time f τ) :
hτ.measurable_space ≤ m :=
begin
intros s hs,
change ∀ i, measurable_set[f i] (s ∩ {ω | τ ω ≤ i}) at hs,
obtain ⟨seq : ℕ → ι, h_seq_tendsto⟩ := at_top.exists_seq_tendsto,
rw (_ : s = ⋃ n, s ∩ {ω | τ ω ≤ seq n}),
{ exact measurable_set.Union (λ i, f.le (seq i) _ (hs (seq i))), },
{ ext ω, split; rw set.mem_Union,
{ intros hx,
suffices : ∃ i, τ ω ≤ seq i, from ⟨this.some, hx, this.some_spec⟩,
rw tendsto_at_top at h_seq_tendsto,
exact (h_seq_tendsto (τ ω)).exists, },
{ rintro ⟨_, hx, _⟩,
exact hx }, },
all_goals { apply_instance, },
end
lemma measurable_space_le {ι} [semilattice_sup ι] {f : filtration ι m} {τ : Ω → ι}
[is_countably_generated (at_top : filter ι)] (hτ : is_stopping_time f τ) :
hτ.measurable_space ≤ m :=
begin
casesI is_empty_or_nonempty ι,
{ haveI : is_empty Ω := ⟨λ ω, is_empty.false (τ ω)⟩,
intros s hsτ,
suffices hs : s = ∅, by { rw hs, exact measurable_set.empty, },
haveI : unique (set Ω) := set.unique_empty,
rw [unique.eq_default s, unique.eq_default ∅], },
exact measurable_space_le' hτ,
end
example {f : filtration ℕ m} {τ : Ω → ℕ} (hτ : is_stopping_time f τ) : hτ.measurable_space ≤ m :=
hτ.measurable_space_le
example {f : filtration ℝ m} {τ : Ω → ℝ} (hτ : is_stopping_time f τ) : hτ.measurable_space ≤ m :=
hτ.measurable_space_le
@[simp] lemma measurable_space_const (f : filtration ι m) (i : ι) :
(is_stopping_time_const f i).measurable_space = f i :=
begin
ext1 s,
change measurable_set[(is_stopping_time_const f i).measurable_space] s ↔ measurable_set[f i] s,
rw is_stopping_time.measurable_set,
split; intro h,
{ specialize h i,
simpa only [le_refl, set.set_of_true, set.inter_univ] using h, },
{ intro j,
by_cases hij : i ≤ j,
{ simp only [hij, set.set_of_true, set.inter_univ],
exact f.mono hij _ h, },
{ simp only [hij, set.set_of_false, set.inter_empty, measurable_set.empty], }, },
end
lemma measurable_set_inter_eq_iff (hτ : is_stopping_time f τ) (s : set Ω) (i : ι) :
measurable_set[hτ.measurable_space] (s ∩ {ω | τ ω = i})
↔ measurable_set[f i] (s ∩ {ω | τ ω = i}) :=
begin
have : ∀ j, ({ω : Ω | τ ω = i} ∩ {ω : Ω | τ ω ≤ j}) = {ω : Ω | τ ω = i} ∩ {ω | i ≤ j},
{ intro j,
ext1 ω,
simp only [set.mem_inter_eq, set.mem_set_of_eq, and.congr_right_iff],
intro hxi,
rw hxi, },
split; intro h,
{ specialize h i,
simpa only [set.inter_assoc, this, le_refl, set.set_of_true, set.inter_univ] using h, },
{ intro j,
rw [set.inter_assoc, this],
by_cases hij : i ≤ j,
{ simp only [hij, set.set_of_true, set.inter_univ],
exact f.mono hij _ h, },
{ simp [hij], }, },
end
lemma measurable_space_le_of_le_const (hτ : is_stopping_time f τ) {i : ι} (hτ_le : ∀ ω, τ ω ≤ i) :
hτ.measurable_space ≤ f i :=
(measurable_space_mono hτ _ hτ_le).trans (measurable_space_const _ _).le
lemma le_measurable_space_of_const_le (hτ : is_stopping_time f τ) {i : ι} (hτ_le : ∀ ω, i ≤ τ ω) :
f i ≤ hτ.measurable_space :=
(measurable_space_const _ _).symm.le.trans (measurable_space_mono _ hτ hτ_le)
end preorder
instance sigma_finite_stopping_time {ι} [semilattice_sup ι] [order_bot ι]
[(filter.at_top : filter ι).is_countably_generated]
{μ : measure Ω} {f : filtration ι m} {τ : Ω → ι}
[sigma_finite_filtration μ f] (hτ : is_stopping_time f τ) :
sigma_finite (μ.trim hτ.measurable_space_le) :=
begin
refine sigma_finite_trim_mono hτ.measurable_space_le _,
{ exact f ⊥, },
{ exact hτ.le_measurable_space_of_const_le (λ _, bot_le), },
{ apply_instance, },
end
section linear_order
variables [linear_order ι] {f : filtration ι m} {τ π : Ω → ι}
protected lemma measurable_set_le' (hτ : is_stopping_time f τ) (i : ι) :
measurable_set[hτ.measurable_space] {ω | τ ω ≤ i} :=
begin
intro j,
have : {ω : Ω | τ ω ≤ i} ∩ {ω : Ω | τ ω ≤ j} = {ω : Ω | τ ω ≤ min i j},
{ ext1 ω, simp only [set.mem_inter_eq, set.mem_set_of_eq, le_min_iff], },
rw this,
exact f.mono (min_le_right i j) _ (hτ _),
end
protected lemma measurable_set_gt' (hτ : is_stopping_time f τ) (i : ι) :
measurable_set[hτ.measurable_space] {ω | i < τ ω} :=
begin
have : {ω : Ω | i < τ ω} = {ω : Ω | τ ω ≤ i}ᶜ, by { ext1 ω, simp, },
rw this,
exact (hτ.measurable_set_le' i).compl,
end
protected lemma measurable_set_eq' [topological_space ι] [order_topology ι]
[first_countable_topology ι]
(hτ : is_stopping_time f τ) (i : ι) :
measurable_set[hτ.measurable_space] {ω | τ ω = i} :=
begin
rw [← set.univ_inter {ω | τ ω = i}, measurable_set_inter_eq_iff, set.univ_inter],
exact hτ.measurable_set_eq i,
end
protected lemma measurable_set_ge' [topological_space ι] [order_topology ι]
[first_countable_topology ι]
(hτ : is_stopping_time f τ) (i : ι) :
measurable_set[hτ.measurable_space] {ω | i ≤ τ ω} :=
begin
have : {ω | i ≤ τ ω} = {ω | τ ω = i} ∪ {ω | i < τ ω},
{ ext1 ω,
simp only [le_iff_lt_or_eq, set.mem_set_of_eq, set.mem_union_eq],
rw [@eq_comm _ i, or_comm], },
rw this,
exact (hτ.measurable_set_eq' i).union (hτ.measurable_set_gt' i),
end
protected lemma measurable_set_lt' [topological_space ι] [order_topology ι]
[first_countable_topology ι]
(hτ : is_stopping_time f τ) (i : ι) :
measurable_set[hτ.measurable_space] {ω | τ ω < i} :=
begin
have : {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i},
{ ext1 ω,
simp only [lt_iff_le_and_ne, set.mem_set_of_eq, set.mem_diff], },
rw this,
exact (hτ.measurable_set_le' i).diff (hτ.measurable_set_eq' i),
end
section countable
protected lemma measurable_set_eq_of_countable'
(hτ : is_stopping_time f τ) (h_countable : (set.range τ).countable) (i : ι) :
measurable_set[hτ.measurable_space] {ω | τ ω = i} :=
begin
rw [← set.univ_inter {ω | τ ω = i}, measurable_set_inter_eq_iff, set.univ_inter],
exact hτ.measurable_set_eq_of_countable h_countable i,
end
protected lemma measurable_set_eq_of_encodable' [encodable ι] (hτ : is_stopping_time f τ) (i : ι) :
measurable_set[hτ.measurable_space] {ω | τ ω = i} :=
hτ.measurable_set_eq_of_countable' (set.to_countable _) i
protected lemma measurable_set_ge_of_countable'
(hτ : is_stopping_time f τ) (h_countable : (set.range τ).countable) (i : ι) :
measurable_set[hτ.measurable_space] {ω | i ≤ τ ω} :=
begin
have : {ω | i ≤ τ ω} = {ω | τ ω = i} ∪ {ω | i < τ ω},
{ ext1 ω,
simp only [le_iff_lt_or_eq, set.mem_set_of_eq, set.mem_union_eq],
rw [@eq_comm _ i, or_comm], },
rw this,
exact (hτ.measurable_set_eq_of_countable' h_countable i).union (hτ.measurable_set_gt' i),
end
protected lemma measurable_set_ge_of_encodable' [encodable ι] (hτ : is_stopping_time f τ) (i : ι) :
measurable_set[hτ.measurable_space] {ω | i ≤ τ ω} :=
hτ.measurable_set_ge_of_countable' (set.to_countable _) i
protected lemma measurable_set_lt_of_countable'
(hτ : is_stopping_time f τ) (h_countable : (set.range τ).countable) (i : ι) :
measurable_set[hτ.measurable_space] {ω | τ ω < i} :=
begin
have : {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i},
{ ext1 ω,
simp only [lt_iff_le_and_ne, set.mem_set_of_eq, set.mem_diff], },
rw this,
exact (hτ.measurable_set_le' i).diff (hτ.measurable_set_eq_of_countable' h_countable i),
end
protected lemma measurable_set_lt_of_encodable' [encodable ι] (hτ : is_stopping_time f τ) (i : ι) :
measurable_set[hτ.measurable_space] {ω | τ ω < i} :=
hτ.measurable_set_lt_of_countable' (set.to_countable _) i
protected lemma measurable_space_le_of_countable (hτ : is_stopping_time f τ)
(h_countable : (set.range τ).countable) :
hτ.measurable_space ≤ m :=
begin
intros s hs,
change ∀ i, measurable_set[f i] (s ∩ {ω | τ ω ≤ i}) at hs,
rw (_ : s = ⋃ (i ∈ set.range τ), s ∩ {ω | τ ω ≤ i}),
{ exact measurable_set.bUnion h_countable (λ i _, f.le i _ (hs i)), },
{ ext ω,
split; rw set.mem_Union,
{ exact λ hx, ⟨τ ω, by simpa using hx⟩,},
{ rintro ⟨i, hx⟩,
simp only [set.mem_range, set.Union_exists, set.mem_Union, set.mem_inter_eq,
set.mem_set_of_eq, exists_prop, exists_and_distrib_right] at hx,
exact hx.1.2, } }
end
end countable
protected lemma measurable [topological_space ι] [measurable_space ι]
[borel_space ι] [order_topology ι] [second_countable_topology ι]
(hτ : is_stopping_time f τ) :
measurable[hτ.measurable_space] τ :=
@measurable_of_Iic ι Ω _ _ _ hτ.measurable_space _ _ _ _ (λ i, hτ.measurable_set_le' i)
protected lemma measurable_of_le [topological_space ι] [measurable_space ι]
[borel_space ι] [order_topology ι] [second_countable_topology ι]
(hτ : is_stopping_time f τ) {i : ι} (hτ_le : ∀ ω, τ ω ≤ i) :
measurable[f i] τ :=
hτ.measurable.mono (measurable_space_le_of_le_const _ hτ_le) le_rfl
lemma measurable_space_min (hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) :
(hτ.min hπ).measurable_space = hτ.measurable_space ⊓ hπ.measurable_space :=
begin
refine le_antisymm _ _,
{ exact le_inf (measurable_space_mono _ hτ (λ _, min_le_left _ _))
(measurable_space_mono _ hπ (λ _, min_le_right _ _)), },
{ intro s,
change measurable_set[hτ.measurable_space] s ∧ measurable_set[hπ.measurable_space] s
→ measurable_set[(hτ.min hπ).measurable_space] s,
simp_rw is_stopping_time.measurable_set,
have : ∀ i, {ω | min (τ ω) (π ω) ≤ i} = {ω | τ ω ≤ i} ∪ {ω | π ω ≤ i},
{ intro i, ext1 ω, simp, },
simp_rw [this, set.inter_union_distrib_left],
exact λ h i, (h.left i).union (h.right i), },
end
lemma measurable_set_min_iff (hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) (s : set Ω) :
measurable_set[(hτ.min hπ).measurable_space] s
↔ measurable_set[hτ.measurable_space] s ∧ measurable_set[hπ.measurable_space] s :=
by { rw measurable_space_min, refl, }
lemma measurable_space_min_const (hτ : is_stopping_time f τ) {i : ι} :
(hτ.min_const i).measurable_space = hτ.measurable_space ⊓ f i :=
by rw [hτ.measurable_space_min (is_stopping_time_const _ i), measurable_space_const]
lemma measurable_set_min_const_iff (hτ : is_stopping_time f τ) (s : set Ω)
{i : ι} :
measurable_set[(hτ.min_const i).measurable_space] s
↔ measurable_set[hτ.measurable_space] s ∧ measurable_set[f i] s :=
by rw [measurable_space_min_const, measurable_space.measurable_set_inf]
lemma measurable_set_inter_le [topological_space ι] [second_countable_topology ι] [order_topology ι]
[measurable_space ι] [borel_space ι]
(hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) (s : set Ω)
(hs : measurable_set[hτ.measurable_space] s) :
measurable_set[(hτ.min hπ).measurable_space] (s ∩ {ω | τ ω ≤ π ω}) :=
begin
simp_rw is_stopping_time.measurable_set at ⊢ hs,
intro i,
have : (s ∩ {ω | τ ω ≤ π ω} ∩ {ω | min (τ ω) (π ω) ≤ i})
= (s ∩ {ω | τ ω ≤ i}) ∩ {ω | min (τ ω) (π ω) ≤ i} ∩ {ω | min (τ ω) i ≤ min (min (τ ω) (π ω)) i},
{ ext1 ω,
simp only [min_le_iff, set.mem_inter_eq, set.mem_set_of_eq, le_min_iff, le_refl, true_and,
and_true, true_or, or_true],
by_cases hτi : τ ω ≤ i,
{ simp only [hτi, true_or, and_true, and.congr_right_iff],
intro hx,
split; intro h,
{ exact or.inl h, },
{ cases h,
{ exact h, },
{ exact hτi.trans h, }, }, },
simp only [hτi, false_or, and_false, false_and, iff_false, not_and, not_le, and_imp],
refine λ hx hτ_le_π, lt_of_lt_of_le _ hτ_le_π,
rw ← not_le,
exact hτi, },
rw this,
refine ((hs i).inter ((hτ.min hπ) i)).inter _,
apply measurable_set_le,
{ exact (hτ.min_const i).measurable_of_le (λ _, min_le_right _ _), },
{ exact ((hτ.min hπ).min_const i).measurable_of_le (λ _, min_le_right _ _), },
end
lemma measurable_set_inter_le_iff [topological_space ι]
[second_countable_topology ι] [order_topology ι] [measurable_space ι] [borel_space ι]
(hτ : is_stopping_time f τ) (hπ : is_stopping_time f π)
(s : set Ω) :
measurable_set[hτ.measurable_space] (s ∩ {ω | τ ω ≤ π ω})
↔ measurable_set[(hτ.min hπ).measurable_space] (s ∩ {ω | τ ω ≤ π ω}) :=
begin
split; intro h,
{ have : s ∩ {ω | τ ω ≤ π ω} = s ∩ {ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ π ω},
by rw [set.inter_assoc, set.inter_self],
rw this,
exact measurable_set_inter_le _ _ _ h, },
{ rw measurable_set_min_iff at h,
exact h.1, },
end
lemma measurable_set_le_stopping_time [topological_space ι]
[second_countable_topology ι] [order_topology ι] [measurable_space ι] [borel_space ι]
(hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) :
measurable_set[hτ.measurable_space] {ω | τ ω ≤ π ω} :=
begin
rw hτ.measurable_set,
intro j,
have : {ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j ≤ min (π ω) j} ∩ {ω | τ ω ≤ j},
{ ext1 ω,
simp only [set.mem_inter_eq, set.mem_set_of_eq, min_le_iff, le_min_iff, le_refl, and_true,
and.congr_left_iff],
intro h,
simp only [h, or_self, and_true],
by_cases hj : j ≤ π ω,
{ simp only [hj, h.trans hj, or_self], },
{ simp only [hj, or_false], }, },
rw this,
refine measurable_set.inter _ (hτ.measurable_set_le j),
apply measurable_set_le,
{ exact (hτ.min_const j).measurable_of_le (λ _, min_le_right _ _), },
{ exact (hπ.min_const j).measurable_of_le (λ _, min_le_right _ _), },
end
lemma measurable_set_stopping_time_le [topological_space ι]
[second_countable_topology ι] [order_topology ι] [measurable_space ι] [borel_space ι]
(hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) :
measurable_set[hπ.measurable_space] {ω | τ ω ≤ π ω} :=
begin
suffices : measurable_set[(hτ.min hπ).measurable_space] {ω : Ω | τ ω ≤ π ω},
by { rw measurable_set_min_iff hτ hπ at this, exact this.2, },
rw [← set.univ_inter {ω : Ω | τ ω ≤ π ω}, ← hτ.measurable_set_inter_le_iff hπ, set.univ_inter],
exact measurable_set_le_stopping_time hτ hπ,
end
lemma measurable_set_eq_stopping_time [add_group ι]
[topological_space ι] [measurable_space ι] [borel_space ι] [order_topology ι]
[measurable_singleton_class ι] [second_countable_topology ι] [has_measurable_sub₂ ι]
(hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) :
measurable_set[hτ.measurable_space] {ω | τ ω = π ω} :=
begin
rw hτ.measurable_set,
intro j,
have : {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j}
= {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j},
{ ext1 ω,
simp only [set.mem_inter_eq, set.mem_set_of_eq],
refine ⟨λ h, ⟨⟨_, h.2⟩, _⟩, λ h, ⟨_, h.1.2⟩⟩,
{ rw h.1, },
{ rw ← h.1, exact h.2, },
{ cases h with h' hσ_le,
cases h' with h_eq hτ_le,
rwa [min_eq_left hτ_le, min_eq_left hσ_le] at h_eq, }, },
rw this,
refine measurable_set.inter (measurable_set.inter _ (hτ.measurable_set_le j))
(hπ.measurable_set_le j),
apply measurable_set_eq_fun,
{ exact (hτ.min_const j).measurable_of_le (λ _, min_le_right _ _), },
{ exact (hπ.min_const j).measurable_of_le (λ _, min_le_right _ _), },
end
lemma measurable_set_eq_stopping_time_of_encodable [encodable ι]
[topological_space ι] [measurable_space ι] [borel_space ι] [order_topology ι]
[measurable_singleton_class ι] [second_countable_topology ι]
(hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) :
measurable_set[hτ.measurable_space] {ω | τ ω = π ω} :=
begin
rw hτ.measurable_set,
intro j,
have : {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j}
= {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j},
{ ext1 ω,
simp only [set.mem_inter_eq, set.mem_set_of_eq],
refine ⟨λ h, ⟨⟨_, h.2⟩, _⟩, λ h, ⟨_, h.1.2⟩⟩,
{ rw h.1, },
{ rw ← h.1, exact h.2, },
{ cases h with h' hπ_le,
cases h' with h_eq hτ_le,
rwa [min_eq_left hτ_le, min_eq_left hπ_le] at h_eq, }, },
rw this,
refine measurable_set.inter (measurable_set.inter _ (hτ.measurable_set_le j))
(hπ.measurable_set_le j),
apply measurable_set_eq_fun_of_encodable,
{ exact (hτ.min_const j).measurable_of_le (λ _, min_le_right _ _), },
{ exact (hπ.min_const j).measurable_of_le (λ _, min_le_right _ _), },
end
end linear_order
end is_stopping_time
section linear_order
/-! ## Stopped value and stopped process -/
/-- Given a map `u : ι → Ω → E`, its stopped value with respect to the stopping
time `τ` is the map `x ↦ u (τ ω) x`. -/
def stopped_value (u : ι → Ω → β) (τ : Ω → ι) : Ω → β :=
λ ω, u (τ ω) ω
lemma stopped_value_const (u : ι → Ω → β) (i : ι) : stopped_value u (λ ω, i) = u i :=
rfl
variable [linear_order ι]
/-- Given a map `u : ι → Ω → E`, the stopped process with respect to `τ` is `u i x` if
`i ≤ τ ω`, and `u (τ ω) x` otherwise.
Intuitively, the stopped process stops evolving once the stopping time has occured. -/
def stopped_process (u : ι → Ω → β) (τ : Ω → ι) : ι → Ω → β :=
λ i ω, u (min i (τ ω)) ω
lemma stopped_process_eq_of_le {u : ι → Ω → β} {τ : Ω → ι}
{i : ι} {ω : Ω} (h : i ≤ τ ω) : stopped_process u τ i ω = u i ω :=
by simp [stopped_process, min_eq_left h]
lemma stopped_process_eq_of_ge {u : ι → Ω → β} {τ : Ω → ι}
{i : ι} {ω : Ω} (h : τ ω ≤ i) : stopped_process u τ i ω = u (τ ω) ω :=
by simp [stopped_process, min_eq_right h]
section prog_measurable
variables [measurable_space ι] [topological_space ι] [order_topology ι]
[second_countable_topology ι] [borel_space ι]
[topological_space β]
{u : ι → Ω → β} {τ : Ω → ι} {f : filtration ι m}
lemma prog_measurable_min_stopping_time [metrizable_space ι] (hτ : is_stopping_time f τ) :
prog_measurable f (λ i ω, min i (τ ω)) :=
begin
intro i,
let m_prod : measurable_space (set.Iic i × Ω) := measurable_space.prod _ (f i),
let m_set : ∀ t : set (set.Iic i × Ω), measurable_space t :=
λ _, @subtype.measurable_space (set.Iic i × Ω) _ m_prod,
let s := {p : set.Iic i × Ω | τ p.2 ≤ i},
have hs : measurable_set[m_prod] s, from @measurable_snd (set.Iic i) Ω _ (f i) _ (hτ i),
have h_meas_fst : ∀ t : set (set.Iic i × Ω),
measurable[m_set t] (λ x : t, ((x : set.Iic i × Ω).fst : ι)),
from λ t, (@measurable_subtype_coe (set.Iic i × Ω) m_prod _).fst.subtype_coe,
apply measurable.strongly_measurable,
refine measurable_of_restrict_of_restrict_compl hs _ _,
{ refine @measurable.min _ _ _ _ _ (m_set s) _ _ _ _ _ (h_meas_fst s) _,
refine @measurable_of_Iic ι s _ _ _ (m_set s) _ _ _ _ (λ j, _),
have h_set_eq : (λ x : s, τ (x : set.Iic i × Ω).snd) ⁻¹' set.Iic j
= (λ x : s, (x : set.Iic i × Ω).snd) ⁻¹' {ω | τ ω ≤ min i j},
{ ext1 ω,
simp only [set.mem_preimage, set.mem_Iic, iff_and_self, le_min_iff, set.mem_set_of_eq],
exact λ _, ω.prop, },
rw h_set_eq,
suffices h_meas : @measurable _ _ (m_set s) (f i) (λ x : s, (x : set.Iic i × Ω).snd),
from h_meas (f.mono (min_le_left _ _) _ (hτ.measurable_set_le (min i j))),
exact measurable_snd.comp (@measurable_subtype_coe _ m_prod _), },
{ suffices h_min_eq_left : (λ x : sᶜ, min ↑((x : set.Iic i × Ω).fst) (τ (x : set.Iic i × Ω).snd))
= λ x : sᶜ, ↑((x : set.Iic i × Ω).fst),
{ rw [set.restrict, h_min_eq_left],
exact h_meas_fst _, },
ext1 ω,
rw min_eq_left,
have hx_fst_le : ↑(ω : set.Iic i × Ω).fst ≤ i, from (ω : set.Iic i × Ω).fst.prop,
refine hx_fst_le.trans (le_of_lt _),
convert ω.prop,
simp only [not_le, set.mem_compl_eq, set.mem_set_of_eq], },
end
lemma prog_measurable.stopped_process [metrizable_space ι]
(h : prog_measurable f u) (hτ : is_stopping_time f τ) :
prog_measurable f (stopped_process u τ) :=
h.comp (prog_measurable_min_stopping_time hτ) (λ i x, min_le_left _ _)
lemma prog_measurable.adapted_stopped_process [metrizable_space ι]
(h : prog_measurable f u) (hτ : is_stopping_time f τ) :
adapted f (stopped_process u τ) :=
(h.stopped_process hτ).adapted
lemma prog_measurable.strongly_measurable_stopped_process [metrizable_space ι]
(hu : prog_measurable f u) (hτ : is_stopping_time f τ) (i : ι) :
strongly_measurable (stopped_process u τ i) :=
(hu.adapted_stopped_process hτ i).mono (f.le _)
lemma strongly_measurable_stopped_value_of_le
(h : prog_measurable f u) (hτ : is_stopping_time f τ) {n : ι} (hτ_le : ∀ ω, τ ω ≤ n) :
strongly_measurable[f n] (stopped_value u τ) :=
begin
have : stopped_value u τ = (λ (p : set.Iic n × Ω), u ↑(p.fst) p.snd) ∘ (λ ω, (⟨τ ω, hτ_le ω⟩, ω)),
{ ext1 ω, simp only [stopped_value, function.comp_app, subtype.coe_mk], },
rw this,
refine strongly_measurable.comp_measurable (h n) _,
exact (hτ.measurable_of_le hτ_le).subtype_mk.prod_mk measurable_id,
end
lemma measurable_stopped_value [metrizable_space β] [measurable_space β] [borel_space β]
(hf_prog : prog_measurable f u) (hτ : is_stopping_time f τ) :
measurable[hτ.measurable_space] (stopped_value u τ) :=
begin
have h_str_meas : ∀ i, strongly_measurable[f i] (stopped_value u (λ ω, min (τ ω) i)),
from λ i, strongly_measurable_stopped_value_of_le hf_prog (hτ.min_const i)
(λ _, min_le_right _ _),
intros t ht i,
suffices : stopped_value u τ ⁻¹' t ∩ {ω : Ω | τ ω ≤ i}
= stopped_value u (λ ω, min (τ ω) i) ⁻¹' t ∩ {ω : Ω | τ ω ≤ i},
by { rw this, exact ((h_str_meas i).measurable ht).inter (hτ.measurable_set_le i), },
ext1 ω,
simp only [stopped_value, set.mem_inter_eq, set.mem_preimage, set.mem_set_of_eq,
and.congr_left_iff],
intro h,
rw min_eq_left h,
end
end prog_measurable
end linear_order
section nat
/-! ### Filtrations indexed by `ℕ` -/
open filtration
variables {f : filtration ℕ m} {u : ℕ → Ω → β} {τ π : Ω → ℕ}
lemma stopped_value_sub_eq_sum [add_comm_group β] (hle : τ ≤ π) :
stopped_value u π - stopped_value u τ =
λ ω, (∑ i in finset.Ico (τ ω) (π ω), (u (i + 1) - u i)) ω :=
begin
ext ω,
rw [finset.sum_Ico_eq_sub _ (hle ω), finset.sum_range_sub, finset.sum_range_sub],
simp [stopped_value],
end
lemma stopped_value_sub_eq_sum' [add_comm_group β] (hle : τ ≤ π) {N : ℕ} (hbdd : ∀ ω, π ω ≤ N) :
stopped_value u π - stopped_value u τ =
λ ω, (∑ i in finset.range (N + 1),
set.indicator {ω | τ ω ≤ i ∧ i < π ω} (u (i + 1) - u i)) ω :=
begin
rw stopped_value_sub_eq_sum hle,
ext ω,
simp only [finset.sum_apply, finset.sum_indicator_eq_sum_filter],
refine finset.sum_congr _ (λ _ _, rfl),
ext i,
simp only [finset.mem_filter, set.mem_set_of_eq, finset.mem_range, finset.mem_Ico],
exact ⟨λ h, ⟨lt_trans h.2 (nat.lt_succ_iff.2 $ hbdd _), h⟩, λ h, h.2⟩
end
section add_comm_monoid
variables [add_comm_monoid β]
/-- For filtrations indexed by `ℕ`, `adapted` and `prog_measurable` are equivalent. This lemma
provides `adapted f u → prog_measurable f u`. See `prog_measurable.adapted` for the reverse
direction, which is true more generally. -/
lemma adapted.prog_measurable_of_nat [topological_space β] [has_continuous_add β]
(h : adapted f u) : prog_measurable f u :=
begin
intro i,
have : (λ p : ↥(set.Iic i) × Ω, u ↑(p.fst) p.snd)
= λ p : ↥(set.Iic i) × Ω, ∑ j in finset.range (i + 1), if ↑p.fst = j then u j p.snd else 0,
{ ext1 p,
rw finset.sum_ite_eq,
have hp_mem : (p.fst : ℕ) ∈ finset.range (i + 1) := finset.mem_range_succ_iff.mpr p.fst.prop,
simp only [hp_mem, if_true], },
rw this,
refine finset.strongly_measurable_sum _ (λ j hj, strongly_measurable.ite _ _ _),
{ suffices h_meas : measurable[measurable_space.prod _ (f i)]
(λ a : ↥(set.Iic i) × Ω, (a.fst : ℕ)),
from h_meas (measurable_set_singleton j),
exact measurable_fst.subtype_coe, },
{ have h_le : j ≤ i, from finset.mem_range_succ_iff.mp hj,
exact (strongly_measurable.mono (h j) (f.mono h_le)).comp_measurable measurable_snd, },
{ exact strongly_measurable_const, },
end
/-- For filtrations indexed by `ℕ`, the stopped process obtained from an adapted process is
adapted. -/
lemma adapted.stopped_process_of_nat [topological_space β] [has_continuous_add β]
(hu : adapted f u) (hτ : is_stopping_time f τ) :
adapted f (stopped_process u τ) :=
(hu.prog_measurable_of_nat.stopped_process hτ).adapted
lemma adapted.strongly_measurable_stopped_process_of_nat [topological_space β]
[has_continuous_add β]
(hτ : is_stopping_time f τ) (hu : adapted f u) (n : ℕ) :
strongly_measurable (stopped_process u τ n) :=
hu.prog_measurable_of_nat.strongly_measurable_stopped_process hτ n
lemma stopped_value_eq {N : ℕ} (hbdd : ∀ ω, τ ω ≤ N) :
stopped_value u τ =
λ x, (∑ i in finset.range (N + 1), set.indicator {ω | τ ω = i} (u i)) x :=
begin
ext y,
rw [stopped_value, finset.sum_apply, finset.sum_eq_single (τ y)],
{ rw set.indicator_of_mem,
exact rfl },
{ exact λ i hi hneq, set.indicator_of_not_mem hneq.symm _ },
{ intro hy,
rw set.indicator_of_not_mem,
exact λ _, hy (finset.mem_range.2 $ lt_of_le_of_lt (hbdd _) (nat.lt_succ_self _)) }
end
lemma stopped_process_eq (n : ℕ) :
stopped_process u τ n =
set.indicator {a | n ≤ τ a} (u n) +
∑ i in finset.range n, set.indicator {ω | τ ω = i} (u i) :=
begin
ext ω,
rw [pi.add_apply, finset.sum_apply],
cases le_or_lt n (τ ω),
{ rw [stopped_process_eq_of_le h, set.indicator_of_mem, finset.sum_eq_zero, add_zero],
{ intros m hm,
rw finset.mem_range at hm,
exact set.indicator_of_not_mem ((lt_of_lt_of_le hm h).ne.symm) _ },
{ exact h } },
{ rw [stopped_process_eq_of_ge (le_of_lt h), finset.sum_eq_single_of_mem (τ ω)],
{ rw [set.indicator_of_not_mem, zero_add, set.indicator_of_mem],
{ exact rfl }, -- refl does not work
{ exact not_le.2 h } },
{ rwa [finset.mem_range] },
{ intros b hb hneq,
rw set.indicator_of_not_mem,
exact hneq.symm } },
end
end add_comm_monoid
section normed_add_comm_group
variables [normed_add_comm_group β] {p : ℝ≥0∞} {μ : measure Ω}
lemma mem_ℒp_stopped_process (hτ : is_stopping_time f τ) (hu : ∀ n, mem_ℒp (u n) p μ) (n : ℕ) :
mem_ℒp (stopped_process u τ n) p μ :=
begin
rw stopped_process_eq,
refine mem_ℒp.add _ _,
{ exact mem_ℒp.indicator (f.le n {a : Ω | n ≤ τ a} (hτ.measurable_set_ge n)) (hu n) },
{ suffices : mem_ℒp (λ ω, ∑ (i : ℕ) in finset.range n, {a : Ω | τ a = i}.indicator (u i) ω) p μ,
{ convert this, ext1 ω, simp only [finset.sum_apply] },
refine mem_ℒp_finset_sum _ (λ i hi, mem_ℒp.indicator _ (hu i)),
exact f.le i {a : Ω | τ a = i} (hτ.measurable_set_eq i) },
end
lemma integrable_stopped_process (hτ : is_stopping_time f τ)
(hu : ∀ n, integrable (u n) μ) (n : ℕ) :
integrable (stopped_process u τ n) μ :=
by { simp_rw ← mem_ℒp_one_iff_integrable at hu ⊢, exact mem_ℒp_stopped_process hτ hu n, }
lemma mem_ℒp_stopped_value (hτ : is_stopping_time f τ)
(hu : ∀ n, mem_ℒp (u n) p μ) {N : ℕ} (hbdd : ∀ ω, τ ω ≤ N) :
mem_ℒp (stopped_value u τ) p μ :=
begin
rw stopped_value_eq hbdd,
suffices : mem_ℒp (λ x, ∑ (i : ℕ) in finset.range (N + 1),
{a : Ω | τ a = i}.indicator (u i) x) p μ,
{ convert this, ext1 ω, simp only [finset.sum_apply] },
refine mem_ℒp_finset_sum _ (λ i hi, mem_ℒp.indicator _ (hu i)),
exact f.le i {a : Ω | τ a = i} (hτ.measurable_set_eq i)
end
lemma integrable_stopped_value (hτ : is_stopping_time f τ)
(hu : ∀ n, integrable (u n) μ) {N : ℕ} (hbdd : ∀ ω, τ ω ≤ N) :
integrable (stopped_value u τ) μ :=
by { simp_rw ← mem_ℒp_one_iff_integrable at hu ⊢, exact mem_ℒp_stopped_value hτ hu hbdd, }
end normed_add_comm_group
end nat
section piecewise_const
variables [preorder ι] {𝒢 : filtration ι m} {τ η : Ω → ι} {i j : ι} {s : set Ω}
[decidable_pred (∈ s)]
/-- Given stopping times `τ` and `η` which are bounded below, `set.piecewise s τ η` is also
a stopping time with respect to the same filtration. -/
lemma is_stopping_time.piecewise_of_le (hτ_st : is_stopping_time 𝒢 τ)
(hη_st : is_stopping_time 𝒢 η) (hτ : ∀ ω, i ≤ τ ω) (hη : ∀ x, i ≤ η x)
(hs : measurable_set[𝒢 i] s) :
is_stopping_time 𝒢 (s.piecewise τ η) :=
begin
intro n,
have : {x | s.piecewise τ η x ≤ n}
= (s ∩ {ω | τ ω ≤ n}) ∪ (sᶜ ∩ {x | η x ≤ n}),
{ ext1 ω,
simp only [set.piecewise, set.mem_inter_eq, set.mem_set_of_eq, and.congr_right_iff],
by_cases hx : ω ∈ s; simp [hx], },
rw this,
by_cases hin : i ≤ n,
{ have hs_n : measurable_set[𝒢 n] s, from 𝒢.mono hin _ hs,
exact (hs_n.inter (hτ_st n)).union (hs_n.compl.inter (hη_st n)), },
{ have hτn : ∀ ω, ¬ τ ω ≤ n := λ ω hτn, hin ((hτ ω).trans hτn),
have hηn : ∀ ω, ¬ η ω ≤ n := λ ω hηn, hin ((hη ω).trans hηn),
simp [hτn, hηn], },
end
lemma is_stopping_time_piecewise_const (hij : i ≤ j) (hs : measurable_set[𝒢 i] s) :
is_stopping_time 𝒢 (s.piecewise (λ _, i) (λ _, j)) :=
(is_stopping_time_const 𝒢 i).piecewise_of_le (is_stopping_time_const 𝒢 j)
(λ x, le_rfl) (λ _, hij) hs
lemma stopped_value_piecewise_const {ι' : Type*} {i j : ι'} {f : ι' → Ω → ℝ} :
stopped_value f (s.piecewise (λ _, i) (λ _, j)) = s.piecewise (f i) (f j) :=
by { ext ω, rw stopped_value, by_cases hx : ω ∈ s; simp [hx] }
lemma stopped_value_piecewise_const' {ι' : Type*} {i j : ι'} {f : ι' → Ω → ℝ} :
stopped_value f (s.piecewise (λ _, i) (λ _, j)) = s.indicator (f i) + sᶜ.indicator (f j) :=
by { ext ω, rw stopped_value, by_cases hx : ω ∈ s; simp [hx] }
end piecewise_const
end measure_theory
|