Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 10,721 Bytes
4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
/-
Copyright (c) 2022 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import probability.notation
import probability.integration
/-!
# Variance of random variables
We define the variance of a real-valued random variable as `Var[X] = 𝔼[(X - 𝔼[X])^2]` (in the
`probability_theory` locale).
We prove the basic properties of the variance:
* `variance_le_expectation_sq`: the inequality `Var[X] ≤ 𝔼[X^2]`.
* `meas_ge_le_variance_div_sq`: Chebyshev's inequality, i.e.,
`ℙ {ω | c ≤ |X ω - 𝔼[X]|} ≤ ennreal.of_real (Var[X] / c ^ 2)`.
* `indep_fun.variance_add`: the variance of the sum of two independent random variables is the sum
of the variances.
* `indep_fun.variance_sum`: the variance of a finite sum of pairwise independent random variables is
the sum of the variances.
-/
open measure_theory filter finset
noncomputable theory
open_locale big_operators measure_theory probability_theory ennreal nnreal
namespace probability_theory
/-- The variance of a random variable is `𝔼[X^2] - 𝔼[X]^2` or, equivalently, `𝔼[(X - 𝔼[X])^2]`. We
use the latter as the definition, to ensure better behavior even in garbage situations. -/
def variance {Ω : Type*} {m : measurable_space Ω} (f : Ω → ℝ) (μ : measure Ω) : ℝ :=
μ[(f - (λ ω, μ[f])) ^ 2]
@[simp] lemma variance_zero {Ω : Type*} {m : measurable_space Ω} (μ : measure Ω) :
variance 0 μ = 0 :=
by simp [variance]
lemma variance_nonneg {Ω : Type*} {m : measurable_space Ω} (f : Ω → ℝ) (μ : measure Ω) :
0 ≤ variance f μ :=
integral_nonneg (λ ω, sq_nonneg _)
lemma variance_mul {Ω : Type*} {m : measurable_space Ω} (c : ℝ) (f : Ω → ℝ) (μ : measure Ω) :
variance (λ ω, c * f ω) μ = c^2 * variance f μ :=
calc
variance (λ ω, c * f ω) μ
= ∫ x, (c * f x - ∫ y, c * f y ∂μ) ^ 2 ∂μ : rfl
... = ∫ x, (c * (f x - ∫ y, f y ∂μ)) ^ 2 ∂μ :
by { congr' 1 with x, simp_rw [integral_mul_left, mul_sub] }
... = c^2 * variance f μ :
by { simp_rw [mul_pow, integral_mul_left], refl }
lemma variance_smul {Ω : Type*} {m : measurable_space Ω} (c : ℝ) (f : Ω → ℝ) (μ : measure Ω) :
variance (c • f) μ = c^2 * variance f μ :=
variance_mul c f μ
lemma variance_smul' {A : Type*} [comm_semiring A] [algebra A ℝ]
{Ω : Type*} {m : measurable_space Ω} (c : A) (f : Ω → ℝ) (μ : measure Ω) :
variance (c • f) μ = c^2 • variance f μ :=
begin
convert variance_smul (algebra_map A ℝ c) f μ,
{ ext1 x, simp only [algebra_map_smul], },
{ simp only [algebra.smul_def, map_pow], }
end
localized
"notation `Var[` X `]` := probability_theory.variance X measure_theory.measure_space.volume"
in probability_theory
variables {Ω : Type*} [measure_space Ω] [is_probability_measure (volume : measure Ω)]
lemma variance_def' {X : Ω → ℝ} (hX : mem_ℒp X 2) :
Var[X] = 𝔼[X^2] - 𝔼[X]^2 :=
begin
rw [variance, sub_sq', integral_sub', integral_add'], rotate,
{ exact hX.integrable_sq },
{ convert integrable_const (𝔼[X] ^ 2),
apply_instance },
{ apply hX.integrable_sq.add,
convert integrable_const (𝔼[X] ^ 2),
apply_instance },
{ exact ((hX.integrable one_le_two).const_mul 2).mul_const' _ },
simp only [integral_mul_right, pi.pow_apply, pi.mul_apply, pi.bit0_apply, pi.one_apply,
integral_const (integral ℙ X ^ 2), integral_mul_left (2 : ℝ), one_mul,
variance, pi.pow_apply, measure_univ, ennreal.one_to_real, algebra.id.smul_eq_mul],
ring,
end
lemma variance_le_expectation_sq {X : Ω → ℝ} :
Var[X] ≤ 𝔼[X^2] :=
begin
by_cases h_int : integrable X, swap,
{ simp only [variance, integral_undef h_int, pi.pow_apply, pi.sub_apply, sub_zero] },
by_cases hX : mem_ℒp X 2,
{ rw variance_def' hX,
simp only [sq_nonneg, sub_le_self_iff] },
{ rw [variance, integral_undef],
{ exact integral_nonneg (λ a, sq_nonneg _) },
{ assume h,
have A : mem_ℒp (X - λ (ω : Ω), 𝔼[X]) 2 ℙ := (mem_ℒp_two_iff_integrable_sq
(h_int.ae_strongly_measurable.sub ae_strongly_measurable_const)).2 h,
have B : mem_ℒp (λ (ω : Ω), 𝔼[X]) 2 ℙ := mem_ℒp_const _,
apply hX,
convert A.add B,
simp } }
end
/-- *Chebyshev's inequality* : one can control the deviation probability of a real random variable
from its expectation in terms of the variance. -/
theorem meas_ge_le_variance_div_sq {X : Ω → ℝ} (hX : mem_ℒp X 2) {c : ℝ} (hc : 0 < c) :
ℙ {ω | c ≤ |X ω - 𝔼[X]|} ≤ ennreal.of_real (Var[X] / c ^ 2) :=
begin
have A : (ennreal.of_real c : ℝ≥0∞) ≠ 0,
by simp only [hc, ne.def, ennreal.of_real_eq_zero, not_le],
have B : ae_strongly_measurable (λ (ω : Ω), 𝔼[X]) ℙ := ae_strongly_measurable_const,
convert meas_ge_le_mul_pow_snorm ℙ ennreal.two_ne_zero ennreal.two_ne_top
(hX.ae_strongly_measurable.sub B) A,
{ ext ω,
set d : ℝ≥0 := ⟨c, hc.le⟩ with hd,
have cd : c = d, by simp only [subtype.coe_mk],
simp only [pi.sub_apply, ennreal.coe_le_coe, ← real.norm_eq_abs, ← coe_nnnorm,
nnreal.coe_le_coe, cd, ennreal.of_real_coe_nnreal] },
{ rw (hX.sub (mem_ℒp_const _)).snorm_eq_integral_rpow_norm
ennreal.two_ne_zero ennreal.two_ne_top,
simp only [pi.sub_apply, ennreal.to_real_bit0, ennreal.one_to_real],
rw ennreal.of_real_rpow_of_nonneg _ zero_le_two, rotate,
{ apply real.rpow_nonneg_of_nonneg,
exact integral_nonneg (λ x, real.rpow_nonneg_of_nonneg (norm_nonneg _) _) },
rw [variance, ← real.rpow_mul, inv_mul_cancel], rotate,
{ exact two_ne_zero },
{ exact integral_nonneg (λ x, real.rpow_nonneg_of_nonneg (norm_nonneg _) _) },
simp only [pi.pow_apply, pi.sub_apply, real.rpow_two, real.rpow_one, real.norm_eq_abs,
pow_bit0_abs, ennreal.of_real_inv_of_pos hc, ennreal.rpow_two],
rw [← ennreal.of_real_pow (inv_nonneg.2 hc.le), ← ennreal.of_real_mul (sq_nonneg _),
div_eq_inv_mul, inv_pow] }
end
/-- The variance of the sum of two independent random variables is the sum of the variances. -/
theorem indep_fun.variance_add {X Y : Ω → ℝ}
(hX : mem_ℒp X 2) (hY : mem_ℒp Y 2) (h : indep_fun X Y) :
Var[X + Y] = Var[X] + Var[Y] :=
calc
Var[X + Y] = 𝔼[λ a, (X a)^2 + (Y a)^2 + 2 * X a * Y a] - 𝔼[X+Y]^2 :
by simp [variance_def' (hX.add hY), add_sq']
... = (𝔼[X^2] + 𝔼[Y^2] + 2 * 𝔼[X * Y]) - (𝔼[X] + 𝔼[Y])^2 :
begin
simp only [pi.add_apply, pi.pow_apply, pi.mul_apply, mul_assoc],
rw [integral_add, integral_add, integral_add, integral_mul_left],
{ exact hX.integrable one_le_two },
{ exact hY.integrable one_le_two },
{ exact hX.integrable_sq },
{ exact hY.integrable_sq },
{ exact hX.integrable_sq.add hY.integrable_sq },
{ apply integrable.const_mul,
exact h.integrable_mul (hX.integrable one_le_two) (hY.integrable one_le_two) }
end
... = (𝔼[X^2] + 𝔼[Y^2] + 2 * (𝔼[X] * 𝔼[Y])) - (𝔼[X] + 𝔼[Y])^2 :
begin
congr,
exact h.integral_mul_of_integrable
(hX.integrable one_le_two) (hY.integrable one_le_two),
end
... = Var[X] + Var[Y] :
by { simp only [variance_def', hX, hY, pi.pow_apply], ring }
/-- The variance of a finite sum of pairwise independent random variables is the sum of the
variances. -/
theorem indep_fun.variance_sum {ι : Type*} {X : ι → Ω → ℝ} {s : finset ι}
(hs : ∀ i ∈ s, mem_ℒp (X i) 2) (h : set.pairwise ↑s (λ i j, indep_fun (X i) (X j))) :
Var[∑ i in s, X i] = ∑ i in s, Var[X i] :=
begin
classical,
induction s using finset.induction_on with k s ks IH,
{ simp only [finset.sum_empty, variance_zero] },
rw [variance_def' (mem_ℒp_finset_sum' _ hs), sum_insert ks, sum_insert ks],
simp only [add_sq'],
calc 𝔼[X k ^ 2 + (∑ i in s, X i) ^ 2 + 2 * X k * ∑ i in s, X i] - 𝔼[X k + ∑ i in s, X i] ^ 2
= (𝔼[X k ^ 2] + 𝔼[(∑ i in s, X i) ^ 2] + 𝔼[2 * X k * ∑ i in s, X i])
- (𝔼[X k] + 𝔼[∑ i in s, X i]) ^ 2 :
begin
rw [integral_add', integral_add', integral_add'],
{ exact mem_ℒp.integrable one_le_two (hs _ (mem_insert_self _ _)) },
{ apply integrable_finset_sum' _ (λ i hi, _),
exact mem_ℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi)) },
{ exact mem_ℒp.integrable_sq (hs _ (mem_insert_self _ _)) },
{ apply mem_ℒp.integrable_sq,
exact mem_ℒp_finset_sum' _ (λ i hi, (hs _ (mem_insert_of_mem hi))) },
{ apply integrable.add,
{ exact mem_ℒp.integrable_sq (hs _ (mem_insert_self _ _)) },
{ apply mem_ℒp.integrable_sq,
exact mem_ℒp_finset_sum' _ (λ i hi, (hs _ (mem_insert_of_mem hi))) } },
{ rw mul_assoc,
apply integrable.const_mul _ 2,
simp only [mul_sum, sum_apply, pi.mul_apply],
apply integrable_finset_sum _ (λ i hi, _),
apply indep_fun.integrable_mul _
(mem_ℒp.integrable one_le_two (hs _ (mem_insert_self _ _)))
(mem_ℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi))),
apply h (mem_insert_self _ _) (mem_insert_of_mem hi),
exact (λ hki, ks (hki.symm ▸ hi)) }
end
... = Var[X k] + Var[∑ i in s, X i] +
(𝔼[2 * X k * ∑ i in s, X i] - 2 * 𝔼[X k] * 𝔼[∑ i in s, X i]) :
begin
rw [variance_def' (hs _ (mem_insert_self _ _)),
variance_def' (mem_ℒp_finset_sum' _ (λ i hi, (hs _ (mem_insert_of_mem hi))))],
ring,
end
... = Var[X k] + Var[∑ i in s, X i] :
begin
simp only [mul_assoc, integral_mul_left, pi.mul_apply, pi.bit0_apply, pi.one_apply, sum_apply,
add_right_eq_self, mul_sum],
rw integral_finset_sum s (λ i hi, _), swap,
{ apply integrable.const_mul _ 2,
apply indep_fun.integrable_mul _
(mem_ℒp.integrable one_le_two (hs _ (mem_insert_self _ _)))
(mem_ℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi))),
apply h (mem_insert_self _ _) (mem_insert_of_mem hi),
exact (λ hki, ks (hki.symm ▸ hi)) },
rw [integral_finset_sum s
(λ i hi, (mem_ℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi)))),
mul_sum, mul_sum, ← sum_sub_distrib],
apply finset.sum_eq_zero (λ i hi, _),
rw [integral_mul_left, indep_fun.integral_mul_of_integrable', sub_self],
{ apply h (mem_insert_self _ _) (mem_insert_of_mem hi),
exact (λ hki, ks (hki.symm ▸ hi)) },
{ exact mem_ℒp.integrable one_le_two (hs _ (mem_insert_self _ _)) },
{ exact mem_ℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi)) }
end
... = Var[X k] + ∑ i in s, Var[X i] :
by rw IH (λ i hi, hs i (mem_insert_of_mem hi))
(h.mono (by simp only [coe_insert, set.subset_insert]))
end
end probability_theory
|