Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 10,721 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
4365a98
 
 
 
 
 
 
fc5e983
4365a98
 
fc5e983
4365a98
fc5e983
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
4365a98
fc5e983
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
 
4365a98
 
 
 
fc5e983
4365a98
 
 
 
 
fc5e983
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
4365a98
fc5e983
4365a98
 
 
 
 
 
 
 
 
 
 
 
fc5e983
 
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
 
4365a98
 
 
fc5e983
4365a98
 
 
 
 
fc5e983
 
4365a98
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
/-
Copyright (c) 2022 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import probability.notation
import probability.integration

/-!
# Variance of random variables

We define the variance of a real-valued random variable as `Var[X] = 𝔼[(X - 𝔼[X])^2]` (in the
`probability_theory` locale).

We prove the basic properties of the variance:
* `variance_le_expectation_sq`: the inequality `Var[X] ≤ 𝔼[X^2]`.
* `meas_ge_le_variance_div_sq`: Chebyshev's inequality, i.e.,
      `ℙ {ω | c ≤ |X ω - 𝔼[X]|} ≤ ennreal.of_real (Var[X] / c ^ 2)`.
* `indep_fun.variance_add`: the variance of the sum of two independent random variables is the sum
  of the variances.
* `indep_fun.variance_sum`: the variance of a finite sum of pairwise independent random variables is
  the sum of the variances.
-/

open measure_theory filter finset

noncomputable theory

open_locale big_operators measure_theory probability_theory ennreal nnreal

namespace probability_theory

/-- The variance of a random variable is `𝔼[X^2] - 𝔼[X]^2` or, equivalently, `𝔼[(X - 𝔼[X])^2]`. We
use the latter as the definition, to ensure better behavior even in garbage situations. -/
def variance {Ω : Type*} {m : measurable_space Ω} (f : Ω → ℝ) (μ : measure Ω) : ℝ :=
μ[(f - (λ ω, μ[f])) ^ 2]

@[simp] lemma variance_zero {Ω : Type*} {m : measurable_space Ω} (μ : measure Ω) :
  variance 0 μ = 0 :=
by simp [variance]

lemma variance_nonneg {Ω : Type*} {m : measurable_space Ω} (f : Ω → ℝ) (μ : measure Ω) :
  0 ≤ variance f μ :=
integral_nonneg (λ ω, sq_nonneg _)

lemma variance_mul {Ω : Type*} {m : measurable_space Ω} (c : ℝ) (f : Ω → ℝ) (μ : measure Ω) :
  variance (λ ω, c * f ω) μ = c^2 * variance f μ :=
calc
variance (λ ω, c * f ω) μ
    = ∫ x, (c * f x - ∫ y, c * f y ∂μ) ^ 2 ∂μ : rfl
... = ∫ x, (c * (f x - ∫ y, f y ∂μ)) ^ 2 ∂μ :
  by { congr' 1 with x, simp_rw [integral_mul_left, mul_sub] }
... = c^2 * variance f μ :
  by { simp_rw [mul_pow, integral_mul_left], refl }

lemma variance_smul {Ω : Type*} {m : measurable_space Ω} (c : ℝ) (f : Ω → ℝ) (μ : measure Ω) :
  variance (c • f) μ = c^2 * variance f μ :=
variance_mul c f μ

lemma variance_smul' {A : Type*} [comm_semiring A] [algebra A ℝ]
  {Ω : Type*} {m : measurable_space Ω} (c : A) (f : Ω → ℝ) (μ : measure Ω) :
  variance (c • f) μ = c^2 • variance f μ :=
begin
  convert variance_smul (algebra_map A ℝ c) f μ,
  { ext1 x, simp only [algebra_map_smul], },
  { simp only [algebra.smul_def, map_pow], }
end

localized
"notation `Var[` X `]` := probability_theory.variance X measure_theory.measure_space.volume"
in probability_theory

variables {Ω : Type*} [measure_space Ω] [is_probability_measure (volume : measure Ω)]

lemma variance_def' {X : Ω → ℝ} (hX : mem_ℒp X 2) :
  Var[X] = 𝔼[X^2] - 𝔼[X]^2 :=
begin
  rw [variance, sub_sq', integral_sub', integral_add'], rotate,
  { exact hX.integrable_sq },
  { convert integrable_const (𝔼[X] ^ 2),
    apply_instance },
  { apply hX.integrable_sq.add,
    convert integrable_const (𝔼[X] ^ 2),
    apply_instance },
  { exact ((hX.integrable one_le_two).const_mul 2).mul_const' _ },
  simp only [integral_mul_right, pi.pow_apply, pi.mul_apply, pi.bit0_apply, pi.one_apply,
    integral_const (integral ℙ X ^ 2), integral_mul_left (2 : ℝ), one_mul,
    variance, pi.pow_apply, measure_univ, ennreal.one_to_real, algebra.id.smul_eq_mul],
  ring,
end

lemma variance_le_expectation_sq {X : Ω → ℝ} :
  Var[X] ≤ 𝔼[X^2] :=
begin
  by_cases h_int : integrable X, swap,
  { simp only [variance, integral_undef h_int, pi.pow_apply, pi.sub_apply, sub_zero] },
  by_cases hX : mem_ℒp X 2,
  { rw variance_def' hX,
    simp only [sq_nonneg, sub_le_self_iff] },
  { rw [variance, integral_undef],
    { exact integral_nonneg (λ a, sq_nonneg _) },
    { assume h,
      have A : mem_ℒp (X - λ (ω : Ω), 𝔼[X]) 2 ℙ := (mem_ℒp_two_iff_integrable_sq
        (h_int.ae_strongly_measurable.sub ae_strongly_measurable_const)).2 h,
      have B : mem_ℒp (λ (ω : Ω), 𝔼[X]) 2 ℙ := mem_ℒp_const _,
      apply hX,
      convert A.add B,
      simp } }
end

/-- *Chebyshev's inequality* : one can control the deviation probability of a real random variable
from its expectation in terms of the variance. -/
theorem meas_ge_le_variance_div_sq {X : Ω → ℝ} (hX : mem_ℒp X 2) {c : ℝ} (hc : 0 < c) :
  ℙ {ω | c ≤ |X ω - 𝔼[X]|} ≤ ennreal.of_real (Var[X] / c ^ 2) :=
begin
  have A : (ennreal.of_real c : ℝ≥0∞) ≠ 0,
    by simp only [hc, ne.def, ennreal.of_real_eq_zero, not_le],
  have B : ae_strongly_measurable (λ (ω : Ω), 𝔼[X]) ℙ := ae_strongly_measurable_const,
  convert meas_ge_le_mul_pow_snorm ℙ ennreal.two_ne_zero ennreal.two_ne_top
    (hX.ae_strongly_measurable.sub B) A,
  { ext ω,
    set d : ℝ≥0 := ⟨c, hc.le⟩ with hd,
    have cd : c = d, by simp only [subtype.coe_mk],
    simp only [pi.sub_apply, ennreal.coe_le_coe, ← real.norm_eq_abs, ← coe_nnnorm,
      nnreal.coe_le_coe, cd, ennreal.of_real_coe_nnreal] },
  { rw (hX.sub (mem_ℒp_const _)).snorm_eq_integral_rpow_norm
      ennreal.two_ne_zero ennreal.two_ne_top,
    simp only [pi.sub_apply, ennreal.to_real_bit0, ennreal.one_to_real],
    rw ennreal.of_real_rpow_of_nonneg _ zero_le_two, rotate,
    { apply real.rpow_nonneg_of_nonneg,
      exact integral_nonneg (λ x, real.rpow_nonneg_of_nonneg (norm_nonneg _) _) },
    rw [variance, ← real.rpow_mul, inv_mul_cancel], rotate,
    { exact two_ne_zero },
    { exact integral_nonneg (λ x, real.rpow_nonneg_of_nonneg (norm_nonneg _) _) },
    simp only [pi.pow_apply, pi.sub_apply, real.rpow_two, real.rpow_one, real.norm_eq_abs,
      pow_bit0_abs, ennreal.of_real_inv_of_pos hc, ennreal.rpow_two],
    rw [← ennreal.of_real_pow (inv_nonneg.2 hc.le), ← ennreal.of_real_mul (sq_nonneg _),
      div_eq_inv_mul, inv_pow] }
end

/-- The variance of the sum of two independent random variables is the sum of the variances. -/
theorem indep_fun.variance_add {X Y : Ω → ℝ}
  (hX : mem_ℒp X 2) (hY : mem_ℒp Y 2) (h : indep_fun X Y) :
  Var[X + Y] = Var[X] + Var[Y] :=
calc
Var[X + Y] = 𝔼[λ a, (X a)^2 + (Y a)^2 + 2 * X a * Y a] - 𝔼[X+Y]^2 :
  by simp [variance_def' (hX.add hY), add_sq']
... = (𝔼[X^2] + 𝔼[Y^2] + 2 * 𝔼[X * Y]) - (𝔼[X] + 𝔼[Y])^2 :
begin
  simp only [pi.add_apply, pi.pow_apply, pi.mul_apply, mul_assoc],
  rw [integral_add, integral_add, integral_add, integral_mul_left],
  { exact hX.integrable one_le_two },
  { exact hY.integrable one_le_two },
  { exact hX.integrable_sq },
  { exact hY.integrable_sq },
  { exact hX.integrable_sq.add hY.integrable_sq },
  { apply integrable.const_mul,
    exact h.integrable_mul (hX.integrable one_le_two) (hY.integrable one_le_two) }
end
... = (𝔼[X^2] + 𝔼[Y^2] + 2 * (𝔼[X] * 𝔼[Y])) - (𝔼[X] + 𝔼[Y])^2 :
begin
  congr,
  exact h.integral_mul_of_integrable
    (hX.integrable one_le_two) (hY.integrable one_le_two),
end
... = Var[X] + Var[Y] :
  by { simp only [variance_def', hX, hY, pi.pow_apply], ring }

/-- The variance of a finite sum of pairwise independent random variables is the sum of the
variances. -/
theorem indep_fun.variance_sum {ι : Type*} {X : ι → Ω → ℝ} {s : finset ι}
  (hs : ∀ i ∈ s, mem_ℒp (X i) 2) (h : set.pairwise ↑s (λ i j, indep_fun (X i) (X j))) :
  Var[∑ i in s, X i] = ∑ i in s, Var[X i] :=
begin
  classical,
  induction s using finset.induction_on with k s ks IH,
  { simp only [finset.sum_empty, variance_zero] },
  rw [variance_def' (mem_ℒp_finset_sum' _ hs), sum_insert ks, sum_insert ks],
  simp only [add_sq'],
  calc 𝔼[X k ^ 2 + (∑ i in s, X i) ^ 2 + 2 * X k * ∑ i in s, X i] - 𝔼[X k + ∑ i in s, X i] ^ 2
  = (𝔼[X k ^ 2] + 𝔼[(∑ i in s, X i) ^ 2] + 𝔼[2 * X k * ∑ i in s, X i])
    - (𝔼[X k] + 𝔼[∑ i in s, X i]) ^ 2 :
  begin
    rw [integral_add', integral_add', integral_add'],
    { exact mem_ℒp.integrable one_le_two (hs _ (mem_insert_self _ _)) },
    { apply integrable_finset_sum' _ (λ i hi, _),
      exact mem_ℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi)) },
    { exact mem_ℒp.integrable_sq (hs _ (mem_insert_self _ _)) },
    { apply mem_ℒp.integrable_sq,
      exact mem_ℒp_finset_sum' _ (λ i hi, (hs _ (mem_insert_of_mem hi))) },
    { apply integrable.add,
      { exact mem_ℒp.integrable_sq (hs _ (mem_insert_self _ _)) },
      { apply mem_ℒp.integrable_sq,
        exact mem_ℒp_finset_sum' _ (λ i hi, (hs _ (mem_insert_of_mem hi))) } },
    { rw mul_assoc,
      apply integrable.const_mul _ 2,
      simp only [mul_sum, sum_apply, pi.mul_apply],
      apply integrable_finset_sum _ (λ i hi, _),
      apply indep_fun.integrable_mul _
        (mem_ℒp.integrable one_le_two (hs _ (mem_insert_self _ _)))
        (mem_ℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi))),
      apply h (mem_insert_self _ _) (mem_insert_of_mem hi),
      exact (λ hki, ks (hki.symm ▸ hi)) }
  end
  ... = Var[X k] + Var[∑ i in s, X i] +
    (𝔼[2 * X k * ∑ i in s, X i] - 2 * 𝔼[X k] * 𝔼[∑ i in s, X i]) :
  begin
    rw [variance_def' (hs _ (mem_insert_self _ _)),
        variance_def' (mem_ℒp_finset_sum' _ (λ i hi, (hs _ (mem_insert_of_mem hi))))],
    ring,
  end
  ... = Var[X k] + Var[∑ i in s, X i] :
  begin
    simp only [mul_assoc, integral_mul_left, pi.mul_apply, pi.bit0_apply, pi.one_apply, sum_apply,
      add_right_eq_self, mul_sum],
    rw integral_finset_sum s (λ i hi, _), swap,
    { apply integrable.const_mul _ 2,
      apply indep_fun.integrable_mul _
        (mem_ℒp.integrable one_le_two (hs _ (mem_insert_self _ _)))
        (mem_ℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi))),
      apply h (mem_insert_self _ _) (mem_insert_of_mem hi),
      exact (λ hki, ks (hki.symm ▸ hi)) },
    rw [integral_finset_sum s
      (λ i hi, (mem_ℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi)))),
      mul_sum, mul_sum, ← sum_sub_distrib],
    apply finset.sum_eq_zero (λ i hi, _),
    rw [integral_mul_left, indep_fun.integral_mul_of_integrable', sub_self],
    { apply h (mem_insert_self _ _) (mem_insert_of_mem hi),
      exact (λ hki, ks (hki.symm ▸ hi)) },
    { exact mem_ℒp.integrable one_le_two (hs _ (mem_insert_self _ _)) },
    { exact mem_ℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi)) }
  end
  ... = Var[X k] + ∑ i in s, Var[X i] :
    by rw IH (λ i hi, hs i (mem_insert_of_mem hi))
      (h.mono (by simp only [coe_insert, set.subset_insert]))
end

end probability_theory