Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 60,965 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
/-
Copyright (c) 2018 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel, Mario Carneiro, Yury Kudryashov, Heather Macbeth
-/
import analysis.normed_space.lattice_ordered_group
import analysis.normed_space.operator_norm
import analysis.normed_space.star.basic
import data.real.sqrt
import topology.continuous_function.algebra

/-!
# Bounded continuous functions

The type of bounded continuous functions taking values in a metric space, with
the uniform distance.

-/

noncomputable theory
open_locale topological_space classical nnreal

open set filter metric function

universes u v w
variables {F : Type*} {α : Type u} {β : Type v} {γ : Type w}

/-- `α →ᵇ β` is the type of bounded continuous functions `α → β` from a topological space to a
metric space.

When possible, instead of parametrizing results over `(f : α →ᵇ β)`,
you should parametrize over `(F : Type*) [bounded_continuous_map_class F α β] (f : F)`.

When you extend this structure, make sure to extend `bounded_continuous_map_class`. -/
structure bounded_continuous_function (α : Type u) (β : Type v)
  [topological_space α] [pseudo_metric_space β] extends continuous_map α β :
  Type (max u v) :=
(map_bounded' : ∃ C, ∀ x y, dist (to_fun x) (to_fun y) ≤ C)

localized "infixr ` →ᵇ `:25 := bounded_continuous_function" in bounded_continuous_function

/-- `bounded_continuous_map_class F α β` states that `F` is a type of bounded continuous maps.

You should also extend this typeclass when you extend `bounded_continuous_function`. -/
class bounded_continuous_map_class (F α β : Type*) [topological_space α] [pseudo_metric_space β]
  extends continuous_map_class F α β :=
(map_bounded (f : F) : ∃ C, ∀ x y, dist (f x) (f y) ≤ C)

export bounded_continuous_map_class (map_bounded)

namespace bounded_continuous_function
section basics
variables [topological_space α] [pseudo_metric_space β] [pseudo_metric_space γ]
variables {f g : α →ᵇ β} {x : α} {C : ℝ}

instance : bounded_continuous_map_class (α →ᵇ β) α β :=
{ coe := λ f, f.to_fun,
  coe_injective' := λ f g h, by { obtain ⟨⟨_, _⟩, _⟩ := f, obtain ⟨⟨_, _⟩, _⟩ := g, congr' },
  map_continuous := λ f, f.continuous_to_fun,
  map_bounded := λ f, f.map_bounded' }

/-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun`
directly. -/
instance : has_coe_to_fun (α →ᵇ β) (λ _, α → β) := fun_like.has_coe_to_fun

instance [bounded_continuous_map_class F α β] : has_coe_t F (α →ᵇ β) :=
⟨λ f, { to_fun := f, continuous_to_fun := map_continuous f, map_bounded' := map_bounded f }⟩

@[simp] lemma coe_to_continuous_fun (f : α →ᵇ β) : (f.to_continuous_map : α → β) = f := rfl

/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
  because it is a composition of multiple projections. -/
def simps.apply (h : α →ᵇ β) : α → β := h

initialize_simps_projections bounded_continuous_function (to_continuous_map_to_fun → apply)

protected lemma bounded (f : α →ᵇ β) : ∃C, ∀ x y : α, dist (f x) (f y) ≤ C := f.map_bounded'
protected lemma continuous (f : α →ᵇ β) : continuous f := f.to_continuous_map.continuous

@[ext] lemma ext (h : ∀ x, f x = g x) : f = g := fun_like.ext _ _ h

lemma bounded_range (f : α →ᵇ β) : bounded (range f) :=
bounded_range_iff.2 f.bounded

lemma bounded_image (f : α →ᵇ β) (s : set α) : bounded (f '' s) :=
f.bounded_range.mono $ image_subset_range _ _

lemma eq_of_empty [is_empty α] (f g : α →ᵇ β) : f = g :=
ext $ is_empty.elim ‹_›

/-- A continuous function with an explicit bound is a bounded continuous function. -/
def mk_of_bound (f : C(α, β)) (C : ℝ) (h : ∀ x y : α, dist (f x) (f y) ≤ C) : α →ᵇ β :=
⟨f, ⟨C, h⟩⟩

@[simp] lemma mk_of_bound_coe {f} {C} {h} : (mk_of_bound f C h : α → β) = (f : α → β) :=
rfl

/-- A continuous function on a compact space is automatically a bounded continuous function. -/
def mk_of_compact [compact_space α] (f : C(α, β)) : α →ᵇ β :=
⟨f, bounded_range_iff.1 (is_compact_range f.continuous).bounded⟩

@[simp] lemma mk_of_compact_apply [compact_space α] (f : C(α, β)) (a : α) :
  mk_of_compact f a = f a :=
rfl

/-- If a function is bounded on a discrete space, it is automatically continuous,
and therefore gives rise to an element of the type of bounded continuous functions -/
@[simps] def mk_of_discrete [discrete_topology α] (f : α → β)
  (C : ℝ) (h : ∀ x y : α, dist (f x) (f y) ≤ C) : α →ᵇ β :=
⟨⟨f, continuous_of_discrete_topology⟩, ⟨C, h⟩⟩

/-- The uniform distance between two bounded continuous functions -/
instance : has_dist (α →ᵇ β) :=
⟨λf g, Inf {C | 0 ≤ C ∧ ∀ x : α, dist (f x) (g x) ≤ C}⟩

lemma dist_eq : dist f g = Inf {C | 0 ≤ C ∧ ∀ x : α, dist (f x) (g x) ≤ C} := rfl

lemma dist_set_exists : ∃ C, 0 ≤ C ∧ ∀ x : α, dist (f x) (g x) ≤ C :=
begin
  rcases f.bounded_range.union g.bounded_range with ⟨C, hC⟩,
  refine ⟨max 0 C, le_max_left _ _, λ x, (hC _ _ _ _).trans (le_max_right _ _)⟩;
    [left, right]; apply mem_range_self
end

/-- The pointwise distance is controlled by the distance between functions, by definition. -/
lemma dist_coe_le_dist (x : α) : dist (f x) (g x) ≤ dist f g :=
le_cInf dist_set_exists $ λb hb, hb.2 x

/- This lemma will be needed in the proof of the metric space instance, but it will become
useless afterwards as it will be superseded by the general result that the distance is nonnegative
in metric spaces. -/
private lemma dist_nonneg' : 0 ≤ dist f g :=
le_cInf dist_set_exists (λ C, and.left)

/-- The distance between two functions is controlled by the supremum of the pointwise distances -/
lemma dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀x:α, dist (f x) (g x) ≤ C :=
⟨λ h x, le_trans (dist_coe_le_dist x) h, λ H, cInf_le ⟨0, λ C, and.left⟩ ⟨C0, H⟩⟩

lemma dist_le_iff_of_nonempty [nonempty α] :
  dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C :=
⟨λ h x, le_trans (dist_coe_le_dist x) h,
 λ w, (dist_le (le_trans dist_nonneg (w (nonempty.some ‹_›)))).mpr w⟩

lemma dist_lt_of_nonempty_compact [nonempty α] [compact_space α]
  (w : ∀x:α, dist (f x) (g x) < C) : dist f g < C :=
begin
  have c : continuous (λ x, dist (f x) (g x)), { continuity, },
  obtain ⟨x, -, le⟩ :=
    is_compact.exists_forall_ge compact_univ set.univ_nonempty (continuous.continuous_on c),
  exact lt_of_le_of_lt (dist_le_iff_of_nonempty.mpr (λ y, le y trivial)) (w x),
end

lemma dist_lt_iff_of_compact [compact_space α] (C0 : (0 : ℝ) < C) :
  dist f g < C ↔ ∀x:α, dist (f x) (g x) < C :=
begin
  fsplit,
  { intros w x,
    exact lt_of_le_of_lt (dist_coe_le_dist x) w, },
  { by_cases h : nonempty α,
    { resetI,
      exact dist_lt_of_nonempty_compact, },
    { rintro -,
      convert C0,
      apply le_antisymm _ dist_nonneg',
      rw [dist_eq],
      exact cInf_le ⟨0, λ C, and.left⟩ ⟨le_rfl, λ x, false.elim (h (nonempty.intro x))⟩, }, },
end

lemma dist_lt_iff_of_nonempty_compact [nonempty α] [compact_space α] :
  dist f g < C ↔ ∀x:α, dist (f x) (g x) < C :=
⟨λ w x, lt_of_le_of_lt (dist_coe_le_dist x) w, dist_lt_of_nonempty_compact⟩

/-- The type of bounded continuous functions, with the uniform distance, is a pseudometric space. -/
instance : pseudo_metric_space (α →ᵇ β) :=
{ dist_self := λ f, le_antisymm ((dist_le le_rfl).2 $ λ x, by simp) dist_nonneg',
  dist_comm := λ f g, by simp [dist_eq, dist_comm],
  dist_triangle := λ f g h,
    (dist_le (add_nonneg dist_nonneg' dist_nonneg')).2 $ λ x,
      le_trans (dist_triangle _ _ _) (add_le_add (dist_coe_le_dist _) (dist_coe_le_dist _)) }

/-- The type of bounded continuous functions, with the uniform distance, is a metric space. -/
instance {α β} [topological_space α] [metric_space β] : metric_space (α →ᵇ β) :=
{ eq_of_dist_eq_zero := λ f g hfg, by ext x; exact
    eq_of_dist_eq_zero (le_antisymm (hfg ▸ dist_coe_le_dist _) dist_nonneg) }

lemma nndist_eq : nndist f g = Inf {C | ∀ x : α, nndist (f x) (g x) ≤ C} :=
subtype.ext $ dist_eq.trans $ begin
  rw [nnreal.coe_Inf, nnreal.coe_image],
  simp_rw [mem_set_of_eq, ←nnreal.coe_le_coe, subtype.coe_mk, exists_prop, coe_nndist],
end

lemma nndist_set_exists : ∃ C, ∀ x : α, nndist (f x) (g x) ≤ C :=
subtype.exists.mpr $ dist_set_exists.imp $ λ a ⟨ha, h⟩, ⟨ha, h⟩

lemma nndist_coe_le_nndist (x : α) : nndist (f x) (g x) ≤ nndist f g :=
dist_coe_le_dist x

/-- On an empty space, bounded continuous functions are at distance 0 -/
lemma dist_zero_of_empty [is_empty α] : dist f g = 0 :=
by rw [(ext is_empty_elim : f = g), dist_self]

lemma dist_eq_supr : dist f g = ⨆ x : α, dist (f x) (g x) :=
begin
  casesI is_empty_or_nonempty α, { rw [supr_of_empty', real.Sup_empty, dist_zero_of_empty] },
  refine (dist_le_iff_of_nonempty.mpr $ le_csupr _).antisymm (csupr_le dist_coe_le_dist),
  exact dist_set_exists.imp (λ C hC, forall_range_iff.2 hC.2)
end

lemma nndist_eq_supr : nndist f g = ⨆ x : α, nndist (f x) (g x) :=
subtype.ext $ dist_eq_supr.trans $ by simp_rw [nnreal.coe_supr, coe_nndist]

lemma tendsto_iff_tendsto_uniformly {ι : Type*} {F : ι → (α →ᵇ β)} {f : α →ᵇ β} {l : filter ι} :
  tendsto F l (𝓝 f) ↔ tendsto_uniformly (λ i, F i) f l :=
iff.intro
  (λ h, tendsto_uniformly_iff.2
    (λ ε ε0, (metric.tendsto_nhds.mp h ε ε0).mp (eventually_of_forall $
    λ n hn x, lt_of_le_of_lt (dist_coe_le_dist x) (dist_comm (F n) f ▸ hn))))
  (λ h, metric.tendsto_nhds.mpr $ λ ε ε_pos,
    (h _ (dist_mem_uniformity $ half_pos ε_pos)).mp (eventually_of_forall $
    λ n hn, lt_of_le_of_lt ((dist_le (half_pos ε_pos).le).mpr $
    λ x, dist_comm (f x) (F n x) ▸ le_of_lt (hn x)) (half_lt_self ε_pos)))

variables (α) {β}

/-- Constant as a continuous bounded function. -/
@[simps {fully_applied := ff}] def const (b : β) : α →ᵇ β :=
⟨continuous_map.const α b, 0, by simp [le_rfl]⟩

variable {α}

lemma const_apply' (a : α) (b : β) : (const α b : α → β) a = b := rfl

/-- If the target space is inhabited, so is the space of bounded continuous functions -/
instance [inhabited β] : inhabited (α →ᵇ β) := ⟨const α default⟩

lemma lipschitz_evalx (x : α) : lipschitz_with 1 (λ f : α →ᵇ β, f x) :=
lipschitz_with.mk_one $ λ f g, dist_coe_le_dist x

theorem uniform_continuous_coe : @uniform_continuous (α →ᵇ β) (α → β) _ _ coe_fn :=
uniform_continuous_pi.2 $ λ x, (lipschitz_evalx x).uniform_continuous

lemma continuous_coe : continuous (λ (f : α →ᵇ β) x, f x) :=
uniform_continuous.continuous uniform_continuous_coe

/-- When `x` is fixed, `(f : α →ᵇ β) ↦ f x` is continuous -/
@[continuity] theorem continuous_eval_const {x : α} : continuous (λ f : α →ᵇ β, f x) :=
(continuous_apply x).comp continuous_coe

/-- The evaluation map is continuous, as a joint function of `u` and `x` -/
@[continuity] theorem continuous_eval : continuous (λ p : (α →ᵇ β) × α, p.1 p.2) :=
continuous_prod_of_continuous_lipschitz _ 1 (λ f, f.continuous) $ lipschitz_evalx

/-- Bounded continuous functions taking values in a complete space form a complete space. -/
instance [complete_space β] : complete_space (α →ᵇ β) :=
complete_of_cauchy_seq_tendsto $ λ (f : ℕ → α →ᵇ β) (hf : cauchy_seq f),
begin
  /- We have to show that `f n` converges to a bounded continuous function.
  For this, we prove pointwise convergence to define the limit, then check
  it is a continuous bounded function, and then check the norm convergence. -/
  rcases cauchy_seq_iff_le_tendsto_0.1 hf with ⟨b, b0, b_bound, b_lim⟩,
  have f_bdd := λx n m N hn hm, le_trans (dist_coe_le_dist x) (b_bound n m N hn hm),
  have fx_cau : ∀x, cauchy_seq (λn, f n x) :=
    λx, cauchy_seq_iff_le_tendsto_0.2 ⟨b, b0, f_bdd x, b_lim⟩,
  choose F hF using λx, cauchy_seq_tendsto_of_complete (fx_cau x),
  /- F : α → β,  hF : ∀ (x : α), tendsto (λ (n : ℕ), f n x) at_top (𝓝 (F x))
  `F` is the desired limit function. Check that it is uniformly approximated by `f N` -/
  have fF_bdd : ∀x N, dist (f N x) (F x) ≤ b N :=
    λ x N, le_of_tendsto (tendsto_const_nhds.dist (hF x))
      (filter.eventually_at_top.2 ⟨N, λn hn, f_bdd x N n N (le_refl N) hn⟩),
  refine ⟨⟨⟨F, _⟩, _⟩, _⟩,
  { /- Check that `F` is continuous, as a uniform limit of continuous functions -/
    have : tendsto_uniformly (λn x, f n x) F at_top,
    { refine metric.tendsto_uniformly_iff.2 (λ ε ε0, _),
      refine ((tendsto_order.1 b_lim).2 ε ε0).mono (λ n hn x, _),
      rw dist_comm,
      exact lt_of_le_of_lt (fF_bdd x n) hn },
    exact this.continuous (eventually_of_forall $ λ N, (f N).continuous) },
  { /- Check that `F` is bounded -/
    rcases (f 0).bounded with ⟨C, hC⟩,
    refine ⟨C + (b 0 + b 0), λ x y, _⟩,
    calc dist (F x) (F y) ≤ dist (f 0 x) (f 0 y) + (dist (f 0 x) (F x) + dist (f 0 y) (F y)) :
      dist_triangle4_left _ _ _ _
                      ... ≤ C + (b 0 + b 0) : by mono* },
  { /- Check that `F` is close to `f N` in distance terms -/
    refine tendsto_iff_dist_tendsto_zero.2 (squeeze_zero (λ _, dist_nonneg) _ b_lim),
    exact λ N, (dist_le (b0 _)).2 (λx, fF_bdd x N) }
end

/-- Composition of a bounded continuous function and a continuous function. -/
@[simps { fully_applied := ff }]
def comp_continuous {δ : Type*} [topological_space δ] (f : α →ᵇ β) (g : C(δ, α)) : δ →ᵇ β :=
{ to_continuous_map := f.1.comp g,
  map_bounded' := f.map_bounded'.imp (λ C hC x y, hC _ _) }

lemma lipschitz_comp_continuous {δ : Type*} [topological_space δ] (g : C(δ, α)) :
  lipschitz_with 1 (λ f : α →ᵇ β, f.comp_continuous g) :=
lipschitz_with.mk_one $ λ f₁ f₂, (dist_le dist_nonneg).2 $ λ x, dist_coe_le_dist (g x)

lemma continuous_comp_continuous {δ : Type*} [topological_space δ] (g : C(δ, α)) :
  continuous (λ f : α →ᵇ β, f.comp_continuous g) :=
(lipschitz_comp_continuous g).continuous

/-- Restrict a bounded continuous function to a set. -/
@[simps apply { fully_applied := ff }]
def restrict (f : α →ᵇ β) (s : set α) : s →ᵇ β :=
f.comp_continuous $ (continuous_map.id _).restrict s

/-- Composition (in the target) of a bounded continuous function with a Lipschitz map again
gives a bounded continuous function -/
def comp (G : β → γ) {C : ℝ≥0} (H : lipschitz_with C G)
  (f : α →ᵇ β) : α →ᵇ γ :=
⟨⟨λx, G (f x), H.continuous.comp f.continuous⟩,
  let ⟨D, hD⟩ := f.bounded in
  ⟨max C 0 * D, λ x y, calc
    dist (G (f x)) (G (f y)) ≤ C * dist (f x) (f y) : H.dist_le_mul _ _
    ... ≤ max C 0 * dist (f x) (f y) : mul_le_mul_of_nonneg_right (le_max_left C 0) dist_nonneg
    ... ≤ max C 0 * D : mul_le_mul_of_nonneg_left (hD _ _) (le_max_right C 0)⟩⟩

/-- The composition operator (in the target) with a Lipschitz map is Lipschitz -/
lemma lipschitz_comp {G : β → γ} {C : ℝ≥0} (H : lipschitz_with C G) :
  lipschitz_with C (comp G H : (α →ᵇ β) → α →ᵇ γ) :=
lipschitz_with.of_dist_le_mul $ λ f g,
(dist_le (mul_nonneg C.2 dist_nonneg)).2 $ λ x,
calc dist (G (f x)) (G (g x)) ≤ C * dist (f x) (g x) : H.dist_le_mul _ _
  ... ≤ C * dist f g : mul_le_mul_of_nonneg_left (dist_coe_le_dist _) C.2

/-- The composition operator (in the target) with a Lipschitz map is uniformly continuous -/
lemma uniform_continuous_comp {G : β → γ} {C : ℝ≥0} (H : lipschitz_with C G) :
  uniform_continuous (comp G H : (α →ᵇ β) → α →ᵇ γ) :=
(lipschitz_comp H).uniform_continuous

/-- The composition operator (in the target) with a Lipschitz map is continuous -/
lemma continuous_comp {G : β → γ} {C : ℝ≥0} (H : lipschitz_with C G) :
  continuous (comp G H : (α →ᵇ β) → α →ᵇ γ) :=
(lipschitz_comp H).continuous

/-- Restriction (in the target) of a bounded continuous function taking values in a subset -/
def cod_restrict (s : set β) (f : α →ᵇ β) (H : ∀x, f x ∈ s) : α →ᵇ s :=
⟨⟨s.cod_restrict f H, continuous_subtype_mk _ f.continuous⟩, f.bounded⟩

section extend

variables {δ : Type*} [topological_space δ] [discrete_topology δ]

/-- A version of `function.extend` for bounded continuous maps. We assume that the domain has
discrete topology, so we only need to verify boundedness. -/
def extend (f : α ↪ δ) (g : α →ᵇ β) (h : δ →ᵇ β) : δ →ᵇ β :=
{ to_fun := extend f g h,
  continuous_to_fun := continuous_of_discrete_topology,
  map_bounded' :=
    begin
      rw [← bounded_range_iff, range_extend f.injective, metric.bounded_union],
      exact ⟨g.bounded_range, h.bounded_image _⟩
    end }

@[simp] lemma extend_apply (f : α ↪ δ) (g : α →ᵇ β) (h : δ →ᵇ β) (x : α) :
  extend f g h (f x) = g x :=
extend_apply f.injective _ _ _

@[simp] lemma extend_comp (f : α ↪ δ) (g : α →ᵇ β) (h : δ →ᵇ β) : extend f g h ∘ f = g :=
extend_comp f.injective _ _

lemma extend_apply' {f : α ↪ δ} {x : δ} (hx : x ∉ range f) (g : α →ᵇ β) (h : δ →ᵇ β) :
  extend f g h x = h x :=
extend_apply' _ _ _ hx

lemma extend_of_empty [is_empty α] (f : α ↪ δ) (g : α →ᵇ β) (h : δ →ᵇ β) :
  extend f g h = h :=
fun_like.coe_injective $ function.extend_of_empty f g h

@[simp] lemma dist_extend_extend (f : α ↪ δ) (g₁ g₂ : α →ᵇ β) (h₁ h₂ : δ →ᵇ β) :
  dist (g₁.extend f h₁) (g₂.extend f h₂) =
    max (dist g₁ g₂) (dist (h₁.restrict (range f)ᶜ) (h₂.restrict (range f)ᶜ)) :=
begin
  refine le_antisymm ((dist_le $ le_max_iff.2 $ or.inl dist_nonneg).2 $ λ x, _) (max_le _ _),
  { rcases em (∃ y, f y = x) with (⟨x, rfl⟩|hx),
    { simp only [extend_apply],
      exact (dist_coe_le_dist x).trans (le_max_left _ _) },
    { simp only [extend_apply' hx],
      lift x to ((range f)ᶜ : set δ) using hx,
      calc dist (h₁ x) (h₂ x) = dist (h₁.restrict (range f)ᶜ x) (h₂.restrict (range f)ᶜ x) : rfl
      ... ≤ dist (h₁.restrict (range f)ᶜ) (h₂.restrict (range f)ᶜ) : dist_coe_le_dist x
      ... ≤ _ : le_max_right _ _ } },
  { refine (dist_le dist_nonneg).2 (λ x, _),
    rw [← extend_apply f g₁ h₁, ← extend_apply f g₂ h₂],
    exact dist_coe_le_dist _ },
  { refine (dist_le dist_nonneg).2 (λ x, _),
    calc dist (h₁ x) (h₂ x) = dist (extend f g₁ h₁ x) (extend f g₂ h₂ x) :
      by rw [extend_apply' x.coe_prop, extend_apply' x.coe_prop]
    ... ≤ _ : dist_coe_le_dist _ }
end

lemma isometry_extend (f : α ↪ δ) (h : δ →ᵇ β) :
  isometry (λ g : α →ᵇ β, extend f g h) :=
isometry.of_dist_eq $ λ g₁ g₂, by simp [dist_nonneg]

end extend

end basics

section arzela_ascoli
variables [topological_space α] [compact_space α] [pseudo_metric_space β]
variables {f g : α →ᵇ β} {x : α} {C : ℝ}

/- Arzela-Ascoli theorem asserts that, on a compact space, a set of functions sharing
a common modulus of continuity and taking values in a compact set forms a compact
subset for the topology of uniform convergence. In this section, we prove this theorem
and several useful variations around it. -/

/-- First version, with pointwise equicontinuity and range in a compact space -/
theorem arzela_ascoli₁ [compact_space β]
  (A : set (α →ᵇ β))
  (closed : is_closed A)
  (H : ∀ (x:α) (ε > 0), ∃U ∈ 𝓝 x, ∀ (y z ∈ U) (f : α →ᵇ β),
    f ∈ A → dist (f y) (f z) < ε) :
  is_compact A :=
begin
  refine compact_of_totally_bounded_is_closed _ closed,
  refine totally_bounded_of_finite_discretization (λ ε ε0, _),
  rcases exists_between ε0 with ⟨ε₁, ε₁0, εε₁⟩,
  let ε₂ := ε₁/2/2,
  /- We have to find a finite discretization of `u`, i.e., finite information
  that is sufficient to reconstruct `u` up to ε. This information will be
  provided by the values of `u` on a sufficiently dense set tα,
  slightly translated to fit in a finite ε₂-dense set tβ in the image. Such
  sets exist by compactness of the source and range. Then, to check that these
  data determine the function up to ε, one uses the control on the modulus of
  continuity to extend the closeness on tα to closeness everywhere. -/
  have ε₂0 : ε₂ > 0 := half_pos (half_pos ε₁0),
  have : ∀x:α, ∃U, x ∈ U ∧ is_open U ∧ ∀ (y z ∈ U) {f : α →ᵇ β},
    f ∈ A → dist (f y) (f z) < ε₂ := λ x,
      let ⟨U, nhdsU, hU⟩ := H x _ ε₂0,
          ⟨V, VU, openV, xV⟩ := _root_.mem_nhds_iff.1 nhdsU in
      ⟨V, xV, openV, λy hy z hz f hf, hU y (VU hy) z (VU hz) f hf⟩,
  choose U hU using this,
  /- For all x, the set hU x is an open set containing x on which the elements of A
  fluctuate by at most ε₂.
  We extract finitely many of these sets that cover the whole space, by compactness -/
  rcases compact_univ.elim_finite_subcover_image
    (λx _, (hU x).2.1) (λx hx, mem_bUnion (mem_univ _) (hU x).1)
    with ⟨tα, _, ⟨_⟩, htα⟩,
  /- tα : set α, htα : univ ⊆ ⋃x ∈ tα, U x -/
  rcases @finite_cover_balls_of_compact β _ _ compact_univ _ ε₂0
    with ⟨tβ, _, ⟨_⟩, htβ⟩, resetI,
  /- tβ : set β, htβ : univ ⊆ ⋃y ∈ tβ, ball y ε₂ -/
  /- Associate to every point `y` in the space a nearby point `F y` in tβ -/
  choose F hF using λy, show ∃z∈tβ, dist y z < ε₂, by simpa using htβ (mem_univ y),
  /- F : β → β, hF : ∀ (y : β), F y ∈ tβ ∧ dist y (F y) < ε₂ -/

  /- Associate to every function a discrete approximation, mapping each point in `tα`
  to a point in `tβ` close to its true image by the function. -/
  refine ⟨tα → tβ, by apply_instance, λ f a, ⟨F (f a), (hF (f a)).1⟩, _⟩,
  rintro ⟨f, hf⟩ ⟨g, hg⟩ f_eq_g,
  /- If two functions have the same approximation, then they are within distance ε -/
  refine lt_of_le_of_lt ((dist_le $ le_of_lt ε₁0).2 (λ x, _)) εε₁,
  obtain ⟨x', x'tα, hx'⟩ : ∃x' ∈ tα, x ∈ U x' := mem_Union₂.1 (htα (mem_univ x)),
  calc dist (f x) (g x)
      ≤ dist (f x) (f x') + dist (g x) (g x') + dist (f x') (g x') : dist_triangle4_right _ _ _ _
  ... ≤ ε₂ + ε₂ + ε₁/2 : le_of_lt (add_lt_add (add_lt_add _ _) _)
  ... = ε₁ : by rw [add_halves, add_halves],
  { exact (hU x').2.2 _ hx' _ ((hU x').1) hf },
  { exact (hU x').2.2 _ hx' _ ((hU x').1) hg },
  { have F_f_g : F (f x') = F (g x') :=
      (congr_arg (λ f:tα → tβ, (f ⟨x', x'tα⟩ : β)) f_eq_g : _),
    calc dist (f x') (g x')
          ≤ dist (f x') (F (f x')) + dist (g x') (F (f x')) : dist_triangle_right _ _ _
      ... = dist (f x') (F (f x')) + dist (g x') (F (g x')) : by rw F_f_g
      ... < ε₂ + ε₂ : add_lt_add (hF (f x')).2 (hF (g x')).2
      ... = ε₁/2 : add_halves _ }
end

/-- Second version, with pointwise equicontinuity and range in a compact subset -/
theorem arzela_ascoli₂
  (s : set β) (hs : is_compact s)
  (A : set (α →ᵇ β))
  (closed : is_closed A)
  (in_s : ∀(f : α →ᵇ β) (x : α), f ∈ A → f x ∈ s)
  (H : ∀(x:α) (ε > 0), ∃U ∈ 𝓝 x, ∀ (y z ∈ U) (f : α →ᵇ β),
    f ∈ A → dist (f y) (f z) < ε) :
  is_compact A :=
/- This version is deduced from the previous one by restricting to the compact type in the target,
using compactness there and then lifting everything to the original space. -/
begin
  have M : lipschitz_with 1 coe := lipschitz_with.subtype_coe s,
  let F : (α →ᵇ s) → α →ᵇ β := comp coe M,
  refine compact_of_is_closed_subset
    ((_ : is_compact (F ⁻¹' A)).image (continuous_comp M)) closed (λ f hf, _),
  { haveI : compact_space s := is_compact_iff_compact_space.1 hs,
    refine arzela_ascoli₁ _ (continuous_iff_is_closed.1 (continuous_comp M) _ closed)
      (λ x ε ε0, bex.imp_right (λ U U_nhds hU y hy z hz f hf, _) (H x ε ε0)),
    calc dist (f y) (f z) = dist (F f y) (F f z) : rfl
                        ... < ε : hU y hy z hz (F f) hf },
  { let g := cod_restrict s f (λx, in_s f x hf),
    rw [show f = F g, by ext; refl] at hf ⊢,
    exact ⟨g, hf, rfl⟩ }
end

/-- Third (main) version, with pointwise equicontinuity and range in a compact subset, but
without closedness. The closure is then compact -/
theorem arzela_ascoli [t2_space β]
  (s : set β) (hs : is_compact s)
  (A : set (α →ᵇ β))
  (in_s : ∀(f : α →ᵇ β) (x : α), f ∈ A → f x ∈ s)
  (H : ∀(x:α) (ε > 0), ∃U ∈ 𝓝 x, ∀ (y z ∈ U) (f : α →ᵇ β),
    f ∈ A → dist (f y) (f z) < ε) :
  is_compact (closure A) :=
/- This version is deduced from the previous one by checking that the closure of A, in
addition to being closed, still satisfies the properties of compact range and equicontinuity -/
arzela_ascoli₂ s hs (closure A) is_closed_closure
  (λ f x hf, (mem_of_closed' hs.is_closed).2 $ λ ε ε0,
    let ⟨g, gA, dist_fg⟩ := metric.mem_closure_iff.1 hf ε ε0 in
    ⟨g x, in_s g x gA, lt_of_le_of_lt (dist_coe_le_dist _) dist_fg⟩)
  (λ x ε ε0, show ∃ U ∈ 𝓝 x,
      ∀ y z ∈ U, ∀ (f : α →ᵇ β), f ∈ closure A → dist (f y) (f z) < ε,
    begin
      refine bex.imp_right (λ U U_set hU y hy z hz f hf, _) (H x (ε/2) (half_pos ε0)),
      rcases metric.mem_closure_iff.1 hf (ε/2/2) (half_pos (half_pos ε0)) with ⟨g, gA, dist_fg⟩,
      replace dist_fg := λ x, lt_of_le_of_lt (dist_coe_le_dist x) dist_fg,
      calc dist (f y) (f z) ≤ dist (f y) (g y) + dist (f z) (g z) + dist (g y) (g z) :
        dist_triangle4_right _ _ _ _
          ... < ε/2/2 + ε/2/2 + ε/2 :
            add_lt_add (add_lt_add (dist_fg y) (dist_fg z)) (hU y hy z hz g gA)
          ... = ε : by rw [add_halves, add_halves]
    end)

/- To apply the previous theorems, one needs to check the equicontinuity. An important
instance is when the source space is a metric space, and there is a fixed modulus of continuity
for all the functions in the set A -/

lemma equicontinuous_of_continuity_modulus {α : Type u} [pseudo_metric_space α]
  (b : ℝ → ℝ) (b_lim : tendsto b (𝓝 0) (𝓝 0))
  (A : set (α →ᵇ β))
  (H : ∀(x y:α) (f : α →ᵇ β), f ∈ A → dist (f x) (f y) ≤ b (dist x y))
  (x:α) (ε : ℝ) (ε0 : 0 < ε) : ∃U ∈ 𝓝 x, ∀ (y z ∈ U) (f : α →ᵇ β),
    f ∈ A → dist (f y) (f z) < ε :=
begin
  rcases tendsto_nhds_nhds.1 b_lim ε ε0 with ⟨δ, δ0, hδ⟩,
  refine ⟨ball x (δ/2), ball_mem_nhds x (half_pos δ0), λ y hy z hz f hf, _⟩,
  have : dist y z < δ := calc
    dist y z ≤ dist y x + dist z x : dist_triangle_right _ _ _
    ... < δ/2 + δ/2 : add_lt_add hy hz
    ... = δ : add_halves _,
  calc
    dist (f y) (f z) ≤ b (dist y z) : H y z f hf
    ... ≤ |b (dist y z)| : le_abs_self _
    ... = dist (b (dist y z)) 0 : by simp [real.dist_eq]
    ... < ε : hδ (by simpa [real.dist_eq] using this),
end

end arzela_ascoli

section has_one

variables [topological_space α] [pseudo_metric_space β] [has_one β]

@[to_additive] instance : has_one (α →ᵇ β) := ⟨const α 1⟩

@[simp, to_additive] lemma coe_one : ((1 : α →ᵇ β) : α → β) = 1 := rfl

@[simp, to_additive]
lemma mk_of_compact_one [compact_space α] : mk_of_compact (1 : C(α, β)) = 1 := rfl

@[to_additive] lemma forall_coe_one_iff_one (f : α →ᵇ β) : (∀ x, f x = 1) ↔ f = 1 :=
(@fun_like.ext_iff _ _ _ _ f 1).symm

@[simp, to_additive] lemma one_comp_continuous [topological_space γ] (f : C(γ, α)) :
  (1 : α →ᵇ β).comp_continuous f = 1 := rfl

end has_one

section has_lipschitz_add
/- In this section, if `β` is an `add_monoid` whose addition operation is Lipschitz, then we show
that the space of bounded continuous functions from `α` to `β` inherits a topological `add_monoid`
structure, by using pointwise operations and checking that they are compatible with the uniform
distance.

Implementation note: The material in this section could have been written for `has_lipschitz_mul`
and transported by `@[to_additive]`.  We choose not to do this because this causes a few lemma
names (for example, `coe_mul`) to conflict with later lemma names for normed rings; this is only a
trivial inconvenience, but in any case there are no obvious applications of the multiplicative
version. -/

variables [topological_space α] [pseudo_metric_space β] [add_monoid β]
variables [has_lipschitz_add β]
variables (f g : α →ᵇ β) {x : α} {C : ℝ}

/-- The pointwise sum of two bounded continuous functions is again bounded continuous. -/
instance : has_add (α →ᵇ β) :=
{ add := λ f g,
  bounded_continuous_function.mk_of_bound (f.to_continuous_map + g.to_continuous_map)
    (↑(has_lipschitz_add.C β) * max (classical.some f.bounded) (classical.some g.bounded))
    begin
      intros x y,
      refine le_trans (lipschitz_with_lipschitz_const_add ⟨f x, g x⟩ ⟨f y, g y⟩) _,
      rw prod.dist_eq,
      refine mul_le_mul_of_nonneg_left _ (has_lipschitz_add.C β).coe_nonneg,
      apply max_le_max,
      exact classical.some_spec f.bounded x y,
      exact classical.some_spec g.bounded x y,
    end }

@[simp] lemma coe_add : ⇑(f + g) = f + g := rfl
lemma add_apply : (f + g) x = f x + g x := rfl

@[simp] lemma mk_of_compact_add [compact_space α] (f g : C(α, β)) :
  mk_of_compact (f + g) = mk_of_compact f + mk_of_compact g := rfl

lemma add_comp_continuous [topological_space γ] (h : C(γ, α)) :
  (g + f).comp_continuous h = g.comp_continuous h + f.comp_continuous h := rfl

@[simp] lemma coe_nsmul_rec : ∀ n, ⇑(nsmul_rec n f) = n • f
| 0 := by rw [nsmul_rec, zero_smul, coe_zero]
| (n + 1) := by rw [nsmul_rec, succ_nsmul, coe_add, coe_nsmul_rec]

instance has_nat_scalar : has_smul ℕ (α →ᵇ β) :=
{ smul := λ n f,
  { to_continuous_map := n • f.to_continuous_map,
    map_bounded' := by simpa [coe_nsmul_rec] using (nsmul_rec n f).map_bounded' } }

@[simp] lemma coe_nsmul (r : ℕ) (f : α →ᵇ β) : ⇑(r • f) = r • f := rfl
@[simp] lemma nsmul_apply (r : ℕ) (f : α →ᵇ β) (v : α) : (r • f) v = r • f v := rfl

instance : add_monoid (α →ᵇ β) :=
fun_like.coe_injective.add_monoid _ coe_zero coe_add (λ _ _, coe_nsmul _ _)

instance : has_lipschitz_add (α →ᵇ β) :=
{ lipschitz_add := ⟨has_lipschitz_add.C β, begin
    have C_nonneg := (has_lipschitz_add.C β).coe_nonneg,
    rw lipschitz_with_iff_dist_le_mul,
    rintros ⟨f₁, g₁⟩ ⟨f₂, g₂⟩,
    rw dist_le (mul_nonneg C_nonneg dist_nonneg),
    intros x,
    refine le_trans (lipschitz_with_lipschitz_const_add ⟨f₁ x, g₁ x⟩ ⟨f₂ x, g₂ x⟩) _,
    refine mul_le_mul_of_nonneg_left _ C_nonneg,
    apply max_le_max; exact dist_coe_le_dist x,
  end⟩ }

/-- Coercion of a `normed_add_group_hom` is an `add_monoid_hom`. Similar to
`add_monoid_hom.coe_fn`. -/
@[simps] def coe_fn_add_hom : (α →ᵇ β) →+ (α → β) :=
{ to_fun := coe_fn, map_zero' := coe_zero, map_add' := coe_add }

variables (α β)

/-- The additive map forgetting that a bounded continuous function is bounded.
-/
@[simps] def to_continuous_map_add_hom : (α →ᵇ β) →+ C(α, β) :=
{ to_fun := to_continuous_map,
  map_zero' := by { ext, simp, },
  map_add' := by { intros, ext, simp, }, }

end has_lipschitz_add

section comm_has_lipschitz_add

variables [topological_space α] [pseudo_metric_space β] [add_comm_monoid β] [has_lipschitz_add β]

@[to_additive] instance : add_comm_monoid (α →ᵇ β) :=
{ add_comm      := assume f g, by ext; simp [add_comm],
  .. bounded_continuous_function.add_monoid }

open_locale big_operators

@[simp] lemma coe_sum {ι : Type*} (s : finset ι) (f : ι → (α →ᵇ β)) :
  ⇑(∑ i in s, f i) = (∑ i in s, (f i : α → β)) :=
(@coe_fn_add_hom α β _ _ _ _).map_sum f s

lemma sum_apply {ι : Type*} (s : finset ι) (f : ι → (α →ᵇ β)) (a : α) :
  (∑ i in s, f i) a = (∑ i in s, f i a) :=
by simp

end comm_has_lipschitz_add

section normed_add_comm_group
/- In this section, if β is a normed group, then we show that the space of bounded
continuous functions from α to β inherits a normed group structure, by using
pointwise operations and checking that they are compatible with the uniform distance. -/

variables [topological_space α] [seminormed_add_comm_group β]
variables (f g : α →ᵇ β) {x : α} {C : ℝ}

instance : has_norm (α →ᵇ β) := ⟨λu, dist u 0⟩

lemma norm_def : ∥f∥ = dist f 0 := rfl

/-- The norm of a bounded continuous function is the supremum of `∥f x∥`.
We use `Inf` to ensure that the definition works if `α` has no elements. -/
lemma norm_eq (f : α →ᵇ β) :
  ∥f∥ = Inf {C : ℝ | 0 ≤ C ∧ ∀ (x : α), ∥f x∥ ≤ C} :=
by simp [norm_def, bounded_continuous_function.dist_eq]

/-- When the domain is non-empty, we do not need the `0 ≤ C` condition in the formula for ∥f∥ as an
`Inf`. -/
lemma norm_eq_of_nonempty [h : nonempty α] : ∥f∥ = Inf {C : ℝ | ∀ (x : α), ∥f x∥ ≤ C} :=
begin
  unfreezingI { obtain ⟨a⟩ := h, },
  rw norm_eq,
  congr,
  ext,
  simp only [and_iff_right_iff_imp],
  exact λ h', le_trans (norm_nonneg (f a)) (h' a),
end

@[simp] lemma norm_eq_zero_of_empty [h : is_empty α] : ∥f∥ = 0 :=
dist_zero_of_empty

lemma norm_coe_le_norm (x : α) : ∥f x∥ ≤ ∥f∥ := calc
  ∥f x∥ = dist (f x) ((0 : α →ᵇ β) x) : by simp [dist_zero_right]
  ... ≤ ∥f∥ : dist_coe_le_dist _

lemma dist_le_two_norm' {f : γ → β} {C : ℝ} (hC : ∀ x, ∥f x∥ ≤ C) (x y : γ) :
  dist (f x) (f y) ≤ 2 * C :=
calc dist (f x) (f y) ≤ ∥f x∥ + ∥f y∥ : dist_le_norm_add_norm _ _
                  ... ≤ C + C         : add_le_add (hC x) (hC y)
                  ... = 2 * C         : (two_mul _).symm

/-- Distance between the images of any two points is at most twice the norm of the function. -/
lemma dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ∥f∥ :=
dist_le_two_norm' f.norm_coe_le_norm x y

variable {f}

/-- The norm of a function is controlled by the supremum of the pointwise norms -/
lemma norm_le (C0 : (0 : ℝ) ≤ C) : ∥f∥ ≤ C ↔ ∀x:α, ∥f x∥ ≤ C :=
by simpa using @dist_le _ _ _ _ f 0 _ C0

lemma norm_le_of_nonempty [nonempty α]
  {f : α →ᵇ β} {M : ℝ} : ∥f∥ ≤ M ↔ ∀ x, ∥f x∥ ≤ M :=
begin
  simp_rw [norm_def, ←dist_zero_right],
  exact dist_le_iff_of_nonempty,
end

lemma norm_lt_iff_of_compact [compact_space α]
  {f : α →ᵇ β} {M : ℝ} (M0 : 0 < M) : ∥f∥ < M ↔ ∀ x, ∥f x∥ < M :=
begin
  simp_rw [norm_def, ←dist_zero_right],
  exact dist_lt_iff_of_compact M0,
end

lemma norm_lt_iff_of_nonempty_compact [nonempty α] [compact_space α]
  {f : α →ᵇ β} {M : ℝ} : ∥f∥ < M ↔ ∀ x, ∥f x∥ < M :=
begin
  simp_rw [norm_def, ←dist_zero_right],
  exact dist_lt_iff_of_nonempty_compact,
end

variable (f)

/-- Norm of `const α b` is less than or equal to `∥b∥`. If `α` is nonempty,
then it is equal to `∥b∥`. -/
lemma norm_const_le (b : β) : ∥const α b∥ ≤ ∥b∥ :=
(norm_le (norm_nonneg b)).2 $ λ x, le_rfl

@[simp] lemma norm_const_eq [h : nonempty α] (b : β) : ∥const α b∥ = ∥b∥ :=
le_antisymm (norm_const_le b) $ h.elim $ λ x, (const α b).norm_coe_le_norm x

/-- Constructing a bounded continuous function from a uniformly bounded continuous
function taking values in a normed group. -/
def of_normed_add_comm_group {α : Type u} {β : Type v} [topological_space α]
  [seminormed_add_comm_group β] (f : α → β) (Hf : continuous f) (C : ℝ) (H : ∀x, ∥f x∥ ≤ C) :
  α →ᵇ β :=
⟨⟨λn, f n, Hf⟩, ⟨_, dist_le_two_norm' H⟩⟩

@[simp] lemma coe_of_normed_add_comm_group
  {α : Type u} {β : Type v} [topological_space α] [seminormed_add_comm_group β]
  (f : α → β) (Hf : continuous f) (C : ℝ) (H : ∀x, ∥f x∥ ≤ C) :
  (of_normed_add_comm_group f Hf C H : α → β) = f := rfl

lemma norm_of_normed_add_comm_group_le {f : α → β} (hfc : continuous f) {C : ℝ} (hC : 0 ≤ C)
  (hfC : ∀ x, ∥f x∥ ≤ C) : ∥of_normed_add_comm_group f hfc C hfC∥ ≤ C :=
(norm_le hC).2 hfC

/-- Constructing a bounded continuous function from a uniformly bounded
function on a discrete space, taking values in a normed group -/
def of_normed_add_comm_group_discrete {α : Type u} {β : Type v}
  [topological_space α] [discrete_topology α] [seminormed_add_comm_group β]
  (f : α  → β) (C : ℝ) (H : ∀x, norm (f x) ≤ C) : α →ᵇ β :=
of_normed_add_comm_group f continuous_of_discrete_topology C H

@[simp] lemma coe_of_normed_add_comm_group_discrete {α : Type u} {β : Type v} [topological_space α]
  [discrete_topology α] [seminormed_add_comm_group β] (f : α → β) (C : ℝ) (H : ∀x, ∥f x∥ ≤ C) :
  (of_normed_add_comm_group_discrete f C H : α → β) = f := rfl

/-- Taking the pointwise norm of a bounded continuous function with values in a
`seminormed_add_comm_group` yields a bounded continuous function with values in ℝ. -/
def norm_comp : α →ᵇ ℝ :=
f.comp norm lipschitz_with_one_norm

@[simp] lemma coe_norm_comp : (f.norm_comp : α → ℝ) = norm ∘ f := rfl

@[simp] lemma norm_norm_comp : ∥f.norm_comp∥ = ∥f∥ :=
by simp only [norm_eq, coe_norm_comp, norm_norm]

lemma bdd_above_range_norm_comp : bdd_above $ set.range $ norm ∘ f :=
(real.bounded_iff_bdd_below_bdd_above.mp $ @bounded_range _ _ _ _ f.norm_comp).2

lemma norm_eq_supr_norm : ∥f∥ = ⨆ x : α, ∥f x∥ :=
by simp_rw [norm_def, dist_eq_supr, coe_zero, pi.zero_apply, dist_zero_right]

/-- The pointwise opposite of a bounded continuous function is again bounded continuous. -/
instance : has_neg (α →ᵇ β) :=
⟨λf, of_normed_add_comm_group (-f) f.continuous.neg ∥f∥ $ λ x,
  trans_rel_right _ (norm_neg _) (f.norm_coe_le_norm x)⟩

/-- The pointwise difference of two bounded continuous functions is again bounded continuous. -/
instance : has_sub (α →ᵇ β) :=
⟨λf g, of_normed_add_comm_group (f - g) (f.continuous.sub g.continuous) (∥f∥ + ∥g∥) $ λ x,
  by { simp only [sub_eq_add_neg],
       exact le_trans (norm_add_le _ _) (add_le_add (f.norm_coe_le_norm x) $
         trans_rel_right _ (norm_neg _) (g.norm_coe_le_norm x)) }⟩

@[simp] lemma coe_neg : ⇑(-f) = -f := rfl
lemma neg_apply : (-f) x = -f x := rfl

@[simp] lemma coe_sub : ⇑(f - g) = f - g := rfl
lemma sub_apply : (f - g) x = f x - g x := rfl

@[simp] lemma mk_of_compact_neg [compact_space α] (f : C(α, β)) :
  mk_of_compact (-f) = -mk_of_compact f := rfl

@[simp] lemma mk_of_compact_sub [compact_space α] (f g : C(α, β)) :
  mk_of_compact (f - g) = mk_of_compact f - mk_of_compact g := rfl

@[simp] lemma coe_zsmul_rec : ∀ z, ⇑(zsmul_rec z f) = z • f
| (int.of_nat n) := by rw [zsmul_rec, int.of_nat_eq_coe, coe_nsmul_rec, coe_nat_zsmul]
| -[1+ n] := by rw [zsmul_rec, zsmul_neg_succ_of_nat, coe_neg, coe_nsmul_rec]

instance has_int_scalar : has_smul ℤ (α →ᵇ β) :=
{ smul := λ n f,
  { to_continuous_map := n • f.to_continuous_map,
    map_bounded' := by simpa using (zsmul_rec n f).map_bounded' } }

@[simp] lemma coe_zsmul (r : ℤ) (f : α →ᵇ β) : ⇑(r • f) = r • f := rfl
@[simp] lemma zsmul_apply (r : ℤ) (f : α →ᵇ β) (v : α) : (r • f) v = r • f v := rfl

instance : add_comm_group (α →ᵇ β) :=
fun_like.coe_injective.add_comm_group _ coe_zero coe_add coe_neg coe_sub (λ _ _, coe_nsmul _ _)
  (λ _ _, coe_zsmul _ _)

instance : seminormed_add_comm_group (α →ᵇ β) :=
{ dist_eq := λ f g, by simp only [norm_eq, dist_eq, dist_eq_norm, sub_apply] }

instance {α β} [topological_space α] [normed_add_comm_group β] : normed_add_comm_group (α →ᵇ β) :=
{ ..bounded_continuous_function.seminormed_add_comm_group }

lemma nnnorm_def : ∥f∥₊ = nndist f 0 := rfl

lemma nnnorm_coe_le_nnnorm (x : α) : ∥f x∥₊ ≤ ∥f∥₊ := norm_coe_le_norm _ _

lemma nndist_le_two_nnnorm (x y : α) : nndist (f x) (f y) ≤ 2 * ∥f∥₊ := dist_le_two_norm _ _ _

/-- The nnnorm of a function is controlled by the supremum of the pointwise nnnorms -/
lemma nnnorm_le (C : ℝ≥0) : ∥f∥₊ ≤ C ↔ ∀x:α, ∥f x∥₊ ≤ C :=
norm_le C.prop

lemma nnnorm_const_le (b : β) : ∥const α b∥₊ ≤ ∥b∥₊ :=
norm_const_le _

@[simp] lemma nnnorm_const_eq [h : nonempty α] (b : β) : ∥const α b∥₊ = ∥b∥₊ :=
subtype.ext $ norm_const_eq _

lemma nnnorm_eq_supr_nnnorm : ∥f∥₊ = ⨆ x : α, ∥f x∥₊ :=
subtype.ext $ (norm_eq_supr_norm f).trans $ by simp_rw [nnreal.coe_supr, coe_nnnorm]

lemma abs_diff_coe_le_dist : ∥f x - g x∥ ≤ dist f g :=
by { rw dist_eq_norm, exact (f - g).norm_coe_le_norm x }

lemma coe_le_coe_add_dist {f g : α →ᵇ ℝ} : f x ≤ g x + dist f g :=
sub_le_iff_le_add'.1 $ (abs_le.1 $ @dist_coe_le_dist _ _ _ _ f g x).2

lemma norm_comp_continuous_le [topological_space γ] (f : α →ᵇ β) (g : C(γ, α)) :
  ∥f.comp_continuous g∥ ≤ ∥f∥ :=
((lipschitz_comp_continuous g).dist_le_mul f 0).trans $
  by rw [nnreal.coe_one, one_mul, dist_zero_right]

end normed_add_comm_group

section has_bounded_smul
/-!
### `has_bounded_smul` (in particular, topological module) structure

In this section, if `β` is a metric space and a `𝕜`-module whose addition and scalar multiplication
are compatible with the metric structure, then we show that the space of bounded continuous
functions from `α` to `β` inherits a so-called `has_bounded_smul` structure (in particular, a
`has_continuous_mul` structure, which is the mathlib formulation of being a topological module), by
using pointwise operations and checking that they are compatible with the uniform distance. -/

variables {𝕜 : Type*} [pseudo_metric_space 𝕜] [topological_space α] [pseudo_metric_space β]

section has_smul
variables [has_zero 𝕜] [has_zero β] [has_smul 𝕜 β] [has_bounded_smul 𝕜 β]

instance : has_smul 𝕜 (α →ᵇ β) :=
{ smul := λ c f,
  { to_continuous_map := c • f.to_continuous_map,
    map_bounded' := let ⟨b, hb⟩ := f.bounded in ⟨dist c 0 * b, λ x y, begin
      refine (dist_smul_pair c (f x) (f y)).trans _,
      refine mul_le_mul_of_nonneg_left _ dist_nonneg,
      exact hb x y
    end⟩ } }

@[simp] lemma coe_smul (c : 𝕜) (f : α →ᵇ β) : ⇑(c • f) = λ x, c • (f x) := rfl
lemma smul_apply (c : 𝕜) (f : α →ᵇ β) (x : α) : (c • f) x = c • f x := rfl

instance [has_smul 𝕜ᵐᵒᵖ β] [is_central_scalar 𝕜 β] : is_central_scalar 𝕜 (α →ᵇ β) :=
{ op_smul_eq_smul := λ _ _, ext $ λ _, op_smul_eq_smul _ _ }

instance : has_bounded_smul 𝕜 (α →ᵇ β) :=
{ dist_smul_pair' := λ c f₁ f₂, begin
    rw dist_le (mul_nonneg dist_nonneg dist_nonneg),
    intros x,
    refine (dist_smul_pair c (f₁ x) (f₂ x)).trans _,
    exact mul_le_mul_of_nonneg_left (dist_coe_le_dist x) dist_nonneg
  end,
  dist_pair_smul' := λ c₁ c₂ f, begin
    rw dist_le (mul_nonneg dist_nonneg dist_nonneg),
    intros x,
    refine (dist_pair_smul c₁ c₂ (f x)).trans _,
    convert mul_le_mul_of_nonneg_left (dist_coe_le_dist x) dist_nonneg,
    simp
  end }

end has_smul

section mul_action
variables [monoid_with_zero 𝕜] [has_zero β] [mul_action 𝕜 β] [has_bounded_smul 𝕜 β]

instance : mul_action 𝕜 (α →ᵇ β) := fun_like.coe_injective.mul_action _ coe_smul

end mul_action

section distrib_mul_action
variables [monoid_with_zero 𝕜] [add_monoid β] [distrib_mul_action 𝕜 β] [has_bounded_smul 𝕜 β]
variables [has_lipschitz_add β]

instance : distrib_mul_action 𝕜 (α →ᵇ β) :=
function.injective.distrib_mul_action ⟨_, coe_zero, coe_add⟩ fun_like.coe_injective coe_smul

end distrib_mul_action

section module
variables [semiring 𝕜] [add_comm_monoid β] [module 𝕜 β] [has_bounded_smul 𝕜 β]
variables {f g : α →ᵇ β} {x : α} {C : ℝ}

variables [has_lipschitz_add β]

instance : module 𝕜 (α →ᵇ β) :=
function.injective.module _ ⟨_, coe_zero, coe_add⟩ fun_like.coe_injective coe_smul

variables (𝕜)
/-- The evaluation at a point, as a continuous linear map from `α →ᵇ β` to `β`. -/
def eval_clm (x : α) : (α →ᵇ β) →L[𝕜] β :=
{ to_fun := λ f, f x,
  map_add' := λ f g, add_apply _ _,
  map_smul' := λ c f, smul_apply _ _ _ }

@[simp] lemma eval_clm_apply (x : α) (f : α →ᵇ β) :
  eval_clm 𝕜 x f = f x := rfl

variables (α β)

/-- The linear map forgetting that a bounded continuous function is bounded. -/
@[simps]
def to_continuous_map_linear_map : (α →ᵇ β) →ₗ[𝕜] C(α, β) :=
{ to_fun := to_continuous_map,
  map_smul' := λ f g, rfl,
  map_add' := λ c f, rfl }

end module

end has_bounded_smul

section normed_space
/-!
### Normed space structure

In this section, if `β` is a normed space, then we show that the space of bounded
continuous functions from `α` to `β` inherits a normed space structure, by using
pointwise operations and checking that they are compatible with the uniform distance. -/

variables {𝕜 : Type*}
variables [topological_space α] [seminormed_add_comm_group β]
variables {f g : α →ᵇ β} {x : α} {C : ℝ}

instance [normed_field 𝕜] [normed_space 𝕜 β] : normed_space 𝕜 (α →ᵇ β) := ⟨λ c f, begin
  refine norm_of_normed_add_comm_group_le _ (mul_nonneg (norm_nonneg _) (norm_nonneg _)) _,
  exact (λ x, trans_rel_right _ (norm_smul _ _)
    (mul_le_mul_of_nonneg_left (f.norm_coe_le_norm _) (norm_nonneg _))) end⟩

variables [nontrivially_normed_field 𝕜] [normed_space 𝕜 β]
variables [seminormed_add_comm_group γ] [normed_space 𝕜 γ]

variables (α)
-- TODO does this work in the `has_bounded_smul` setting, too?
/--
Postcomposition of bounded continuous functions into a normed module by a continuous linear map is
a continuous linear map.
Upgraded version of `continuous_linear_map.comp_left_continuous`, similar to
`linear_map.comp_left`. -/
protected def _root_.continuous_linear_map.comp_left_continuous_bounded (g : β →L[𝕜] γ) :
  (α →ᵇ β) →L[𝕜] (α →ᵇ γ) :=
linear_map.mk_continuous
  { to_fun := λ f, of_normed_add_comm_group
      (g ∘ f)
      (g.continuous.comp f.continuous)
      (∥g∥ * ∥f∥)
      (λ x, (g.le_op_norm_of_le (f.norm_coe_le_norm x))),
    map_add' := λ f g, by ext; simp,
    map_smul' := λ c f, by ext; simp }
  ∥g∥
  (λ f, norm_of_normed_add_comm_group_le _ (mul_nonneg (norm_nonneg g) (norm_nonneg f)) _)

@[simp] lemma _root_.continuous_linear_map.comp_left_continuous_bounded_apply (g : β →L[𝕜] γ)
  (f : α →ᵇ β) (x : α) :
  (g.comp_left_continuous_bounded α f) x = g (f x) :=
rfl

end normed_space

section normed_ring
/-!
### Normed ring structure

In this section, if `R` is a normed ring, then we show that the space of bounded
continuous functions from `α` to `R` inherits a normed ring structure, by using
pointwise operations and checking that they are compatible with the uniform distance. -/

variables [topological_space α] {R : Type*}

section non_unital

section semi_normed
variables [non_unital_semi_normed_ring R]

instance : has_mul (α →ᵇ R) :=
{ mul := λ f g, of_normed_add_comm_group (f * g) (f.continuous.mul g.continuous) (∥f∥ * ∥g∥) $ λ x,
    le_trans (norm_mul_le (f x) (g x)) $
      mul_le_mul (f.norm_coe_le_norm x) (g.norm_coe_le_norm x) (norm_nonneg _) (norm_nonneg _) }

@[simp] lemma coe_mul (f g : α →ᵇ R) : ⇑(f * g) = f * g := rfl
lemma mul_apply (f g : α →ᵇ R) (x : α) : (f * g) x = f x * g x := rfl

instance : non_unital_ring (α →ᵇ R) :=
fun_like.coe_injective.non_unital_ring _ coe_zero coe_add coe_mul coe_neg coe_sub
  (λ _ _, coe_nsmul _ _) (λ _ _, coe_zsmul _ _)

instance : non_unital_semi_normed_ring (α →ᵇ R) :=
{ norm_mul := λ f g, norm_of_normed_add_comm_group_le _ (mul_nonneg (norm_nonneg _) (norm_nonneg _))
    _,
  .. bounded_continuous_function.seminormed_add_comm_group }

end semi_normed

instance [non_unital_normed_ring R] : non_unital_normed_ring (α →ᵇ R) :=
{ .. bounded_continuous_function.non_unital_semi_normed_ring,
  .. bounded_continuous_function.normed_add_comm_group }

end non_unital

section semi_normed

variables [semi_normed_ring R]

@[simp] lemma coe_npow_rec (f : α →ᵇ R) : ∀ n, ⇑(npow_rec n f) = f ^ n
| 0 := by rw [npow_rec, pow_zero, coe_one]
| (n + 1) := by rw [npow_rec, pow_succ, coe_mul, coe_npow_rec]

instance has_nat_pow : has_pow (α →ᵇ R) ℕ :=
{ pow := λ f n,
  { to_continuous_map := f.to_continuous_map ^ n,
    map_bounded' := by simpa [coe_npow_rec] using (npow_rec n f).map_bounded' } }

@[simp] lemma coe_pow (n : ℕ) (f : α →ᵇ R) : ⇑(f ^ n) = f ^ n := rfl
@[simp] lemma pow_apply (n : ℕ) (f : α →ᵇ R) (v : α) : (f ^ n) v = f v ^ n := rfl

instance : has_nat_cast (α →ᵇ R) :=
⟨λ n, bounded_continuous_function.const _ n⟩

@[simp, norm_cast] lemma coe_nat_cast (n : ℕ) : ((n : α →ᵇ R) : α → R) = n := rfl

instance : has_int_cast (α →ᵇ R) :=
⟨λ n, bounded_continuous_function.const _ n⟩

@[simp, norm_cast] lemma coe_int_cast (n : ℤ) : ((n : α →ᵇ R) : α → R) = n := rfl

instance : ring (α →ᵇ R) :=
fun_like.coe_injective.ring _ coe_zero coe_one coe_add coe_mul coe_neg coe_sub
  (λ _ _, coe_nsmul _ _)
  (λ _ _, coe_zsmul _ _)
  (λ _ _, coe_pow _ _)
  coe_nat_cast
  coe_int_cast

instance : semi_normed_ring (α →ᵇ R) :=
{ ..bounded_continuous_function.non_unital_semi_normed_ring }

end semi_normed

instance [normed_ring R] : normed_ring (α →ᵇ R) :=
{ ..bounded_continuous_function.non_unital_normed_ring }

end normed_ring

section normed_comm_ring
/-!
### Normed commutative ring structure

In this section, if `R` is a normed commutative ring, then we show that the space of bounded
continuous functions from `α` to `R` inherits a normed commutative ring structure, by using
pointwise operations and checking that they are compatible with the uniform distance. -/

variables [topological_space α] {R : Type*}

instance [semi_normed_comm_ring R] : comm_ring (α →ᵇ R) :=
{ mul_comm := λ f₁ f₂, ext $ λ x, mul_comm _ _,
  .. bounded_continuous_function.ring }

instance [semi_normed_comm_ring R] : semi_normed_comm_ring (α →ᵇ R) :=
{ ..bounded_continuous_function.comm_ring, ..bounded_continuous_function.seminormed_add_comm_group }

instance [normed_comm_ring R] : normed_comm_ring (α →ᵇ R) :=
{ .. bounded_continuous_function.comm_ring, .. bounded_continuous_function.normed_add_comm_group }

end normed_comm_ring

section normed_algebra
/-!
### Normed algebra structure

In this section, if `γ` is a normed algebra, then we show that the space of bounded
continuous functions from `α` to `γ` inherits a normed algebra structure, by using
pointwise operations and checking that they are compatible with the uniform distance. -/

variables {𝕜 : Type*} [normed_field 𝕜]
variables [topological_space α] [seminormed_add_comm_group β] [normed_space 𝕜 β]
variables [normed_ring γ] [normed_algebra 𝕜 γ]
variables {f g : α →ᵇ γ} {x : α} {c : 𝕜}

/-- `bounded_continuous_function.const` as a `ring_hom`. -/
def C : 𝕜 →+* (α →ᵇ γ) :=
{ to_fun    := λ (c : 𝕜), const α ((algebra_map 𝕜 γ) c),
  map_one'  := ext $ λ x, (algebra_map 𝕜 γ).map_one,
  map_mul'  := λ c₁ c₂, ext $ λ x, (algebra_map 𝕜 γ).map_mul _ _,
  map_zero' := ext $ λ x, (algebra_map 𝕜 γ).map_zero,
  map_add'  := λ c₁ c₂, ext $ λ x, (algebra_map 𝕜 γ).map_add _ _ }

instance : algebra 𝕜 (α →ᵇ γ) :=
{ to_ring_hom := C,
  commutes' := λ c f, ext $ λ x, algebra.commutes' _ _,
  smul_def' := λ c f, ext $ λ x, algebra.smul_def' _ _,
  ..bounded_continuous_function.module,
  ..bounded_continuous_function.ring }

@[simp] lemma algebra_map_apply (k : 𝕜) (a : α) :
  algebra_map 𝕜 (α →ᵇ γ) k a = k • 1 :=
by { rw algebra.algebra_map_eq_smul_one, refl, }

instance : normed_algebra 𝕜 (α →ᵇ γ) :=
{ ..bounded_continuous_function.normed_space }

/-!
### Structure as normed module over scalar functions

If `β` is a normed `𝕜`-space, then we show that the space of bounded continuous
functions from `α` to `β` is naturally a module over the algebra of bounded continuous
functions from `α` to `𝕜`. -/

instance has_smul' : has_smul (α →ᵇ 𝕜) (α →ᵇ β) :=
⟨λ (f : α →ᵇ 𝕜) (g : α →ᵇ β), of_normed_add_comm_group (λ x, (f x) • (g x))
(f.continuous.smul g.continuous) (∥f∥ * ∥g∥) (λ x, calc
  ∥f x • g x∥ ≤ ∥f x∥ * ∥g x∥ : normed_space.norm_smul_le _ _
  ... ≤ ∥f∥ * ∥g∥ : mul_le_mul (f.norm_coe_le_norm _) (g.norm_coe_le_norm _) (norm_nonneg _)
    (norm_nonneg _)) ⟩

instance module' : module (α →ᵇ 𝕜) (α →ᵇ β) :=
module.of_core $
{ smul     := (•),
  smul_add := λ c f₁ f₂, ext $ λ x, smul_add _ _ _,
  add_smul := λ c₁ c₂ f, ext $ λ x, add_smul _ _ _,
  mul_smul := λ c₁ c₂ f, ext $ λ x, mul_smul _ _ _,
  one_smul := λ f, ext $ λ x, one_smul 𝕜 (f x) }

lemma norm_smul_le (f : α →ᵇ 𝕜) (g : α →ᵇ β) : ∥f • g∥ ≤ ∥f∥ * ∥g∥ :=
norm_of_normed_add_comm_group_le _ (mul_nonneg (norm_nonneg _) (norm_nonneg _)) _

/- TODO: When `normed_module` has been added to `normed_space.basic`, the above facts
show that the space of bounded continuous functions from `α` to `β` is naturally a normed
module over the algebra of bounded continuous functions from `α` to `𝕜`. -/

end normed_algebra

lemma nnreal.upper_bound {α : Type*} [topological_space α]
  (f : α →ᵇ ℝ≥0) (x : α) : f x ≤ nndist f 0 :=
begin
  have key : nndist (f x) ((0 : α →ᵇ ℝ≥0) x) ≤ nndist f 0,
  { exact @dist_coe_le_dist α ℝ≥0 _ _ f 0 x, },
  simp only [coe_zero, pi.zero_apply] at key,
  rwa nnreal.nndist_zero_eq_val' (f x) at key,
end

/-!
### Star structures

In this section, if `β` is a normed ⋆-group, then so is the space of bounded
continuous functions from `α` to `β`, by using the star operation pointwise.

If `𝕜` is normed field and a ⋆-ring over which `β` is a normed algebra and a
star module, then the space of bounded continuous functions from `α` to `β`
is a star module.

If `β` is a ⋆-ring in addition to being a normed ⋆-group, then `α →ᵇ β`
inherits a ⋆-ring structure.

In summary, if `β` is a C⋆-algebra over `𝕜`, then so is  `α →ᵇ β`; note that
completeness is guaranteed when `β` is complete (see
`bounded_continuous_function.complete`). -/

section normed_add_comm_group

variables {𝕜 : Type*} [normed_field 𝕜] [star_ring 𝕜] [topological_space α]
  [seminormed_add_comm_group β] [star_add_monoid β] [normed_star_group β]
variables [normed_space 𝕜 β] [star_module 𝕜 β]

instance : star_add_monoid (α →ᵇ β) :=
{ star            := λ f, f.comp star star_normed_add_group_hom.lipschitz,
  star_involutive := λ f, ext $ λ x, star_star (f x),
  star_add        := λ f g, ext $ λ x, star_add (f x) (g x) }

/-- The right-hand side of this equality can be parsed `star ∘ ⇑f` because of the
instance `pi.has_star`. Upon inspecting the goal, one sees `⊢ ⇑(star f) = star ⇑f`.-/
@[simp] lemma coe_star (f : α →ᵇ β) : ⇑(star f) = star f := rfl

@[simp] lemma star_apply (f : α →ᵇ β) (x : α) : star f x = star (f x) := rfl

instance : normed_star_group (α →ᵇ β) :=
{ norm_star := λ f, by simp only [norm_eq, star_apply, norm_star] }

instance : star_module 𝕜 (α →ᵇ β) :=
{ star_smul := λ k f, ext $ λ x, star_smul k (f x) }

end normed_add_comm_group

section cstar_ring

variables [topological_space α]
variables [non_unital_normed_ring β] [star_ring β]

instance [normed_star_group β] : star_ring (α →ᵇ β) :=
{ star_mul := λ f g, ext $ λ x, star_mul (f x) (g x),
  ..bounded_continuous_function.star_add_monoid }

variable [cstar_ring β]

instance : cstar_ring (α →ᵇ β) :=
{ norm_star_mul_self :=
  begin
    intro f,
    refine le_antisymm _ _,
    { rw [←sq, norm_le (sq_nonneg _)],
      dsimp [star_apply],
      intro x,
      rw [cstar_ring.norm_star_mul_self, ←sq],
      refine sq_le_sq' _ _,
      { linarith [norm_nonneg (f x), norm_nonneg f] },
      { exact norm_coe_le_norm f x }, },
    { rw [←sq, ←real.le_sqrt (norm_nonneg _) (norm_nonneg _), norm_le (real.sqrt_nonneg _)],
      intro x,
      rw [real.le_sqrt (norm_nonneg _) (norm_nonneg _), sq, ←cstar_ring.norm_star_mul_self],
      exact norm_coe_le_norm (star f * f) x }
  end }

end cstar_ring

section normed_lattice_ordered_group

variables [topological_space α] [normed_lattice_add_comm_group β]

instance : partial_order (α →ᵇ β) := partial_order.lift (λ f, f.to_fun) (by tidy)

/--
Continuous normed lattice group valued functions form a meet-semilattice
-/
instance : semilattice_inf (α →ᵇ β) :=
{ inf := λ f g,
  { to_fun := λ t, f t ⊓ g t,
    continuous_to_fun := f.continuous.inf g.continuous,
    map_bounded' := begin
      obtain ⟨C₁, hf⟩ := f.bounded,
      obtain ⟨C₂, hg⟩ := g.bounded,
      refine ⟨C₁ + C₂, λ x y, _⟩,
      simp_rw normed_add_comm_group.dist_eq at hf hg ⊢,
      exact (norm_inf_sub_inf_le_add_norm _ _ _ _).trans (add_le_add (hf _ _) (hg _ _)),
    end },
  inf_le_left := λ f g, continuous_map.le_def.mpr (λ _, inf_le_left),
  inf_le_right := λ f g, continuous_map.le_def.mpr (λ _, inf_le_right),
  le_inf := λ f g₁ g₂ w₁ w₂, continuous_map.le_def.mpr (λ _, le_inf (continuous_map.le_def.mp w₁ _)
    (continuous_map.le_def.mp w₂ _)),
  ..bounded_continuous_function.partial_order }

instance : semilattice_sup (α →ᵇ β) :=
{ sup := λ f g,
  { to_fun := λ t, f t ⊔ g t,
    continuous_to_fun := f.continuous.sup g.continuous,
    map_bounded' := begin
      obtain ⟨C₁, hf⟩ := f.bounded,
      obtain ⟨C₂, hg⟩ := g.bounded,
      refine ⟨C₁ + C₂, λ x y, _⟩,
      simp_rw normed_add_comm_group.dist_eq at hf hg ⊢,
      exact (norm_sup_sub_sup_le_add_norm _ _ _ _).trans (add_le_add (hf _ _) (hg _ _)),
    end },
  le_sup_left := λ f g, continuous_map.le_def.mpr (λ _, le_sup_left),
  le_sup_right := λ f g, continuous_map.le_def.mpr (λ _, le_sup_right),
  sup_le := λ f g₁ g₂ w₁ w₂, continuous_map.le_def.mpr (λ _, sup_le (continuous_map.le_def.mp w₁ _)
    (continuous_map.le_def.mp w₂ _)),
  ..bounded_continuous_function.partial_order }

instance  : lattice (α →ᵇ β) :=
{ .. bounded_continuous_function.semilattice_sup, .. bounded_continuous_function.semilattice_inf }

@[simp] lemma coe_fn_sup (f g : α →ᵇ β) : ⇑(f ⊔ g) = f ⊔ g := rfl

@[simp] lemma coe_fn_abs (f : α →ᵇ β) : ⇑|f| = |f| := rfl

instance : normed_lattice_add_comm_group (α →ᵇ β) :=
{ add_le_add_left := begin
    intros f g h₁ h t,
    simp only [coe_to_continuous_fun, pi.add_apply, add_le_add_iff_left, coe_add,
      continuous_map.to_fun_eq_coe],
    exact h₁ _,
  end,
  solid :=
  begin
    intros f g h,
    have i1: ∀ t, ∥f t∥ ≤ ∥g t∥ := λ t, solid (h t),
    rw norm_le (norm_nonneg _),
    exact λ t, (i1 t).trans (norm_coe_le_norm g t),
  end,
  ..bounded_continuous_function.lattice, }

end normed_lattice_ordered_group

section nonnegative_part

variables [topological_space α]

/-- The nonnegative part of a bounded continuous `ℝ`-valued function as a bounded
continuous `ℝ≥0`-valued function. -/
def nnreal_part (f : α →ᵇ ℝ) : α →ᵇ ℝ≥0 :=
bounded_continuous_function.comp _
  (show lipschitz_with 1 real.to_nnreal, from lipschitz_with_pos) f

@[simp] lemma nnreal_part_coe_fun_eq (f : α →ᵇ ℝ) : ⇑(f.nnreal_part) = real.to_nnreal ∘ ⇑f := rfl

/-- The absolute value of a bounded continuous `ℝ`-valued function as a bounded
continuous `ℝ≥0`-valued function. -/
def nnnorm (f : α →ᵇ ℝ) : α →ᵇ ℝ≥0 :=
bounded_continuous_function.comp _
  (show lipschitz_with 1 (λ (x : ℝ), ∥x∥₊), from lipschitz_with_one_norm) f

@[simp] lemma nnnorm_coe_fun_eq (f : α →ᵇ ℝ) : ⇑(f.nnnorm) = has_nnnorm.nnnorm ∘ ⇑f := rfl

/-- Decompose a bounded continuous function to its positive and negative parts. -/
lemma self_eq_nnreal_part_sub_nnreal_part_neg (f : α →ᵇ ℝ) :
  ⇑f = coe ∘ f.nnreal_part - coe ∘ (-f).nnreal_part :=
by { funext x, dsimp, simp only [max_zero_sub_max_neg_zero_eq_self], }

/-- Express the absolute value of a bounded continuous function in terms of its
positive and negative parts. -/
lemma abs_self_eq_nnreal_part_add_nnreal_part_neg (f : α →ᵇ ℝ) :
  abs ∘ ⇑f = coe ∘ f.nnreal_part + coe ∘ (-f).nnreal_part :=
by { funext x, dsimp, simp only [max_zero_add_max_neg_zero_eq_abs_self], }

end nonnegative_part

end bounded_continuous_function