Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 63,526 Bytes
4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 |
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import data.bundle
import topology.algebra.order.basic
import topology.local_homeomorph
/-!
# Fiber bundles
A topological fiber bundle with fiber `F` over a base `B` is a space projecting on `B` for which the
fibers are all homeomorphic to `F`, such that the local situation around each point is a direct
product. We define a predicate `is_topological_fiber_bundle F p` saying that `p : Z → B` is a
topological fiber bundle with fiber `F`.
It is in general nontrivial to construct a fiber bundle. A way is to start from the knowledge of
how changes of local trivializations act on the fiber. From this, one can construct the total space
of the bundle and its topology by a suitable gluing construction. The main content of this file is
an implementation of this construction: starting from an object of type
`topological_fiber_bundle_core` registering the trivialization changes, one gets the corresponding
fiber bundle and projection.
Similarly we implement the object `topological_fiber_prebundle` which allows to define a topological
fiber bundle from trivializations given as local equivalences with minimum additional properties.
## Main definitions
### Basic definitions
* `trivialization F p` : structure extending local homeomorphisms, defining a local
trivialization of a topological space `Z` with projection `p` and fiber `F`.
* `is_topological_fiber_bundle F p` : Prop saying that the map `p` between topological spaces is a
fiber bundle with fiber `F`.
* `is_trivial_topological_fiber_bundle F p` : Prop saying that the map `p : Z → B` between
topological spaces is a trivial topological fiber bundle, i.e., there exists a homeomorphism
`h : Z ≃ₜ B × F` such that `proj x = (h x).1`.
### Operations on bundles
We provide the following operations on `trivialization`s.
* `trivialization.comap`: given a local trivialization `e` of a fiber bundle `p : Z → B`, a
continuous map `f : B' → B` and a point `b' : B'` such that `f b' ∈ e.base_set`,
`e.comap f hf b' hb'` is a trivialization of the pullback bundle. The pullback bundle
(a.k.a., the induced bundle) has total space `{(x, y) : B' × Z | f x = p y}`, and is given by
`λ ⟨(x, y), h⟩, x`.
* `is_topological_fiber_bundle.comap`: if `p : Z → B` is a topological fiber bundle, then its
pullback along a continuous map `f : B' → B` is a topological fiber bundle as well.
* `trivialization.comp_homeomorph`: given a local trivialization `e` of a fiber bundle
`p : Z → B` and a homeomorphism `h : Z' ≃ₜ Z`, returns a local trivialization of the fiber bundle
`p ∘ h`.
* `is_topological_fiber_bundle.comp_homeomorph`: if `p : Z → B` is a topological fiber bundle
and `h : Z' ≃ₜ Z` is a homeomorphism, then `p ∘ h : Z' → B` is a topological fiber bundle with
the same fiber.
### Construction of a bundle from trivializations
* `bundle.total_space E` is a type synonym for `Σ (x : B), E x`, that we can endow with a suitable
topology.
* `topological_fiber_bundle_core ι B F` : structure registering how changes of coordinates act
on the fiber `F` above open subsets of `B`, where local trivializations are indexed by `ι`.
Let `Z : topological_fiber_bundle_core ι B F`. Then we define
* `Z.fiber x` : the fiber above `x`, homeomorphic to `F` (and defeq to `F` as a type).
* `Z.total_space` : the total space of `Z`, defined as a `Type` as `Σ (b : B), F`, but with a
twisted topology coming from the fiber bundle structure. It is (reducibly) the same as
`bundle.total_space Z.fiber`.
* `Z.proj` : projection from `Z.total_space` to `B`. It is continuous.
* `Z.local_triv i`: for `i : ι`, bundle trivialization above the set `Z.base_set i`, which is an
open set in `B`.
* `pretrivialization F proj` : trivialization as a local equivalence, mainly used when the
topology on the total space has not yet been defined.
* `topological_fiber_prebundle F proj` : structure registering a cover of prebundle trivializations
and requiring that the relative transition maps are local homeomorphisms.
* `topological_fiber_prebundle.total_space_topology a` : natural topology of the total space, making
the prebundle into a bundle.
## Implementation notes
A topological fiber bundle with fiber `F` over a base `B` is a family of spaces isomorphic to `F`,
indexed by `B`, which is locally trivial in the following sense: there is a covering of `B` by open
sets such that, on each such open set `s`, the bundle is isomorphic to `s × F`.
To construct a fiber bundle formally, the main data is what happens when one changes trivializations
from `s × F` to `s' × F` on `s ∩ s'`: one should get a family of homeomorphisms of `F`, depending
continuously on the base point, satisfying basic compatibility conditions (cocycle property).
Useful classes of bundles can then be specified by requiring that these homeomorphisms of `F`
belong to some subgroup, preserving some structure (the "structure group of the bundle"): then
these structures are inherited by the fibers of the bundle.
Given such trivialization change data (encoded below in a structure called
`topological_fiber_bundle_core`), one can construct the fiber bundle. The intrinsic canonical
mathematical construction is the following.
The fiber above `x` is the disjoint union of `F` over all trivializations, modulo the gluing
identifications: one gets a fiber which is isomorphic to `F`, but non-canonically
(each choice of one of the trivializations around `x` gives such an isomorphism). Given a
trivialization over a set `s`, one gets an isomorphism between `s × F` and `proj^{-1} s`, by using
the identification corresponding to this trivialization. One chooses the topology on the bundle that
makes all of these into homeomorphisms.
For the practical implementation, it turns out to be more convenient to avoid completely the
gluing and quotienting construction above, and to declare above each `x` that the fiber is `F`,
but thinking that it corresponds to the `F` coming from the choice of one trivialization around `x`.
This has several practical advantages:
* without any work, one gets a topological space structure on the fiber. And if `F` has more
structure it is inherited for free by the fiber.
* In the case of the tangent bundle of manifolds, this implies that on vector spaces the derivative
(from `F` to `F`) and the manifold derivative (from `tangent_space I x` to `tangent_space I' (f x)`)
are equal.
A drawback is that some silly constructions will typecheck: in the case of the tangent bundle, one
can add two vectors in different tangent spaces (as they both are elements of `F` from the point of
view of Lean). To solve this, one could mark the tangent space as irreducible, but then one would
lose the identification of the tangent space to `F` with `F`. There is however a big advantage of
this situation: even if Lean can not check that two basepoints are defeq, it will accept the fact
that the tangent spaces are the same. For instance, if two maps `f` and `g` are locally inverse to
each other, one can express that the composition of their derivatives is the identity of
`tangent_space I x`. One could fear issues as this composition goes from `tangent_space I x` to
`tangent_space I (g (f x))` (which should be the same, but should not be obvious to Lean
as it does not know that `g (f x) = x`). As these types are the same to Lean (equal to `F`), there
are in fact no dependent type difficulties here!
For this construction of a fiber bundle from a `topological_fiber_bundle_core`, we should thus
choose for each `x` one specific trivialization around it. We include this choice in the definition
of the `topological_fiber_bundle_core`, as it makes some constructions more
functorial and it is a nice way to say that the trivializations cover the whole space `B`.
With this definition, the type of the fiber bundle space constructed from the core data is just
`Σ (b : B), F `, but the topology is not the product one, in general.
We also take the indexing type (indexing all the trivializations) as a parameter to the fiber bundle
core: it could always be taken as a subtype of all the maps from open subsets of `B` to continuous
maps of `F`, but in practice it will sometimes be something else. For instance, on a manifold, one
will use the set of charts as a good parameterization for the trivializations of the tangent bundle.
Or for the pullback of a `topological_fiber_bundle_core`, the indexing type will be the same as
for the initial bundle.
## Tags
Fiber bundle, topological bundle, local trivialization, structure group
-/
variables {ι : Type*} {B : Type*} {F : Type*}
open topological_space filter set bundle
open_locale topological_space classical
/-! ### General definition of topological fiber bundles -/
section topological_fiber_bundle
variables (F) {Z : Type*} [topological_space B] [topological_space F] {proj : Z → B}
/-- This structure contains the information left for a local trivialization (which is implemented
below as `trivialization F proj`) if the total space has not been given a topology, but we
have a topology on both the fiber and the base space. Through the construction
`topological_fiber_prebundle F proj` it will be possible to promote a
`pretrivialization F proj` to a `trivialization F proj`. -/
@[ext, nolint has_nonempty_instance]
structure topological_fiber_bundle.pretrivialization (proj : Z → B) extends local_equiv Z (B × F) :=
(open_target : is_open target)
(base_set : set B)
(open_base_set : is_open base_set)
(source_eq : source = proj ⁻¹' base_set)
(target_eq : target = base_set ×ˢ univ)
(proj_to_fun : ∀ p ∈ source, (to_fun p).1 = proj p)
open topological_fiber_bundle
namespace topological_fiber_bundle.pretrivialization
instance : has_coe_to_fun (pretrivialization F proj) (λ _, Z → (B × F)) := ⟨λ e, e.to_fun⟩
variables {F} (e : pretrivialization F proj) {x : Z}
@[simp, mfld_simps] lemma coe_coe : ⇑e.to_local_equiv = e := rfl
@[simp, mfld_simps] lemma coe_fst (ex : x ∈ e.source) : (e x).1 = proj x := e.proj_to_fun x ex
lemma mem_source : x ∈ e.source ↔ proj x ∈ e.base_set := by rw [e.source_eq, mem_preimage]
lemma coe_fst' (ex : proj x ∈ e.base_set) : (e x).1 = proj x := e.coe_fst (e.mem_source.2 ex)
protected lemma eq_on : eq_on (prod.fst ∘ e) proj e.source := λ x hx, e.coe_fst hx
lemma mk_proj_snd (ex : x ∈ e.source) : (proj x, (e x).2) = e x := prod.ext (e.coe_fst ex).symm rfl
lemma mk_proj_snd' (ex : proj x ∈ e.base_set) : (proj x, (e x).2) = e x :=
prod.ext (e.coe_fst' ex).symm rfl
/-- Composition of inverse and coercion from the subtype of the target. -/
def set_symm : e.target → Z := e.target.restrict e.to_local_equiv.symm
lemma mem_target {x : B × F} : x ∈ e.target ↔ x.1 ∈ e.base_set :=
by rw [e.target_eq, prod_univ, mem_preimage]
lemma proj_symm_apply {x : B × F} (hx : x ∈ e.target) : proj (e.to_local_equiv.symm x) = x.1 :=
begin
have := (e.coe_fst (e.to_local_equiv.map_target hx)).symm,
rwa [← e.coe_coe, e.to_local_equiv.right_inv hx] at this
end
lemma proj_symm_apply' {b : B} {x : F} (hx : b ∈ e.base_set) :
proj (e.to_local_equiv.symm (b, x)) = b :=
e.proj_symm_apply (e.mem_target.2 hx)
lemma proj_surj_on_base_set [nonempty F] : set.surj_on proj e.source e.base_set :=
λ b hb, let ⟨y⟩ := ‹nonempty F› in ⟨e.to_local_equiv.symm (b, y),
e.to_local_equiv.map_target $ e.mem_target.2 hb, e.proj_symm_apply' hb⟩
lemma apply_symm_apply {x : B × F} (hx : x ∈ e.target) : e (e.to_local_equiv.symm x) = x :=
e.to_local_equiv.right_inv hx
lemma apply_symm_apply' {b : B} {x : F} (hx : b ∈ e.base_set) :
e (e.to_local_equiv.symm (b, x)) = (b, x) :=
e.apply_symm_apply (e.mem_target.2 hx)
lemma symm_apply_apply {x : Z} (hx : x ∈ e.source) : e.to_local_equiv.symm (e x) = x :=
e.to_local_equiv.left_inv hx
@[simp, mfld_simps] lemma symm_apply_mk_proj {x : Z} (ex : x ∈ e.source) :
e.to_local_equiv.symm (proj x, (e x).2) = x :=
by rw [← e.coe_fst ex, prod.mk.eta, ← e.coe_coe, e.to_local_equiv.left_inv ex]
@[simp, mfld_simps] lemma preimage_symm_proj_base_set :
(e.to_local_equiv.symm ⁻¹' (proj ⁻¹' e.base_set)) ∩ e.target = e.target :=
begin
refine inter_eq_right_iff_subset.mpr (λ x hx, _),
simp only [mem_preimage, local_equiv.inv_fun_as_coe, e.proj_symm_apply hx],
exact e.mem_target.mp hx,
end
@[simp, mfld_simps] lemma preimage_symm_proj_inter (s : set B) :
(e.to_local_equiv.symm ⁻¹' (proj ⁻¹' s)) ∩ e.base_set ×ˢ univ = (s ∩ e.base_set) ×ˢ univ :=
begin
ext ⟨x, y⟩,
suffices : x ∈ e.base_set → (proj (e.to_local_equiv.symm (x, y)) ∈ s ↔ x ∈ s),
by simpa only [prod_mk_mem_set_prod_eq, mem_inter_eq, and_true, mem_univ, and.congr_left_iff],
intro h,
rw [e.proj_symm_apply' h]
end
lemma target_inter_preimage_symm_source_eq (e f : pretrivialization F proj) :
f.target ∩ (f.to_local_equiv.symm) ⁻¹' e.source = (e.base_set ∩ f.base_set) ×ˢ univ :=
by rw [inter_comm, f.target_eq, e.source_eq, f.preimage_symm_proj_inter]
lemma trans_source (e f : pretrivialization F proj) :
(f.to_local_equiv.symm.trans e.to_local_equiv).source = (e.base_set ∩ f.base_set) ×ˢ univ :=
by rw [local_equiv.trans_source, local_equiv.symm_source, e.target_inter_preimage_symm_source_eq]
lemma symm_trans_symm (e e' : pretrivialization F proj) :
(e.to_local_equiv.symm.trans e'.to_local_equiv).symm =
e'.to_local_equiv.symm.trans e.to_local_equiv :=
by rw [local_equiv.trans_symm_eq_symm_trans_symm, local_equiv.symm_symm]
lemma symm_trans_source_eq (e e' : pretrivialization F proj) :
(e.to_local_equiv.symm.trans e'.to_local_equiv).source = (e.base_set ∩ e'.base_set) ×ˢ univ :=
by rw [local_equiv.trans_source, e'.source_eq, local_equiv.symm_source, e.target_eq, inter_comm,
e.preimage_symm_proj_inter, inter_comm]
lemma symm_trans_target_eq (e e' : pretrivialization F proj) :
(e.to_local_equiv.symm.trans e'.to_local_equiv).target = (e.base_set ∩ e'.base_set) ×ˢ univ :=
by rw [← local_equiv.symm_source, symm_trans_symm, symm_trans_source_eq, inter_comm]
end topological_fiber_bundle.pretrivialization
variable [topological_space Z]
/--
A structure extending local homeomorphisms, defining a local trivialization of a projection
`proj : Z → B` with fiber `F`, as a local homeomorphism between `Z` and `B × F` defined between two
sets of the form `proj ⁻¹' base_set` and `base_set × F`, acting trivially on the first coordinate.
-/
@[ext, nolint has_nonempty_instance]
structure topological_fiber_bundle.trivialization (proj : Z → B)
extends local_homeomorph Z (B × F) :=
(base_set : set B)
(open_base_set : is_open base_set)
(source_eq : source = proj ⁻¹' base_set)
(target_eq : target = base_set ×ˢ univ)
(proj_to_fun : ∀ p ∈ source, (to_local_homeomorph p).1 = proj p)
open topological_fiber_bundle
namespace topological_fiber_bundle.trivialization
variables {F} (e : trivialization F proj) {x : Z}
/-- Natural identification as a `pretrivialization`. -/
def to_pretrivialization : topological_fiber_bundle.pretrivialization F proj := { ..e }
instance : has_coe_to_fun (trivialization F proj) (λ _, Z → B × F) := ⟨λ e, e.to_fun⟩
instance : has_coe (trivialization F proj) (pretrivialization F proj) :=
⟨to_pretrivialization⟩
lemma to_pretrivialization_injective :
function.injective (λ e : trivialization F proj, e.to_pretrivialization) :=
by { intros e e', rw [pretrivialization.ext_iff, trivialization.ext_iff,
← local_homeomorph.to_local_equiv_injective.eq_iff], exact id }
@[simp, mfld_simps] lemma coe_coe : ⇑e.to_local_homeomorph = e := rfl
@[simp, mfld_simps] lemma coe_fst (ex : x ∈ e.source) : (e x).1 = proj x := e.proj_to_fun x ex
protected lemma eq_on : eq_on (prod.fst ∘ e) proj e.source := λ x hx, e.coe_fst hx
lemma mem_source : x ∈ e.source ↔ proj x ∈ e.base_set := by rw [e.source_eq, mem_preimage]
lemma coe_fst' (ex : proj x ∈ e.base_set) : (e x).1 = proj x := e.coe_fst (e.mem_source.2 ex)
lemma mk_proj_snd (ex : x ∈ e.source) : (proj x, (e x).2) = e x := prod.ext (e.coe_fst ex).symm rfl
lemma mk_proj_snd' (ex : proj x ∈ e.base_set) : (proj x, (e x).2) = e x :=
prod.ext (e.coe_fst' ex).symm rfl
lemma source_inter_preimage_target_inter (s : set (B × F)) :
e.source ∩ (e ⁻¹' (e.target ∩ s)) = e.source ∩ (e ⁻¹' s) :=
e.to_local_homeomorph.source_inter_preimage_target_inter s
@[simp, mfld_simps] lemma coe_mk (e : local_homeomorph Z (B × F)) (i j k l m) (x : Z) :
(trivialization.mk e i j k l m : trivialization F proj) x = e x := rfl
lemma mem_target {x : B × F} : x ∈ e.target ↔ x.1 ∈ e.base_set :=
e.to_pretrivialization.mem_target
lemma map_target {x : B × F} (hx : x ∈ e.target) : e.to_local_homeomorph.symm x ∈ e.source :=
e.to_local_homeomorph.map_target hx
lemma proj_symm_apply {x : B × F} (hx : x ∈ e.target) : proj (e.to_local_homeomorph.symm x) = x.1 :=
e.to_pretrivialization.proj_symm_apply hx
lemma proj_symm_apply' {b : B} {x : F}
(hx : b ∈ e.base_set) : proj (e.to_local_homeomorph.symm (b, x)) = b :=
e.to_pretrivialization.proj_symm_apply' hx
lemma proj_surj_on_base_set [nonempty F] : set.surj_on proj e.source e.base_set :=
e.to_pretrivialization.proj_surj_on_base_set
lemma apply_symm_apply {x : B × F} (hx : x ∈ e.target) : e (e.to_local_homeomorph.symm x) = x :=
e.to_local_homeomorph.right_inv hx
lemma apply_symm_apply'
{b : B} {x : F} (hx : b ∈ e.base_set) : e (e.to_local_homeomorph.symm (b, x)) = (b, x) :=
e.to_pretrivialization.apply_symm_apply' hx
@[simp, mfld_simps] lemma symm_apply_mk_proj (ex : x ∈ e.source) :
e.to_local_homeomorph.symm (proj x, (e x).2) = x :=
e.to_pretrivialization.symm_apply_mk_proj ex
lemma symm_trans_source_eq (e e' : trivialization F proj) :
(e.to_local_equiv.symm.trans e'.to_local_equiv).source = (e.base_set ∩ e'.base_set) ×ˢ univ :=
pretrivialization.symm_trans_source_eq e.to_pretrivialization e'
lemma symm_trans_target_eq (e e' : trivialization F proj) :
(e.to_local_equiv.symm.trans e'.to_local_equiv).target = (e.base_set ∩ e'.base_set) ×ˢ univ :=
pretrivialization.symm_trans_target_eq e.to_pretrivialization e'
lemma coe_fst_eventually_eq_proj (ex : x ∈ e.source) : prod.fst ∘ e =ᶠ[𝓝 x] proj :=
mem_nhds_iff.2 ⟨e.source, λ y hy, e.coe_fst hy, e.open_source, ex⟩
lemma coe_fst_eventually_eq_proj' (ex : proj x ∈ e.base_set) : prod.fst ∘ e =ᶠ[𝓝 x] proj :=
e.coe_fst_eventually_eq_proj (e.mem_source.2 ex)
lemma map_proj_nhds (ex : x ∈ e.source) : map proj (𝓝 x) = 𝓝 (proj x) :=
by rw [← e.coe_fst ex, ← map_congr (e.coe_fst_eventually_eq_proj ex), ← map_map, ← e.coe_coe,
e.to_local_homeomorph.map_nhds_eq ex, map_fst_nhds]
/-- In the domain of a bundle trivialization, the projection is continuous-/
lemma continuous_at_proj (ex : x ∈ e.source) : continuous_at proj x :=
(e.map_proj_nhds ex).le
/-- Composition of a `trivialization` and a `homeomorph`. -/
def comp_homeomorph {Z' : Type*} [topological_space Z'] (h : Z' ≃ₜ Z) :
trivialization F (proj ∘ h) :=
{ to_local_homeomorph := h.to_local_homeomorph.trans e.to_local_homeomorph,
base_set := e.base_set,
open_base_set := e.open_base_set,
source_eq := by simp [e.source_eq, preimage_preimage],
target_eq := by simp [e.target_eq],
proj_to_fun := λ p hp,
have hp : h p ∈ e.source, by simpa using hp,
by simp [hp] }
/-- Read off the continuity of a function `f : Z → X` at `z : Z` by transferring via a
trivialization of `Z` containing `z`. -/
lemma continuous_at_of_comp_right {X : Type*} [topological_space X] {f : Z → X} {z : Z}
(e : trivialization F proj) (he : proj z ∈ e.base_set)
(hf : continuous_at (f ∘ e.to_local_equiv.symm) (e z)) :
continuous_at f z :=
begin
have hez : z ∈ e.to_local_equiv.symm.target,
{ rw [local_equiv.symm_target, e.mem_source],
exact he },
rwa [e.to_local_homeomorph.symm.continuous_at_iff_continuous_at_comp_right hez,
local_homeomorph.symm_symm]
end
/-- Read off the continuity of a function `f : X → Z` at `x : X` by transferring via a
trivialization of `Z` containing `f x`. -/
lemma continuous_at_of_comp_left {X : Type*} [topological_space X] {f : X → Z} {x : X}
(e : trivialization F proj) (hf_proj : continuous_at (proj ∘ f) x) (he : proj (f x) ∈ e.base_set)
(hf : continuous_at (e ∘ f) x) :
continuous_at f x :=
begin
rw e.to_local_homeomorph.continuous_at_iff_continuous_at_comp_left,
{ exact hf },
rw [e.source_eq, ← preimage_comp],
exact hf_proj.preimage_mem_nhds (e.open_base_set.mem_nhds he),
end
end topological_fiber_bundle.trivialization
/-- A topological fiber bundle with fiber `F` over a base `B` is a space projecting on `B`
for which the fibers are all homeomorphic to `F`, such that the local situation around each point
is a direct product. -/
def is_topological_fiber_bundle (proj : Z → B) : Prop :=
∀ x : B, ∃e : trivialization F proj, x ∈ e.base_set
/-- A trivial topological fiber bundle with fiber `F` over a base `B` is a space `Z`
projecting on `B` for which there exists a homeomorphism to `B × F` that sends `proj`
to `prod.fst`. -/
def is_trivial_topological_fiber_bundle (proj : Z → B) : Prop :=
∃ e : Z ≃ₜ (B × F), ∀ x, (e x).1 = proj x
variables {F}
lemma is_trivial_topological_fiber_bundle.is_topological_fiber_bundle
(h : is_trivial_topological_fiber_bundle F proj) :
is_topological_fiber_bundle F proj :=
let ⟨e, he⟩ := h in λ x,
⟨⟨e.to_local_homeomorph, univ, is_open_univ, rfl, univ_prod_univ.symm, λ x _, he x⟩, mem_univ x⟩
lemma is_topological_fiber_bundle.map_proj_nhds (h : is_topological_fiber_bundle F proj) (x : Z) :
map proj (𝓝 x) = 𝓝 (proj x) :=
let ⟨e, ex⟩ := h (proj x) in e.map_proj_nhds $ e.mem_source.2 ex
/-- The projection from a topological fiber bundle to its base is continuous. -/
lemma is_topological_fiber_bundle.continuous_proj (h : is_topological_fiber_bundle F proj) :
continuous proj :=
continuous_iff_continuous_at.2 $ λ x, (h.map_proj_nhds _).le
/-- The projection from a topological fiber bundle to its base is an open map. -/
lemma is_topological_fiber_bundle.is_open_map_proj (h : is_topological_fiber_bundle F proj) :
is_open_map proj :=
is_open_map.of_nhds_le $ λ x, (h.map_proj_nhds x).ge
/-- The projection from a topological fiber bundle with a nonempty fiber to its base is a surjective
map. -/
lemma is_topological_fiber_bundle.surjective_proj [nonempty F]
(h : is_topological_fiber_bundle F proj) :
function.surjective proj :=
λ b, let ⟨e, eb⟩ := h b, ⟨x, _, hx⟩ := e.proj_surj_on_base_set eb in ⟨x, hx⟩
/-- The projection from a topological fiber bundle with a nonempty fiber to its base is a quotient
map. -/
lemma is_topological_fiber_bundle.quotient_map_proj [nonempty F]
(h : is_topological_fiber_bundle F proj) :
quotient_map proj :=
h.is_open_map_proj.to_quotient_map h.continuous_proj h.surjective_proj
/-- The first projection in a product is a trivial topological fiber bundle. -/
lemma is_trivial_topological_fiber_bundle_fst :
is_trivial_topological_fiber_bundle F (prod.fst : B × F → B) :=
⟨homeomorph.refl _, λ x, rfl⟩
/-- The first projection in a product is a topological fiber bundle. -/
lemma is_topological_fiber_bundle_fst : is_topological_fiber_bundle F (prod.fst : B × F → B) :=
is_trivial_topological_fiber_bundle_fst.is_topological_fiber_bundle
/-- The second projection in a product is a trivial topological fiber bundle. -/
lemma is_trivial_topological_fiber_bundle_snd :
is_trivial_topological_fiber_bundle F (prod.snd : F × B → B) :=
⟨homeomorph.prod_comm _ _, λ x, rfl⟩
/-- The second projection in a product is a topological fiber bundle. -/
lemma is_topological_fiber_bundle_snd : is_topological_fiber_bundle F (prod.snd : F × B → B) :=
is_trivial_topological_fiber_bundle_snd.is_topological_fiber_bundle
lemma is_topological_fiber_bundle.comp_homeomorph {Z' : Type*} [topological_space Z']
(e : is_topological_fiber_bundle F proj) (h : Z' ≃ₜ Z) :
is_topological_fiber_bundle F (proj ∘ h) :=
λ x, let ⟨e, he⟩ := e x in
⟨e.comp_homeomorph h, by simpa [topological_fiber_bundle.trivialization.comp_homeomorph] using he⟩
namespace topological_fiber_bundle.trivialization
/-- If `e` is a `trivialization` of `proj : Z → B` with fiber `F` and `h` is a homeomorphism
`F ≃ₜ F'`, then `e.trans_fiber_homeomorph h` is the trivialization of `proj` with the fiber `F'`
that sends `p : Z` to `((e p).1, h (e p).2)`. -/
def trans_fiber_homeomorph {F' : Type*} [topological_space F']
(e : trivialization F proj) (h : F ≃ₜ F') : trivialization F' proj :=
{ to_local_homeomorph := e.to_local_homeomorph.trans_homeomorph $ (homeomorph.refl _).prod_congr h,
base_set := e.base_set,
open_base_set := e.open_base_set,
source_eq := e.source_eq,
target_eq := by simp [e.target_eq, prod_univ, preimage_preimage],
proj_to_fun := e.proj_to_fun }
@[simp] lemma trans_fiber_homeomorph_apply {F' : Type*} [topological_space F']
(e : trivialization F proj) (h : F ≃ₜ F') (x : Z) :
e.trans_fiber_homeomorph h x = ((e x).1, h (e x).2) :=
rfl
/-- Coordinate transformation in the fiber induced by a pair of bundle trivializations. See also
`trivialization.coord_change_homeomorph` for a version bundled as `F ≃ₜ F`. -/
def coord_change (e₁ e₂ : trivialization F proj) (b : B) (x : F) : F :=
(e₂ $ e₁.to_local_homeomorph.symm (b, x)).2
lemma mk_coord_change
(e₁ e₂ : trivialization F proj) {b : B}
(h₁ : b ∈ e₁.base_set) (h₂ : b ∈ e₂.base_set) (x : F) :
(b, e₁.coord_change e₂ b x) = e₂ (e₁.to_local_homeomorph.symm (b, x)) :=
begin
refine prod.ext _ rfl,
rw [e₂.coe_fst', ← e₁.coe_fst', e₁.apply_symm_apply' h₁],
{ rwa [e₁.proj_symm_apply' h₁] },
{ rwa [e₁.proj_symm_apply' h₁] }
end
lemma coord_change_apply_snd
(e₁ e₂ : trivialization F proj) {p : Z}
(h : proj p ∈ e₁.base_set) :
e₁.coord_change e₂ (proj p) (e₁ p).snd = (e₂ p).snd :=
by rw [coord_change, e₁.symm_apply_mk_proj (e₁.mem_source.2 h)]
lemma coord_change_same_apply
(e : trivialization F proj) {b : B} (h : b ∈ e.base_set) (x : F) :
e.coord_change e b x = x :=
by rw [coord_change, e.apply_symm_apply' h]
lemma coord_change_same
(e : trivialization F proj) {b : B} (h : b ∈ e.base_set) :
e.coord_change e b = id :=
funext $ e.coord_change_same_apply h
lemma coord_change_coord_change
(e₁ e₂ e₃ : trivialization F proj) {b : B}
(h₁ : b ∈ e₁.base_set) (h₂ : b ∈ e₂.base_set) (x : F) :
e₂.coord_change e₃ b (e₁.coord_change e₂ b x) = e₁.coord_change e₃ b x :=
begin
rw [coord_change, e₁.mk_coord_change _ h₁ h₂, ← e₂.coe_coe,
e₂.to_local_homeomorph.left_inv, coord_change],
rwa [e₂.mem_source, e₁.proj_symm_apply' h₁]
end
lemma continuous_coord_change (e₁ e₂ : trivialization F proj) {b : B}
(h₁ : b ∈ e₁.base_set) (h₂ : b ∈ e₂.base_set) :
continuous (e₁.coord_change e₂ b) :=
begin
refine continuous_snd.comp (e₂.to_local_homeomorph.continuous_on.comp_continuous
(e₁.to_local_homeomorph.continuous_on_symm.comp_continuous _ _) _),
{ exact continuous_const.prod_mk continuous_id },
{ exact λ x, e₁.mem_target.2 h₁ },
{ intro x,
rwa [e₂.mem_source, e₁.proj_symm_apply' h₁] }
end
/-- Coordinate transformation in the fiber induced by a pair of bundle trivializations,
as a homeomorphism. -/
def coord_change_homeomorph
(e₁ e₂ : trivialization F proj) {b : B} (h₁ : b ∈ e₁.base_set) (h₂ : b ∈ e₂.base_set) :
F ≃ₜ F :=
{ to_fun := e₁.coord_change e₂ b,
inv_fun := e₂.coord_change e₁ b,
left_inv := λ x, by simp only [*, coord_change_coord_change, coord_change_same_apply],
right_inv := λ x, by simp only [*, coord_change_coord_change, coord_change_same_apply],
continuous_to_fun := e₁.continuous_coord_change e₂ h₁ h₂,
continuous_inv_fun := e₂.continuous_coord_change e₁ h₂ h₁ }
@[simp] lemma coord_change_homeomorph_coe
(e₁ e₂ : trivialization F proj) {b : B} (h₁ : b ∈ e₁.base_set) (h₂ : b ∈ e₂.base_set) :
⇑(e₁.coord_change_homeomorph e₂ h₁ h₂) = e₁.coord_change e₂ b :=
rfl
end topological_fiber_bundle.trivialization
section comap
open_locale classical
variables {B' : Type*} [topological_space B']
/-- Given a bundle trivialization of `proj : Z → B` and a continuous map `f : B' → B`,
construct a bundle trivialization of `φ : {p : B' × Z | f p.1 = proj p.2} → B'`
given by `φ x = (x : B' × Z).1`. -/
noncomputable def topological_fiber_bundle.trivialization.comap
(e : trivialization F proj) (f : B' → B) (hf : continuous f)
(b' : B') (hb' : f b' ∈ e.base_set) :
trivialization F (λ x : {p : B' × Z | f p.1 = proj p.2}, (x : B' × Z).1) :=
{ to_fun := λ p, ((p : B' × Z).1, (e (p : B' × Z).2).2),
inv_fun := λ p, if h : f p.1 ∈ e.base_set
then ⟨⟨p.1, e.to_local_homeomorph.symm (f p.1, p.2)⟩, by simp [e.proj_symm_apply' h]⟩
else ⟨⟨b', e.to_local_homeomorph.symm (f b', p.2)⟩, by simp [e.proj_symm_apply' hb']⟩,
source := {p | f (p : B' × Z).1 ∈ e.base_set},
target := {p | f p.1 ∈ e.base_set},
map_source' := λ p hp, hp,
map_target' := λ p (hp : f p.1 ∈ e.base_set), by simp [hp],
left_inv' :=
begin
rintro ⟨⟨b, x⟩, hbx⟩ hb,
dsimp at *,
have hx : x ∈ e.source, from e.mem_source.2 (hbx ▸ hb),
ext; simp *
end,
right_inv' := λ p (hp : f p.1 ∈ e.base_set), by simp [*, e.apply_symm_apply'],
open_source := e.open_base_set.preimage (hf.comp $ continuous_fst.comp continuous_subtype_coe),
open_target := e.open_base_set.preimage (hf.comp continuous_fst),
continuous_to_fun := ((continuous_fst.comp continuous_subtype_coe).continuous_on).prod $
continuous_snd.comp_continuous_on $ e.continuous_to_fun.comp
(continuous_snd.comp continuous_subtype_coe).continuous_on $
by { rintro ⟨⟨b, x⟩, (hbx : f b = proj x)⟩ (hb : f b ∈ e.base_set),
rw hbx at hb,
exact e.mem_source.2 hb },
continuous_inv_fun :=
begin
rw [embedding_subtype_coe.continuous_on_iff],
suffices : continuous_on (λ p : B' × F, (p.1, e.to_local_homeomorph.symm (f p.1, p.2)))
{p : B' × F | f p.1 ∈ e.base_set},
{ refine this.congr (λ p (hp : f p.1 ∈ e.base_set), _),
simp [hp] },
{ refine continuous_on_fst.prod (e.to_local_homeomorph.symm.continuous_on.comp _ _),
{ exact ((hf.comp continuous_fst).prod_mk continuous_snd).continuous_on },
{ exact λ p hp, e.mem_target.2 hp } }
end,
base_set := f ⁻¹' e.base_set,
source_eq := rfl,
target_eq := by { ext, simp },
open_base_set := e.open_base_set.preimage hf,
proj_to_fun := λ _ _, rfl }
/-- If `proj : Z → B` is a topological fiber bundle with fiber `F` and `f : B' → B` is a continuous
map, then the pullback bundle (a.k.a. induced bundle) is the topological bundle with the total space
`{(x, y) : B' × Z | f x = proj y}` given by `λ ⟨(x, y), h⟩, x`. -/
lemma is_topological_fiber_bundle.comap (h : is_topological_fiber_bundle F proj)
{f : B' → B} (hf : continuous f) :
is_topological_fiber_bundle F (λ x : {p : B' × Z | f p.1 = proj p.2}, (x : B' × Z).1) :=
λ x, let ⟨e, he⟩ := h (f x) in ⟨e.comap f hf x he, he⟩
end comap
namespace topological_fiber_bundle.trivialization
lemma is_image_preimage_prod (e : trivialization F proj) (s : set B) :
e.to_local_homeomorph.is_image (proj ⁻¹' s) (s ×ˢ univ) :=
λ x hx, by simp [e.coe_fst', hx]
/-- Restrict a `trivialization` to an open set in the base. `-/
def restr_open (e : trivialization F proj) (s : set B)
(hs : is_open s) : trivialization F proj :=
{ to_local_homeomorph := ((e.is_image_preimage_prod s).symm.restr
(is_open.inter e.open_target (hs.prod is_open_univ))).symm,
base_set := e.base_set ∩ s,
open_base_set := is_open.inter e.open_base_set hs,
source_eq := by simp [e.source_eq],
target_eq := by simp [e.target_eq, prod_univ],
proj_to_fun := λ p hp, e.proj_to_fun p hp.1 }
section piecewise
lemma frontier_preimage (e : trivialization F proj) (s : set B) :
e.source ∩ frontier (proj ⁻¹' s) = proj ⁻¹' (e.base_set ∩ frontier s) :=
by rw [← (e.is_image_preimage_prod s).frontier.preimage_eq, frontier_prod_univ_eq,
(e.is_image_preimage_prod _).preimage_eq, e.source_eq, preimage_inter]
/-- Given two bundle trivializations `e`, `e'` of `proj : Z → B` and a set `s : set B` such that
the base sets of `e` and `e'` intersect `frontier s` on the same set and `e p = e' p` whenever
`proj p ∈ e.base_set ∩ frontier s`, `e.piecewise e' s Hs Heq` is the bundle trivialization over
`set.ite s e.base_set e'.base_set` that is equal to `e` on `proj ⁻¹ s` and is equal to `e'`
otherwise. -/
noncomputable def piecewise (e e' : trivialization F proj) (s : set B)
(Hs : e.base_set ∩ frontier s = e'.base_set ∩ frontier s)
(Heq : eq_on e e' $ proj ⁻¹' (e.base_set ∩ frontier s)) :
trivialization F proj :=
{ to_local_homeomorph := e.to_local_homeomorph.piecewise e'.to_local_homeomorph
(proj ⁻¹' s) (s ×ˢ univ) (e.is_image_preimage_prod s) (e'.is_image_preimage_prod s)
(by rw [e.frontier_preimage, e'.frontier_preimage, Hs])
(by rwa e.frontier_preimage),
base_set := s.ite e.base_set e'.base_set,
open_base_set := e.open_base_set.ite e'.open_base_set Hs,
source_eq := by simp [e.source_eq, e'.source_eq],
target_eq := by simp [e.target_eq, e'.target_eq, prod_univ],
proj_to_fun := by rintro p (⟨he, hs⟩|⟨he, hs⟩); simp * }
/-- Given two bundle trivializations `e`, `e'` of a topological fiber bundle `proj : Z → B`
over a linearly ordered base `B` and a point `a ∈ e.base_set ∩ e'.base_set` such that
`e` equals `e'` on `proj ⁻¹' {a}`, `e.piecewise_le_of_eq e' a He He' Heq` is the bundle
trivialization over `set.ite (Iic a) e.base_set e'.base_set` that is equal to `e` on points `p`
such that `proj p ≤ a` and is equal to `e'` otherwise. -/
noncomputable def piecewise_le_of_eq [linear_order B] [order_topology B]
(e e' : trivialization F proj) (a : B) (He : a ∈ e.base_set) (He' : a ∈ e'.base_set)
(Heq : ∀ p, proj p = a → e p = e' p) :
trivialization F proj :=
e.piecewise e' (Iic a)
(set.ext $ λ x, and.congr_left_iff.2 $ λ hx,
by simp [He, He', mem_singleton_iff.1 (frontier_Iic_subset _ hx)])
(λ p hp, Heq p $ frontier_Iic_subset _ hp.2)
/-- Given two bundle trivializations `e`, `e'` of a topological fiber bundle `proj : Z → B` over a
linearly ordered base `B` and a point `a ∈ e.base_set ∩ e'.base_set`, `e.piecewise_le e' a He He'`
is the bundle trivialization over `set.ite (Iic a) e.base_set e'.base_set` that is equal to `e` on
points `p` such that `proj p ≤ a` and is equal to `((e' p).1, h (e' p).2)` otherwise, where
`h = `e'.coord_change_homeomorph e _ _` is the homeomorphism of the fiber such that
`h (e' p).2 = (e p).2` whenever `e p = a`. -/
noncomputable def piecewise_le [linear_order B] [order_topology B]
(e e' : trivialization F proj) (a : B) (He : a ∈ e.base_set) (He' : a ∈ e'.base_set) :
trivialization F proj :=
e.piecewise_le_of_eq (e'.trans_fiber_homeomorph (e'.coord_change_homeomorph e He' He))
a He He' $ by { unfreezingI {rintro p rfl },
ext1,
{ simp [e.coe_fst', e'.coe_fst', *] },
{ simp [e'.coord_change_apply_snd, *] } }
/-- Given two bundle trivializations `e`, `e'` over disjoint sets, `e.disjoint_union e' H` is the
bundle trivialization over the union of the base sets that agrees with `e` and `e'` over their
base sets. -/
noncomputable def disjoint_union (e e' : trivialization F proj)
(H : disjoint e.base_set e'.base_set) :
trivialization F proj :=
{ to_local_homeomorph := e.to_local_homeomorph.disjoint_union e'.to_local_homeomorph
(λ x hx, by { rw [e.source_eq, e'.source_eq] at hx, exact H hx })
(λ x hx, by { rw [e.target_eq, e'.target_eq] at hx, exact H ⟨hx.1.1, hx.2.1⟩ }),
base_set := e.base_set ∪ e'.base_set,
open_base_set := is_open.union e.open_base_set e'.open_base_set,
source_eq := congr_arg2 (∪) e.source_eq e'.source_eq,
target_eq := (congr_arg2 (∪) e.target_eq e'.target_eq).trans union_prod.symm,
proj_to_fun :=
begin
rintro p (hp|hp'),
{ show (e.source.piecewise e e' p).1 = proj p,
rw [piecewise_eq_of_mem, e.coe_fst]; exact hp },
{ show (e.source.piecewise e e' p).1 = proj p,
rw [piecewise_eq_of_not_mem, e'.coe_fst hp'],
simp only [e.source_eq, e'.source_eq] at hp' ⊢,
exact λ h, H ⟨h, hp'⟩ }
end }
/-- If `h` is a topological fiber bundle over a conditionally complete linear order,
then it is trivial over any closed interval. -/
lemma _root_.is_topological_fiber_bundle.exists_trivialization_Icc_subset
[conditionally_complete_linear_order B] [order_topology B]
(h : is_topological_fiber_bundle F proj) (a b : B) :
∃ e : trivialization F proj, Icc a b ⊆ e.base_set :=
begin
classical,
obtain ⟨ea, hea⟩ : ∃ ea : trivialization F proj, a ∈ ea.base_set := h a,
-- If `a < b`, then `[a, b] = ∅`, and the statement is trivial
cases le_or_lt a b with hab hab; [skip, exact ⟨ea, by simp *⟩],
/- Let `s` be the set of points `x ∈ [a, b]` such that `proj` is trivializable over `[a, x]`.
We need to show that `b ∈ s`. Let `c = Sup s`. We will show that `c ∈ s` and `c = b`. -/
set s : set B := {x ∈ Icc a b | ∃ e : trivialization F proj, Icc a x ⊆ e.base_set},
have ha : a ∈ s, from ⟨left_mem_Icc.2 hab, ea, by simp [hea]⟩,
have sne : s.nonempty := ⟨a, ha⟩,
have hsb : b ∈ upper_bounds s, from λ x hx, hx.1.2,
have sbd : bdd_above s := ⟨b, hsb⟩,
set c := Sup s,
have hsc : is_lub s c, from is_lub_cSup sne sbd,
have hc : c ∈ Icc a b, from ⟨hsc.1 ha, hsc.2 hsb⟩,
obtain ⟨-, ec : trivialization F proj, hec : Icc a c ⊆ ec.base_set⟩ : c ∈ s,
{ cases hc.1.eq_or_lt with heq hlt, { rwa ← heq },
refine ⟨hc, _⟩,
/- In order to show that `c ∈ s`, consider a trivialization `ec` of `proj` over a neighborhood
of `c`. Its base set includes `(c', c]` for some `c' ∈ [a, c)`. -/
rcases h c with ⟨ec, hc⟩,
obtain ⟨c', hc', hc'e⟩ : ∃ c' ∈ Ico a c, Ioc c' c ⊆ ec.base_set :=
(mem_nhds_within_Iic_iff_exists_mem_Ico_Ioc_subset hlt).1
(mem_nhds_within_of_mem_nhds $ is_open.mem_nhds ec.open_base_set hc),
/- Since `c' < c = Sup s`, there exists `d ∈ s ∩ (c', c]`. Let `ead` be a trivialization of
`proj` over `[a, d]`. Then we can glue `ead` and `ec` into a trivialization over `[a, c]`. -/
obtain ⟨d, ⟨hdab, ead, had⟩, hd⟩ : ∃ d ∈ s, d ∈ Ioc c' c := hsc.exists_between hc'.2,
refine ⟨ead.piecewise_le ec d (had ⟨hdab.1, le_rfl⟩) (hc'e hd), subset_ite.2 _⟩,
refine ⟨λ x hx, had ⟨hx.1.1, hx.2⟩, λ x hx, hc'e ⟨hd.1.trans (not_le.1 hx.2), hx.1.2⟩⟩ },
/- So, `c ∈ s`. Let `ec` be a trivialization of `proj` over `[a, c]`. If `c = b`, then we are
done. Otherwise we show that `proj` can be trivialized over a larger interval `[a, d]`,
`d ∈ (c, b]`, hence `c` is not an upper bound of `s`. -/
cases hc.2.eq_or_lt with heq hlt, { exact ⟨ec, heq ▸ hec⟩ },
suffices : ∃ (d ∈ Ioc c b) (e : trivialization F proj), Icc a d ⊆ e.base_set,
{ rcases this with ⟨d, hdcb, hd⟩,
exact ((hsc.1 ⟨⟨hc.1.trans hdcb.1.le, hdcb.2⟩, hd⟩).not_lt hdcb.1).elim },
/- Since the base set of `ec` is open, it includes `[c, d)` (hence, `[a, d)`) for some
`d ∈ (c, b]`. -/
obtain ⟨d, hdcb, hd⟩ : ∃ d ∈ Ioc c b, Ico c d ⊆ ec.base_set :=
(mem_nhds_within_Ici_iff_exists_mem_Ioc_Ico_subset hlt).1
(mem_nhds_within_of_mem_nhds $ is_open.mem_nhds ec.open_base_set (hec ⟨hc.1, le_rfl⟩)),
have had : Ico a d ⊆ ec.base_set,
from Ico_subset_Icc_union_Ico.trans (union_subset hec hd),
by_cases he : disjoint (Iio d) (Ioi c),
{ /- If `(c, d) = ∅`, then let `ed` be a trivialization of `proj` over a neighborhood of `d`.
Then the disjoint union of `ec` restricted to `(-∞, d)` and `ed` restricted to `(c, ∞)` is
a trivialization over `[a, d]`. -/
rcases h d with ⟨ed, hed⟩,
refine ⟨d, hdcb, (ec.restr_open (Iio d) is_open_Iio).disjoint_union
(ed.restr_open (Ioi c) is_open_Ioi) (he.mono (inter_subset_right _ _)
(inter_subset_right _ _)), λ x hx, _⟩,
rcases hx.2.eq_or_lt with rfl|hxd,
exacts [or.inr ⟨hed, hdcb.1⟩, or.inl ⟨had ⟨hx.1, hxd⟩, hxd⟩] },
{ /- If `(c, d)` is nonempty, then take `d' ∈ (c, d)`. Since the base set of `ec` includes
`[a, d)`, it includes `[a, d'] ⊆ [a, d)` as well. -/
rw [disjoint_left] at he, push_neg at he, rcases he with ⟨d', hdd' : d' < d, hd'c⟩,
exact ⟨d', ⟨hd'c, hdd'.le.trans hdcb.2⟩, ec, (Icc_subset_Ico_right hdd').trans had⟩ }
end
end piecewise
end topological_fiber_bundle.trivialization
end topological_fiber_bundle
/-! ### Constructing topological fiber bundles -/
namespace bundle
variable (E : B → Type*)
attribute [mfld_simps] total_space.proj total_space_mk coe_fst coe_snd coe_snd_map_apply
coe_snd_map_smul total_space.mk_cast
instance [I : topological_space F] : ∀ x : B, topological_space (trivial B F x) := λ x, I
instance [t₁ : topological_space B] [t₂ : topological_space F] :
topological_space (total_space (trivial B F)) :=
induced total_space.proj t₁ ⊓ induced (trivial.proj_snd B F) t₂
end bundle
/-- Core data defining a locally trivial topological bundle with fiber `F` over a topological
space `B`. Note that "bundle" is used in its mathematical sense. This is the (computer science)
bundled version, i.e., all the relevant data is contained in the following structure. A family of
local trivializations is indexed by a type `ι`, on open subsets `base_set i` for each `i : ι`.
Trivialization changes from `i` to `j` are given by continuous maps `coord_change i j` from
`base_set i ∩ base_set j` to the set of homeomorphisms of `F`, but we express them as maps
`B → F → F` and require continuity on `(base_set i ∩ base_set j) × F` to avoid the topology on the
space of continuous maps on `F`. -/
@[nolint has_nonempty_instance]
structure topological_fiber_bundle_core (ι : Type*) (B : Type*) [topological_space B]
(F : Type*) [topological_space F] :=
(base_set : ι → set B)
(is_open_base_set : ∀ i, is_open (base_set i))
(index_at : B → ι)
(mem_base_set_at : ∀ x, x ∈ base_set (index_at x))
(coord_change : ι → ι → B → F → F)
(coord_change_self : ∀ i, ∀ x ∈ base_set i, ∀ v, coord_change i i x v = v)
(coord_change_continuous : ∀ i j, continuous_on (λp : B × F, coord_change i j p.1 p.2)
(((base_set i) ∩ (base_set j)) ×ˢ univ))
(coord_change_comp : ∀ i j k, ∀ x ∈ (base_set i) ∩ (base_set j) ∩ (base_set k), ∀ v,
(coord_change j k x) (coord_change i j x v) = coord_change i k x v)
namespace topological_fiber_bundle_core
variables [topological_space B] [topological_space F] (Z : topological_fiber_bundle_core ι B F)
include Z
/-- The index set of a topological fiber bundle core, as a convenience function for dot notation -/
@[nolint unused_arguments has_nonempty_instance]
def index := ι
/-- The base space of a topological fiber bundle core, as a convenience function for dot notation -/
@[nolint unused_arguments, reducible]
def base := B
/-- The fiber of a topological fiber bundle core, as a convenience function for dot notation and
typeclass inference -/
@[nolint unused_arguments has_nonempty_instance]
def fiber (x : B) := F
section fiber_instances
local attribute [reducible] fiber
instance topological_space_fiber (x : B) : topological_space (Z.fiber x) := by apply_instance
end fiber_instances
/-- The total space of the topological fiber bundle, as a convenience function for dot notation.
It is by definition equal to `bundle.total_space Z.fiber`, a.k.a. `Σ x, Z.fiber x` but with a
different name for typeclass inference. -/
@[nolint unused_arguments, reducible]
def total_space := bundle.total_space Z.fiber
/-- The projection from the total space of a topological fiber bundle core, on its base. -/
@[reducible, simp, mfld_simps] def proj : Z.total_space → B := bundle.total_space.proj
/-- Local homeomorphism version of the trivialization change. -/
def triv_change (i j : ι) : local_homeomorph (B × F) (B × F) :=
{ source := (Z.base_set i ∩ Z.base_set j) ×ˢ univ,
target := (Z.base_set i ∩ Z.base_set j) ×ˢ univ,
to_fun := λp, ⟨p.1, Z.coord_change i j p.1 p.2⟩,
inv_fun := λp, ⟨p.1, Z.coord_change j i p.1 p.2⟩,
map_source' := λp hp, by simpa using hp,
map_target' := λp hp, by simpa using hp,
left_inv' := begin
rintros ⟨x, v⟩ hx,
simp only [prod_mk_mem_set_prod_eq, mem_inter_eq, and_true, mem_univ] at hx,
rw [Z.coord_change_comp, Z.coord_change_self],
{ exact hx.1 },
{ simp [hx] }
end,
right_inv' := begin
rintros ⟨x, v⟩ hx,
simp only [prod_mk_mem_set_prod_eq, mem_inter_eq, and_true, mem_univ] at hx,
rw [Z.coord_change_comp, Z.coord_change_self],
{ exact hx.2 },
{ simp [hx] },
end,
open_source :=
(is_open.inter (Z.is_open_base_set i) (Z.is_open_base_set j)).prod is_open_univ,
open_target :=
(is_open.inter (Z.is_open_base_set i) (Z.is_open_base_set j)).prod is_open_univ,
continuous_to_fun :=
continuous_on.prod continuous_fst.continuous_on (Z.coord_change_continuous i j),
continuous_inv_fun := by simpa [inter_comm]
using continuous_on.prod continuous_fst.continuous_on (Z.coord_change_continuous j i) }
@[simp, mfld_simps] lemma mem_triv_change_source (i j : ι) (p : B × F) :
p ∈ (Z.triv_change i j).source ↔ p.1 ∈ Z.base_set i ∩ Z.base_set j :=
by { erw [mem_prod], simp }
/-- Associate to a trivialization index `i : ι` the corresponding trivialization, i.e., a bijection
between `proj ⁻¹ (base_set i)` and `base_set i × F`. As the fiber above `x` is `F` but read in the
chart with index `index_at x`, the trivialization in the fiber above x is by definition the
coordinate change from i to `index_at x`, so it depends on `x`.
The local trivialization will ultimately be a local homeomorphism. For now, we only introduce the
local equiv version, denoted with a prime. In further developments, avoid this auxiliary version,
and use `Z.local_triv` instead.
-/
def local_triv_as_local_equiv (i : ι) : local_equiv Z.total_space (B × F) :=
{ source := Z.proj ⁻¹' (Z.base_set i),
target := Z.base_set i ×ˢ univ,
inv_fun := λp, ⟨p.1, Z.coord_change i (Z.index_at p.1) p.1 p.2⟩,
to_fun := λp, ⟨p.1, Z.coord_change (Z.index_at p.1) i p.1 p.2⟩,
map_source' := λp hp,
by simpa only [set.mem_preimage, and_true, set.mem_univ, set.prod_mk_mem_set_prod_eq] using hp,
map_target' := λp hp,
by simpa only [set.mem_preimage, and_true, set.mem_univ, set.mem_prod] using hp,
left_inv' := begin
rintros ⟨x, v⟩ hx,
change x ∈ Z.base_set i at hx,
dsimp only,
rw [Z.coord_change_comp, Z.coord_change_self],
{ exact Z.mem_base_set_at _ },
{ simp only [hx, mem_inter_eq, and_self, mem_base_set_at] }
end,
right_inv' := begin
rintros ⟨x, v⟩ hx,
simp only [prod_mk_mem_set_prod_eq, and_true, mem_univ] at hx,
rw [Z.coord_change_comp, Z.coord_change_self],
{ exact hx },
{ simp only [hx, mem_inter_eq, and_self, mem_base_set_at] }
end }
variable (i : ι)
lemma mem_local_triv_as_local_equiv_source (p : Z.total_space) :
p ∈ (Z.local_triv_as_local_equiv i).source ↔ p.1 ∈ Z.base_set i :=
iff.rfl
lemma mem_local_triv_as_local_equiv_target (p : B × F) :
p ∈ (Z.local_triv_as_local_equiv i).target ↔ p.1 ∈ Z.base_set i :=
by { erw [mem_prod], simp only [and_true, mem_univ] }
lemma local_triv_as_local_equiv_apply (p : Z.total_space) :
(Z.local_triv_as_local_equiv i) p = ⟨p.1, Z.coord_change (Z.index_at p.1) i p.1 p.2⟩ := rfl
/-- The composition of two local trivializations is the trivialization change Z.triv_change i j. -/
lemma local_triv_as_local_equiv_trans (i j : ι) :
(Z.local_triv_as_local_equiv i).symm.trans
(Z.local_triv_as_local_equiv j) ≈ (Z.triv_change i j).to_local_equiv :=
begin
split,
{ ext x, simp only [mem_local_triv_as_local_equiv_target] with mfld_simps, refl, },
{ rintros ⟨x, v⟩ hx,
simp only [triv_change, local_triv_as_local_equiv, local_equiv.symm, true_and, prod.mk.inj_iff,
prod_mk_mem_set_prod_eq, local_equiv.trans_source, mem_inter_eq, and_true, mem_preimage, proj,
mem_univ, local_equiv.coe_mk, eq_self_iff_true, local_equiv.coe_trans,
total_space.proj] at hx ⊢,
simp only [Z.coord_change_comp, hx, mem_inter_eq, and_self, mem_base_set_at], }
end
variable (ι)
/-- Topological structure on the total space of a topological bundle created from core, designed so
that all the local trivialization are continuous. -/
instance to_topological_space : topological_space (bundle.total_space Z.fiber) :=
topological_space.generate_from $ ⋃ (i : ι) (s : set (B × F)) (s_open : is_open s),
{(Z.local_triv_as_local_equiv i).source ∩ (Z.local_triv_as_local_equiv i) ⁻¹' s}
variable {ι}
lemma open_source' (i : ι) : is_open (Z.local_triv_as_local_equiv i).source :=
begin
apply topological_space.generate_open.basic,
simp only [exists_prop, mem_Union, mem_singleton_iff],
refine ⟨i, Z.base_set i ×ˢ univ, (Z.is_open_base_set i).prod is_open_univ, _⟩,
ext p,
simp only [local_triv_as_local_equiv_apply, prod_mk_mem_set_prod_eq, mem_inter_eq, and_self,
mem_local_triv_as_local_equiv_source, and_true, mem_univ, mem_preimage],
end
open topological_fiber_bundle
/-- Extended version of the local trivialization of a fiber bundle constructed from core,
registering additionally in its type that it is a local bundle trivialization. -/
def local_triv (i : ι) : trivialization F Z.proj :=
{ base_set := Z.base_set i,
open_base_set := Z.is_open_base_set i,
source_eq := rfl,
target_eq := rfl,
proj_to_fun := λ p hp, by { simp only with mfld_simps, refl },
open_source := Z.open_source' i,
open_target := (Z.is_open_base_set i).prod is_open_univ,
continuous_to_fun := begin
rw continuous_on_open_iff (Z.open_source' i),
assume s s_open,
apply topological_space.generate_open.basic,
simp only [exists_prop, mem_Union, mem_singleton_iff],
exact ⟨i, s, s_open, rfl⟩
end,
continuous_inv_fun := begin
apply continuous_on_open_of_generate_from ((Z.is_open_base_set i).prod is_open_univ),
assume t ht,
simp only [exists_prop, mem_Union, mem_singleton_iff] at ht,
obtain ⟨j, s, s_open, ts⟩ : ∃ j s, is_open s ∧ t =
(local_triv_as_local_equiv Z j).source ∩ (local_triv_as_local_equiv Z j) ⁻¹' s := ht,
rw ts,
simp only [local_equiv.right_inv, preimage_inter, local_equiv.left_inv],
let e := Z.local_triv_as_local_equiv i,
let e' := Z.local_triv_as_local_equiv j,
let f := e.symm.trans e',
have : is_open (f.source ∩ f ⁻¹' s),
{ rw [(Z.local_triv_as_local_equiv_trans i j).source_inter_preimage_eq],
exact (continuous_on_open_iff (Z.triv_change i j).open_source).1
((Z.triv_change i j).continuous_on) _ s_open },
convert this using 1,
dsimp [local_equiv.trans_source],
rw [← preimage_comp, inter_assoc],
refl,
end,
to_local_equiv := Z.local_triv_as_local_equiv i }
/-- A topological fiber bundle constructed from core is indeed a topological fiber bundle. -/
protected theorem is_topological_fiber_bundle : is_topological_fiber_bundle F Z.proj :=
λx, ⟨Z.local_triv (Z.index_at x), Z.mem_base_set_at x⟩
/-- The projection on the base of a topological bundle created from core is continuous -/
lemma continuous_proj : continuous Z.proj :=
Z.is_topological_fiber_bundle.continuous_proj
/-- The projection on the base of a topological bundle created from core is an open map -/
lemma is_open_map_proj : is_open_map Z.proj :=
Z.is_topological_fiber_bundle.is_open_map_proj
/-- Preferred local trivialization of a fiber bundle constructed from core, at a given point, as
a bundle trivialization -/
def local_triv_at (b : B) : trivialization F Z.proj :=
Z.local_triv (Z.index_at b)
@[simp, mfld_simps] lemma local_triv_at_def (b : B) :
Z.local_triv (Z.index_at b) = Z.local_triv_at b := rfl
/-- If an element of `F` is invariant under all coordinate changes, then one can define a
corresponding section of the fiber bundle, which is continuous. This applies in particular to the
zero section of a vector bundle. Another example (not yet defined) would be the identity
section of the endomorphism bundle of a vector bundle. -/
lemma continuous_const_section (v : F)
(h : ∀ i j, ∀ x ∈ (Z.base_set i) ∩ (Z.base_set j), Z.coord_change i j x v = v) :
continuous (show B → Z.total_space, from λ x, ⟨x, v⟩) :=
begin
apply continuous_iff_continuous_at.2 (λ x, _),
have A : Z.base_set (Z.index_at x) ∈ 𝓝 x :=
is_open.mem_nhds (Z.is_open_base_set (Z.index_at x)) (Z.mem_base_set_at x),
apply ((Z.local_triv_at x).to_local_homeomorph.continuous_at_iff_continuous_at_comp_left _).2,
{ simp only [(∘)] with mfld_simps,
apply continuous_at_id.prod,
have : continuous_on (λ (y : B), v) (Z.base_set (Z.index_at x)) := continuous_on_const,
apply (this.congr _).continuous_at A,
assume y hy,
simp only [h, hy, mem_base_set_at] with mfld_simps },
{ exact A }
end
@[simp, mfld_simps] lemma local_triv_as_local_equiv_coe :
⇑(Z.local_triv_as_local_equiv i) = Z.local_triv i := rfl
@[simp, mfld_simps] lemma local_triv_as_local_equiv_source :
(Z.local_triv_as_local_equiv i).source = (Z.local_triv i).source := rfl
@[simp, mfld_simps] lemma local_triv_as_local_equiv_target :
(Z.local_triv_as_local_equiv i).target = (Z.local_triv i).target := rfl
@[simp, mfld_simps] lemma local_triv_as_local_equiv_symm :
(Z.local_triv_as_local_equiv i).symm = (Z.local_triv i).to_local_equiv.symm := rfl
@[simp, mfld_simps] lemma base_set_at : Z.base_set i = (Z.local_triv i).base_set := rfl
@[simp, mfld_simps] lemma local_triv_apply (p : Z.total_space) :
(Z.local_triv i) p = ⟨p.1, Z.coord_change (Z.index_at p.1) i p.1 p.2⟩ := rfl
@[simp, mfld_simps] lemma local_triv_at_apply (p : Z.total_space) :
((Z.local_triv_at p.1) p) = ⟨p.1, p.2⟩ :=
by { rw [local_triv_at, local_triv_apply, coord_change_self], exact Z.mem_base_set_at p.1 }
@[simp, mfld_simps] lemma local_triv_at_apply_mk (b : B) (a : F) :
((Z.local_triv_at b) ⟨b, a⟩) = ⟨b, a⟩ :=
Z.local_triv_at_apply _
@[simp, mfld_simps] lemma mem_local_triv_source (p : Z.total_space) :
p ∈ (Z.local_triv i).source ↔ p.1 ∈ (Z.local_triv i).base_set := iff.rfl
@[simp, mfld_simps] lemma mem_local_triv_at_source (p : Z.total_space) (b : B) :
p ∈ (Z.local_triv_at b).source ↔ p.1 ∈ (Z.local_triv_at b).base_set := iff.rfl
@[simp, mfld_simps] lemma mem_local_triv_target (p : B × F) :
p ∈ (Z.local_triv i).target ↔ p.1 ∈ (Z.local_triv i).base_set :=
trivialization.mem_target _
@[simp, mfld_simps] lemma mem_local_triv_at_target (p : B × F) (b : B) :
p ∈ (Z.local_triv_at b).target ↔ p.1 ∈ (Z.local_triv_at b).base_set :=
trivialization.mem_target _
@[simp, mfld_simps] lemma local_triv_symm_apply (p : B × F) :
(Z.local_triv i).to_local_homeomorph.symm p =
⟨p.1, Z.coord_change i (Z.index_at p.1) p.1 p.2⟩ := rfl
@[simp, mfld_simps] lemma mem_local_triv_at_base_set (b : B) :
b ∈ (Z.local_triv_at b).base_set :=
by { rw [local_triv_at, ←base_set_at], exact Z.mem_base_set_at b, }
/-- The inclusion of a fiber into the total space is a continuous map. -/
@[continuity]
lemma continuous_total_space_mk (b : B) :
continuous (total_space_mk b : Z.fiber b → bundle.total_space Z.fiber) :=
begin
rw [continuous_iff_le_induced, topological_fiber_bundle_core.to_topological_space],
apply le_induced_generate_from,
simp only [total_space_mk, mem_Union, mem_singleton_iff, local_triv_as_local_equiv_source,
local_triv_as_local_equiv_coe],
rintros s ⟨i, t, ht, rfl⟩,
rw [←((Z.local_triv i).source_inter_preimage_target_inter t), preimage_inter, ←preimage_comp,
trivialization.source_eq],
apply is_open.inter,
{ simp only [total_space.proj, proj, ←preimage_comp],
by_cases (b ∈ (Z.local_triv i).base_set),
{ rw preimage_const_of_mem h, exact is_open_univ, },
{ rw preimage_const_of_not_mem h, exact is_open_empty, }},
{ simp only [function.comp, local_triv_apply],
rw [preimage_inter, preimage_comp],
by_cases (b ∈ Z.base_set i),
{ have hc : continuous (λ (x : Z.fiber b), (Z.coord_change (Z.index_at b) i b) x),
from (Z.coord_change_continuous (Z.index_at b) i).comp_continuous
(continuous_const.prod_mk continuous_id) (λ x, ⟨⟨Z.mem_base_set_at b, h⟩, mem_univ x⟩),
exact (((Z.local_triv i).open_target.inter ht).preimage (continuous.prod.mk b)).preimage hc },
{ rw [(Z.local_triv i).target_eq, ←base_set_at, mk_preimage_prod_right_eq_empty h,
preimage_empty, empty_inter],
exact is_open_empty, }}
end
end topological_fiber_bundle_core
variables (F) {Z : Type*} [topological_space B] [topological_space F] {proj : Z → B}
open topological_fiber_bundle
/-- This structure permits to define a fiber bundle when trivializations are given as local
equivalences but there is not yet a topology on the total space. The total space is hence given a
topology in such a way that there is a fiber bundle structure for which the local equivalences
are also local homeomorphism and hence local trivializations. -/
@[nolint has_nonempty_instance]
structure topological_fiber_prebundle (proj : Z → B) :=
(pretrivialization_atlas : set (pretrivialization F proj))
(pretrivialization_at : B → pretrivialization F proj)
(mem_base_pretrivialization_at : ∀ x : B, x ∈ (pretrivialization_at x).base_set)
(pretrivialization_mem_atlas : ∀ x : B, pretrivialization_at x ∈ pretrivialization_atlas)
(continuous_triv_change : ∀ e e' ∈ pretrivialization_atlas,
continuous_on (e ∘ e'.to_local_equiv.symm) (e'.target ∩ (e'.to_local_equiv.symm ⁻¹' e.source)))
namespace topological_fiber_prebundle
variables {F} (a : topological_fiber_prebundle F proj) {e : pretrivialization F proj}
/-- Topology on the total space that will make the prebundle into a bundle. -/
def total_space_topology (a : topological_fiber_prebundle F proj) : topological_space Z :=
⨆ (e : pretrivialization F proj) (he : e ∈ a.pretrivialization_atlas),
coinduced e.set_symm (subtype.topological_space)
lemma continuous_symm_of_mem_pretrivialization_atlas (he : e ∈ a.pretrivialization_atlas) :
@continuous_on _ _ _ a.total_space_topology
e.to_local_equiv.symm e.target :=
begin
refine id (λ z H, id (λ U h, preimage_nhds_within_coinduced' H
e.open_target (le_def.1 (nhds_mono _) U h))),
exact le_supr₂ e he,
end
lemma is_open_source (e : pretrivialization F proj) : @is_open _ a.total_space_topology e.source :=
begin
letI := a.total_space_topology,
refine is_open_supr_iff.mpr (λ e', _),
refine is_open_supr_iff.mpr (λ he', _),
refine is_open_coinduced.mpr (is_open_induced_iff.mpr ⟨e.target, e.open_target, _⟩),
rw [pretrivialization.set_symm, restrict, e.target_eq,
e.source_eq, preimage_comp, subtype.preimage_coe_eq_preimage_coe_iff,
e'.target_eq, prod_inter_prod, inter_univ,
pretrivialization.preimage_symm_proj_inter],
end
lemma is_open_target_of_mem_pretrivialization_atlas_inter (e e' : pretrivialization F proj)
(he' : e' ∈ a.pretrivialization_atlas) :
is_open (e'.to_local_equiv.target ∩ e'.to_local_equiv.symm ⁻¹' e.source) :=
begin
letI := a.total_space_topology,
obtain ⟨u, hu1, hu2⟩ := continuous_on_iff'.mp (a.continuous_symm_of_mem_pretrivialization_atlas
he') e.source (a.is_open_source e),
rw [inter_comm, hu2],
exact hu1.inter e'.open_target,
end
/-- Promotion from a `pretrivialization` to a `trivialization`. -/
def trivialization_of_mem_pretrivialization_atlas (he : e ∈ a.pretrivialization_atlas) :
@trivialization B F Z _ _ a.total_space_topology proj :=
{ open_source := a.is_open_source e,
continuous_to_fun := begin
letI := a.total_space_topology,
refine continuous_on_iff'.mpr (λ s hs, ⟨e ⁻¹' s ∩ e.source, (is_open_supr_iff.mpr (λ e', _)),
by { rw [inter_assoc, inter_self], refl }⟩),
refine (is_open_supr_iff.mpr (λ he', _)),
rw [is_open_coinduced, is_open_induced_iff],
obtain ⟨u, hu1, hu2⟩ := continuous_on_iff'.mp (a.continuous_triv_change _ he _ he') s hs,
have hu3 := congr_arg (λ s, (λ x : e'.target, (x : B × F)) ⁻¹' s) hu2,
simp only [subtype.coe_preimage_self, preimage_inter, univ_inter] at hu3,
refine ⟨u ∩ e'.to_local_equiv.target ∩
(e'.to_local_equiv.symm ⁻¹' e.source), _, by
{ simp only [preimage_inter, inter_univ, subtype.coe_preimage_self, hu3.symm], refl }⟩,
rw inter_assoc,
exact hu1.inter (a.is_open_target_of_mem_pretrivialization_atlas_inter e e' he'),
end,
continuous_inv_fun := a.continuous_symm_of_mem_pretrivialization_atlas he,
.. e }
lemma is_topological_fiber_bundle :
@is_topological_fiber_bundle B F Z _ _ a.total_space_topology proj :=
λ x, ⟨a.trivialization_of_mem_pretrivialization_atlas (a.pretrivialization_mem_atlas x),
a.mem_base_pretrivialization_at x ⟩
lemma continuous_proj : @continuous _ _ a.total_space_topology _ proj :=
by { letI := a.total_space_topology, exact a.is_topological_fiber_bundle.continuous_proj, }
/-- For a fiber bundle `Z` over `B` constructed using the `topological_fiber_prebundle` mechanism,
continuity of a function `Z → X` on an open set `s` can be checked by precomposing at each point
with the pretrivialization used for the construction at that point. -/
lemma continuous_on_of_comp_right {X : Type*} [topological_space X] {f : Z → X} {s : set B}
(hs : is_open s)
(hf : ∀ b ∈ s, continuous_on (f ∘ (a.pretrivialization_at b).to_local_equiv.symm)
((s ∩ (a.pretrivialization_at b).base_set) ×ˢ (set.univ : set F))) :
@continuous_on _ _ a.total_space_topology _ f (proj ⁻¹' s) :=
begin
letI := a.total_space_topology,
intros z hz,
let e : trivialization F proj :=
a.trivialization_of_mem_pretrivialization_atlas (a.pretrivialization_mem_atlas (proj z)),
refine (e.continuous_at_of_comp_right _
((hf (proj z) hz).continuous_at (is_open.mem_nhds _ _))).continuous_within_at,
{ exact a.mem_base_pretrivialization_at (proj z) },
{ exact ((hs.inter (a.pretrivialization_at (proj z)).open_base_set).prod is_open_univ) },
refine ⟨_, mem_univ _⟩,
rw e.coe_fst,
{ exact ⟨hz, a.mem_base_pretrivialization_at (proj z)⟩ },
{ rw e.mem_source,
exact a.mem_base_pretrivialization_at (proj z) },
end
end topological_fiber_prebundle
|