Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 9,135 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
/-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import order.compactly_generated
import order.order_iso_nat
import topology.sets.compacts
/-!
# Noetherian space
A Noetherian space is a topological space that satisfies any of the following equivalent conditions:
- `well_founded ((>) : opens α → opens α → Prop)`
- `well_founded ((<) : closeds α → closeds α → Prop)`
- `∀ s : set α, is_compact s`
- `∀ s : opens α, is_compact s`
The first is chosen as the definition, and the equivalence is shown in
`topological_space.noetherian_space_tfae`.
Many examples of noetherian spaces come from algebraic topology. For example, the underlying space
of a noetherian scheme (e.g., the spectrum of a noetherian ring) is noetherian.
## Main Results
- `noetherian_space.set`: Every subspace of a noetherian space is noetherian.
- `noetherian_space.is_compact`: Every subspace of a noetherian space is compact.
- `noetherian_space_tfae`: Describes the equivalent definitions of noetherian spaces.
- `noetherian_space.range`: The image of a noetherian space under a continuous map is noetherian.
- `noetherian_space.Union`: The finite union of noetherian spaces is noetherian.
- `noetherian_space.discrete`: A noetherian and hausdorff space is discrete.
- `noetherian_space.exists_finset_irreducible` : Every closed subset of a noetherian space is a
finite union of irreducible closed subsets.
- `noetherian_space.finite_irreducible_components `: The number of irreducible components of a
noetherian space is finite.
-/
variables (α β : Type*) [topological_space α] [topological_space β]
namespace topological_space
/-- Type class for noetherian spaces. It is defined to be spaces whose open sets satisfies ACC. -/
@[mk_iff]
class noetherian_space : Prop :=
(well_founded : well_founded ((>) : opens α → opens α → Prop))
lemma noetherian_space_iff_opens :
noetherian_space α ↔ ∀ s : opens α, is_compact (s : set α) :=
begin
rw [noetherian_space_iff, complete_lattice.well_founded_iff_is_Sup_finite_compact,
complete_lattice.is_Sup_finite_compact_iff_all_elements_compact],
exact forall_congr opens.is_compact_element_iff,
end
@[priority 100]
instance noetherian_space.compact_space [h : noetherian_space α] : compact_space α :=
is_compact_univ_iff.mp ((noetherian_space_iff_opens α).mp h ⊤)
variable {α}
instance noetherian_space.set [h : noetherian_space α] (s : set α) : noetherian_space s :=
begin
rw noetherian_space_iff,
apply well_founded.well_founded_iff_has_max'.2,
intros p hp,
obtain ⟨⟨_, u, hu, rfl⟩, hu'⟩ := hp,
obtain ⟨U, hU, hU'⟩ := well_founded.well_founded_iff_has_max'.1 h.1
(((opens.comap ⟨_, continuous_subtype_coe⟩)) ⁻¹' p) ⟨⟨u, hu⟩, hu'⟩,
refine ⟨opens.comap ⟨_, continuous_subtype_coe⟩ U, hU, _⟩,
rintros ⟨_, x, hx, rfl⟩ hx' hx'',
refine le_antisymm (set.preimage_mono (_ : (⟨x, hx⟩ : opens α) ≤ U)) hx'',
refine sup_eq_right.mp (hU' (⟨x, hx⟩ ⊔ U) _ le_sup_right),
dsimp [set.preimage],
rw map_sup,
convert hx',
exact sup_eq_left.mpr hx''
end
variable (α)
example (α : Type*) : set α ≃o (set α)ᵒᵈ := by refine order_iso.compl (set α)
lemma noetherian_space_tfae :
tfae [noetherian_space α,
well_founded (λ s t : closeds α, s < t),
∀ s : set α, is_compact s,
∀ s : opens α, is_compact (s : set α)] :=
begin
tfae_have : 1 ↔ 2,
{ refine (noetherian_space_iff _).trans (surjective.well_founded_iff opens.compl_bijective.2 _),
exact λ s t, (order_iso.compl (set α)).lt_iff_lt.symm },
tfae_have : 1 ↔ 4,
{ exact noetherian_space_iff_opens α },
tfae_have : 1 → 3,
{ intros H s, rw is_compact_iff_compact_space, resetI, apply_instance },
tfae_have : 3 → 4,
{ exact λ H s, H s },
tfae_finish
end
variables {α β}
lemma noetherian_space.is_compact [h : noetherian_space α] (s : set α) : is_compact s :=
let H := (noetherian_space_tfae α).out 0 2 in H.mp h s
lemma noetherian_space_of_surjective [noetherian_space α] (f : α → β)
(hf : continuous f) (hf' : function.surjective f) : noetherian_space β :=
begin
rw noetherian_space_iff_opens,
intro s,
obtain ⟨t, e⟩ := set.image_surjective.mpr hf' s,
exact e ▸ (noetherian_space.is_compact t).image hf,
end
lemma noetherian_space_iff_of_homeomorph (f : α ≃ₜ β) :
noetherian_space α ↔ noetherian_space β :=
⟨λ h, @@noetherian_space_of_surjective _ _ h f f.continuous f.surjective,
λ h, @@noetherian_space_of_surjective _ _ h f.symm f.symm.continuous f.symm.surjective⟩
lemma noetherian_space.range [noetherian_space α] (f : α → β) (hf : continuous f) :
noetherian_space (set.range f) :=
noetherian_space_of_surjective (set.cod_restrict f _ set.mem_range_self) (by continuity)
(λ ⟨a, b, h⟩, ⟨b, subtype.ext h⟩)
lemma noetherian_space_set_iff (s : set α) :
noetherian_space s ↔ ∀ t ⊆ s, is_compact t :=
begin
rw (noetherian_space_tfae s).out 0 2,
split,
{ intros H t ht,
have := embedding_subtype_coe.is_compact_iff_is_compact_image.mp (H (coe ⁻¹' t)),
simpa [set.inter_eq_left_iff_subset.mpr ht] using this },
{ intros H t,
refine embedding_subtype_coe.is_compact_iff_is_compact_image.mpr (H (coe '' t) _),
simp }
end
@[simp] lemma noetherian_univ_iff :
noetherian_space (set.univ : set α) ↔ noetherian_space α :=
noetherian_space_iff_of_homeomorph (homeomorph.set.univ α)
lemma noetherian_space.Union {ι : Type*} (f : ι → set α) [finite ι]
[hf : ∀ i, noetherian_space (f i)] :
noetherian_space (⋃ i, f i) :=
begin
casesI nonempty_fintype ι,
simp_rw noetherian_space_set_iff at hf ⊢,
intros t ht,
rw [← set.inter_eq_left_iff_subset.mpr ht, set.inter_Union],
exact compact_Union (λ i, hf i _ (set.inter_subset_right _ _))
end
-- This is not an instance since it makes a loop with `t2_space_discrete`.
lemma noetherian_space.discrete [noetherian_space α] [t2_space α] : discrete_topology α :=
⟨eq_bot_iff.mpr (λ U _, is_closed_compl_iff.mp (noetherian_space.is_compact _).is_closed)⟩
local attribute [instance] noetherian_space.discrete
/-- Spaces that are both Noetherian and Hausdorff is finite. -/
lemma noetherian_space.finite [noetherian_space α] [t2_space α] : finite α :=
begin
letI : fintype α :=
set.fintype_of_finite_univ (noetherian_space.is_compact set.univ).finite_of_discrete,
apply_instance
end
@[priority 100]
instance finite.to_noetherian_space [finite α] : noetherian_space α :=
begin
casesI nonempty_fintype α,
classical,
exact ⟨@@fintype.well_founded_of_trans_of_irrefl (subtype.fintype _) _ _ _⟩
end
lemma noetherian_space.exists_finset_irreducible [noetherian_space α] (s : closeds α) :
∃ S : finset (closeds α), (∀ k : S, is_irreducible (k : set α)) ∧ s = S.sup id :=
begin
classical,
have := ((noetherian_space_tfae α).out 0 1).mp infer_instance,
apply well_founded.induction this s, clear s,
intros s H,
by_cases h₁ : is_preirreducible s.1,
cases h₂ : s.1.eq_empty_or_nonempty,
{ use ∅, refine ⟨λ k, k.2.elim, _⟩, rw finset.sup_empty, ext1, exact h },
{ use {s},
simp only [coe_coe, finset.sup_singleton, id.def, eq_self_iff_true, and_true],
rintro ⟨k, hk⟩,
cases finset.mem_singleton.mp hk,
exact ⟨h, h₁⟩ },
{ rw is_preirreducible_iff_closed_union_closed at h₁,
push_neg at h₁,
obtain ⟨z₁, z₂, hz₁, hz₂, h, hz₁', hz₂'⟩ := h₁,
obtain ⟨S₁, hS₁, hS₁'⟩ := H (s ⊓ ⟨z₁, hz₁⟩) (inf_lt_left.2 hz₁'),
obtain ⟨S₂, hS₂, hS₂'⟩ := H (s ⊓ ⟨z₂, hz₂⟩) (inf_lt_left.2 hz₂'),
refine ⟨S₁ ∪ S₂, λ k, _, _⟩,
{ cases finset.mem_union.mp k.2 with h' h', exacts [hS₁ ⟨k, h'⟩, hS₂ ⟨k, h'⟩] },
{ rwa [finset.sup_union, ← hS₁', ← hS₂', ← inf_sup_left, left_eq_inf] } }
end
lemma noetherian_space.finite_irreducible_components [noetherian_space α] :
(set.range irreducible_component : set (set α)).finite :=
begin
classical,
obtain ⟨S, hS₁, hS₂⟩ := noetherian_space.exists_finset_irreducible (⊤ : closeds α),
suffices : ∀ x : α, ∃ s : S, irreducible_component x = s,
{ choose f hf,
rw [show irreducible_component = coe ∘ f, from funext hf, set.range_comp],
exact (set.finite.intro infer_instance).image _ },
intro x,
obtain ⟨z, hz, hz'⟩ : ∃ (z : set α) (H : z ∈ finset.image coe S), irreducible_component x ⊆ z,
{ convert is_irreducible_iff_sUnion_closed.mp
is_irreducible_irreducible_component (S.image coe) _ _,
{ apply_instance },
{ simp only [finset.mem_image, exists_prop, forall_exists_index, and_imp],
rintro _ z hz rfl,
exact z.2 },
{ exact (set.subset_univ _).trans ((congr_arg coe hS₂).trans $ by simp).subset } },
obtain ⟨s, hs, e⟩ := finset.mem_image.mp hz,
rw ← e at hz',
use ⟨s, hs⟩,
symmetry,
apply eq_irreducible_component (hS₁ _).2,
simpa,
end
end topological_space
|