Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 81,604 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
 
 
 
 
 
 
 
 
 
 
 
 
 
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import topology.subset_properties
import topology.connected
import topology.nhds_set
import topology.inseparable

/-!
# Separation properties of topological spaces.

This file defines the predicate `separated`, and common separation axioms
(under the Kolmogorov classification).

## Main definitions

* `separated`: Two `set`s are separated if they are contained in disjoint open sets.
* `t0_space`: A T₀/Kolmogorov space is a space where, for every two points `x  y`,
  there is an open set that contains one, but not the other.
* `t1_space`: A T₁/Fréchet space is a space where every singleton set is closed.
  This is equivalent to, for every pair `x  y`, there existing an open set containing `x`
  but not `y` (`t1_space_iff_exists_open` shows that these conditions are equivalent.)
* `t2_space`: A T₂/Hausdorff space is a space where, for every two points `x  y`,
  there is two disjoint open sets, one containing `x`, and the other `y`.
* `t2_5_space`: A T₂.₅/Urysohn space is a space where, for every two points `x  y`,
  there is two open sets, one containing `x`, and the other `y`, whose closures are disjoint.
* `t3_space`: A T₃ space, is one where given any closed `C` and `x  C`,
  there is disjoint open sets containing `x` and `C` respectively. In `mathlib`, T₃ implies T₂.₅.
* `normal_space`: A T₄ space (sometimes referred to as normal, but authors vary on
  whether this includes T₂; `mathlib` does), is one where given two disjoint closed sets,
  we can find two open sets that separate them. In `mathlib`, T₄ implies T₃.

## Main results

### T₀ spaces

* `is_closed.exists_closed_singleton` Given a closed set `S` in a compact T₀ space,
  there is some `x  S` such that `{x}` is closed.
* `exists_open_singleton_of_open_finset` Given an open `finset` `S` in a T₀ space,
  there is some `x  S` such that `{x}` is open.

### T₁ spaces

* `is_closed_map_const`: The constant map is a closed map.
* `discrete_of_t1_of_finite`: A finite T₁ space must have the discrete topology.

### T₂ spaces

* `t2_iff_nhds`: A space is T₂ iff the neighbourhoods of distinct points generate the bottom filter.
* `t2_iff_is_closed_diagonal`: A space is T₂ iff the `diagonal` of `α` (that is, the set of all
  points of the form `(a, a) : α × α`) is closed under the product topology.
* `finset_disjoint_finset_opens_of_t2`: Any two disjoint finsets are `separated`.
* Most topological constructions preserve Hausdorffness;
  these results are part of the typeclass inference system (e.g. `embedding.t2_space`)
* `set.eq_on.closure`: If two functions are equal on some set `s`, they are equal on its closure.
* `is_compact.is_closed`: All compact sets are closed.
* `locally_compact_of_compact_nhds`: If every point has a compact neighbourhood,
  then the space is locally compact.
* `tot_sep_of_zero_dim`: If `α` has a clopen basis, it is a `totally_separated_space`.
* `loc_compact_t2_tot_disc_iff_tot_sep`: A locally compact T₂ space is totally disconnected iff
  it is totally separated.

If the space is also compact:

* `normal_of_compact_t2`: A compact T₂ space is a `normal_space`.
* `connected_components_eq_Inter_clopen`: The connected component of a point
  is the intersection of all its clopen neighbourhoods.
* `compact_t2_tot_disc_iff_tot_sep`: Being a `totally_disconnected_space`
  is equivalent to being a `totally_separated_space`.
* `connected_components.t2`: `connected_components α` is T₂ for `α` T₂ and compact.

### T₃ spaces

* `disjoint_nested_nhds`: Given two points `x  y`, we can find neighbourhoods `x  V₁  U₁` and
  `y  V₂  U₂`, with the `Vₖ` closed and the `Uₖ` open, such that the `Uₖ` are disjoint.

### Discrete spaces

* `discrete_topology_iff_nhds`: Discrete topological spaces are those whose neighbourhood
  filters are the `pure` filter (which is the principal filter at a singleton).
* `induced_bot`/`discrete_topology_induced`: The pullback of the discrete topology
  under an inclusion is the discrete topology.

## References

https://en.wikipedia.org/wiki/Separation_axiom
-/

open function set filter topological_space
open_locale topological_space filter classical

universes u v
variables {α : Type u} {β : Type v} [topological_space α]

section separation

/--
`separated` is a predicate on pairs of sub`set`s of a topological space.  It holds if the two
sub`set`s are contained in disjoint open sets.
-/
def separated : set α  set α  Prop :=
  λ (s t : set α),  U V : (set α), (is_open U)  is_open V 
  (s  U)  (t  V)  disjoint U V

namespace separated

open separated

@[symm] lemma symm {s t : set α} : separated s t  separated t s :=
λ U, V, oU, oV, aU, bV, UV, V, U, oV, oU, bV, aU, disjoint.symm UV

lemma comm (s t : set α) : separated s t  separated t s :=
symm, symm

lemma preimage [topological_space β] {f : α  β} {s t : set β} (h : separated s t)
  (hf : continuous f) : separated (f ⁻¹' s) (f ⁻¹' t) :=
let U, V, oU, oV, sU, tV, UV := h in
f ⁻¹' U, f ⁻¹' V, oU.preimage hf, oV.preimage hf, preimage_mono sU, preimage_mono tV,
  UV.preimage f

protected lemma disjoint {s t : set α} (h : separated s t) : disjoint s t :=
let U, V, hU, hV, hsU, htV, hd := h in hd.mono hsU htV

lemma disjoint_closure_left {s t : set α} (h : separated s t) : disjoint (closure s) t :=
let U, V, hU, hV, hsU, htV, hd := h
in (hd.closure_left hV).mono (closure_mono hsU) htV

lemma disjoint_closure_right {s t : set α} (h : separated s t) : disjoint s (closure t) :=
h.symm.disjoint_closure_left.symm

lemma empty_right (a : set α) : separated a  :=
_, _, is_open_univ, is_open_empty, λ a h, mem_univ a, λ a h, by cases h, disjoint_empty _

lemma empty_left (a : set α) : separated  a :=
(empty_right _).symm

lemma mono {s₁ s₂ t₁ t₂ : set α} (h : separated s₂ t₂) (hs : s₁  s₂) (ht : t₁  t₂) :
  separated s₁ t₁ :=
let U, V, hU, hV, hsU, htV, hd := h in U, V, hU, hV, hs.trans hsU, ht.trans htV, hd

lemma union_left {a b c : set α} : separated a c  separated b c  separated (a  b) c :=
λ U, V, oU, oV, aU, bV, UV W, X, oW, oX, aW, bX, WX,
  U  W, V  X, is_open.union oU oW, is_open.inter oV oX,
    union_subset_union aU aW, subset_inter bV bX, set.disjoint_union_left.mpr
    disjoint_of_subset_right (inter_subset_left _ _) UV,
      disjoint_of_subset_right (inter_subset_right _ _) WX⟩⟩

lemma union_right {a b c : set α} (ab : separated a b) (ac : separated a c) :
  separated a (b  c) :=
(ab.symm.union_left ac.symm).symm

end separated

/-- A T₀ space, also known as a Kolmogorov space, is a topological space such that for every pair
`x  y`, there is an open set containing one but not the other. We formulate the definition in terms
of the `inseparable` relation.  -/
class t0_space (α : Type u) [topological_space α] : Prop :=
(t0 : ∀ ⦃x y : α⦄, inseparable x yx = y)

lemma t0_space_iff_inseparable (α : Type u) [topological_space α] :
  t0_space α ↔ ∀ (x y : α), inseparable x yx = y :=
⟨λ ⟨h⟩, h, λ h, ⟨h⟩⟩

lemma t0_space_iff_not_inseparable (α : Type u) [topological_space α] :
  t0_space α ↔ ∀ (x y : α), xy → ¬inseparable x y :=
by simp only [t0_space_iff_inseparable, ne.def, not_imp_not]

lemma inseparable.eq [t0_space α] {x y : α} (h : inseparable x y) : x = y :=
t0_space.t0 h

lemma t0_space_iff_nhds_injective (α : Type u) [topological_space α] :
  t0_space α  injective (𝓝 : α  filter α) :=
t0_space_iff_inseparable α

lemma nhds_injective [t0_space α] : injective (𝓝 : α  filter α) :=
(t0_space_iff_nhds_injective α).1 _

@[simp] lemma nhds_eq_nhds_iff [t0_space α] {a b : α} : 𝓝 a = 𝓝 b  a = b :=
nhds_injective.eq_iff

lemma t0_space_iff_exists_is_open_xor_mem (α : Type u) [topological_space α] :
  t0_space α   x y, x  y   U:set α, is_open U  (xor (x  U) (y  U)) :=
by simp only [t0_space_iff_not_inseparable, xor_iff_not_iff, not_forall, exists_prop,
  inseparable_iff_forall_open]

lemma exists_is_open_xor_mem [t0_space α] {x y : α} (h : x  y) :
   U : set α, is_open U  xor (x  U) (y  U) :=
(t0_space_iff_exists_is_open_xor_mem α).1 _ x y h

/-- Specialization forms a partial order on a t0 topological space. -/
def specialization_order (α : Type*) [topological_space α] [t0_space α] : partial_order α :=
{ .. specialization_preorder α,
  .. partial_order.lift (order_dual.to_dual  𝓝) nhds_injective }

instance : t0_space (separation_quotient α) :=
λ x' y', quotient.induction_on₂' x' y' $
  λ x y h, separation_quotient.mk_eq_mk.2 $ separation_quotient.inducing_mk.inseparable_iff.1 h

theorem minimal_nonempty_closed_subsingleton [t0_space α] {s : set α} (hs : is_closed s)
  (hmin :  t  s, t.nonempty  is_closed t  t = s) :
  s.subsingleton :=
begin
  refine λ x hx y hy, of_not_not (λ hxy, _),
  rcases exists_is_open_xor_mem hxy with U, hUo, hU,
  wlog h : x  U  y  U := hU using [x y, y x], cases h with hxU hyU,
  have : s \ U = s := hmin (s \ U) (diff_subset _ _) y, hy, hyU (hs.sdiff hUo),
  exact (this.symm.subset hx).2 hxU
end

theorem minimal_nonempty_closed_eq_singleton [t0_space α] {s : set α} (hs : is_closed s)
  (hne : s.nonempty) (hmin :  t  s, t.nonempty  is_closed t  t = s) :
   x, s = {x} :=
exists_eq_singleton_iff_nonempty_subsingleton.2 hne, minimal_nonempty_closed_subsingleton hs hmin

/-- Given a closed set `S` in a compact T₀ space,
there is some `x  S` such that `{x}` is closed. -/
theorem is_closed.exists_closed_singleton {α : Type*} [topological_space α]
  [t0_space α] [compact_space α] {S : set α} (hS : is_closed S) (hne : S.nonempty) :
   (x : α), x  S  is_closed ({x} : set α) :=
begin
  obtain V, Vsub, Vne, Vcls, hV := hS.exists_minimal_nonempty_closed_subset hne,
  rcases minimal_nonempty_closed_eq_singleton Vcls Vne hV with x, rfl,
  exact x, Vsub (mem_singleton x), Vcls
end

theorem minimal_nonempty_open_subsingleton [t0_space α] {s : set α} (hs : is_open s)
  (hmin :  t  s, t.nonempty  is_open t  t = s) :
  s.subsingleton :=
begin
  refine λ x hx y hy, of_not_not (λ hxy, _),
  rcases exists_is_open_xor_mem hxy with U, hUo, hU,
  wlog h : x  U  y  U := hU using [x y, y x], cases h with hxU hyU,
  have : s  U = s := hmin (s  U) (inter_subset_left _ _) x, hx, hxU (hs.inter hUo),
  exact hyU (this.symm.subset hy).2
end

theorem minimal_nonempty_open_eq_singleton [t0_space α] {s : set α} (hs : is_open s)
  (hne : s.nonempty) (hmin :  t  s, t.nonempty  is_open t  t = s) :
   x, s = {x} :=
exists_eq_singleton_iff_nonempty_subsingleton.2 hne, minimal_nonempty_open_subsingleton hs hmin

/-- Given an open finite set `S` in a T₀ space, there is some `x  S` such that `{x}` is open. -/
theorem exists_open_singleton_of_open_finite [t0_space α] {s : set α} (hfin : s.finite)
  (hne : s.nonempty) (ho : is_open s) :
   x  s, is_open ({x} : set α) :=
begin
  lift s to finset α using hfin,
  induction s using finset.strong_induction_on with s ihs,
  rcases em ( t  s, t.nonempty  is_open (t : set α)) with t, hts, htne, hto⟩|ht,
  { rcases ihs t hts htne hto with x, hxt, hxo,
    exact x, hts.1 hxt, hxo },
  { rcases minimal_nonempty_open_eq_singleton ho hne _ with x, hx,
    { exact x, hx.symm  rfl, hx  ho },
    refine λ t hts htne hto, of_not_not (λ hts', ht _),
    lift t to finset α using s.finite_to_set.subset hts,
    exact t, ssubset_iff_subset_ne.2 hts, mt finset.coe_inj.2 hts', htne, hto }
end

theorem exists_open_singleton_of_fintype [t0_space α] [finite α] [nonempty α] :
   x : α, is_open ({x} : set α) :=
let x, _, h := exists_open_singleton_of_open_finite (set.to_finite _) univ_nonempty
  is_open_univ in x, h

lemma t0_space_of_injective_of_continuous [topological_space β] {f : α  β}
  (hf : function.injective f) (hf' : continuous f) [t0_space β] : t0_space α :=
λ x y h, hf $ (h.map hf').eq

protected lemma embedding.t0_space [topological_space β] [t0_space β] {f : α  β}
  (hf : embedding f) : t0_space α :=
t0_space_of_injective_of_continuous hf.inj hf.continuous

instance subtype.t0_space [t0_space α] {p : α  Prop} : t0_space (subtype p) :=
embedding_subtype_coe.t0_space

theorem t0_space_iff_or_not_mem_closure (α : Type u) [topological_space α] :
  t0_space α  ( a b : α, a  b  (a  closure ({b} : set α)  b  closure ({a} : set α))) :=
by simp only [t0_space_iff_not_inseparable, inseparable_iff_mem_closure, not_and_distrib]

instance [topological_space β] [t0_space α] [t0_space β] : t0_space (α × β) :=
λ x y h, prod.ext (h.map continuous_fst).eq (h.map continuous_snd).eq

instance {ι : Type*} {π : ι  Type*} [Π i, topological_space (π i)] [Π i, t0_space (π i)] :
  t0_space (Π i, π i) :=
λ x y h, funext $ λ i, (h.map (continuous_apply i)).eq

lemma t0_space.of_cover (h :  x y, inseparable x y   s : set α, x  s  y  s  t0_space s) :
  t0_space α :=
begin
  refine λ x y hxy, _,
  rcases h x y hxy with s, hxs, hys, hs, resetI,
  lift x to s using hxs, lift y to s using hys,
  rw  subtype_inseparable_iff at hxy,
  exact congr_arg coe hxy.eq
end

lemma t0_space.of_open_cover (h :  x,  s : set α, x  s  is_open s  t0_space s) : t0_space α :=
t0_space.of_cover $ λ x y hxy,
  let s, hxs, hso, hs := h x in s, hxs, (hxy.mem_open_iff hso).1 hxs, hs

/-- A T₁ space, also known as a Fréchet space, is a topological space
  where every singleton set is closed. Equivalently, for every pair
  `x  y`, there is an open set containing `x` and not `y`. -/
class t1_space (α : Type u) [topological_space α] : Prop :=
(t1 : ∀x, is_closed ({x} : set α))

lemma is_closed_singleton [t1_space α] {x : α} : is_closed ({x} : set α) :=
t1_space.t1 x

lemma is_open_compl_singleton [t1_space α] {x : α} : is_open ({x}ᶜ : set α) :=
is_closed_singleton.is_open_compl

lemma is_open_ne [t1_space α] {x : α} : is_open {y | y  x} :=
is_open_compl_singleton

lemma ne.nhds_within_compl_singleton [t1_space α] {x y : α} (h : x  y) :
  𝓝[{y}ᶜ] x = 𝓝 x :=
is_open_ne.nhds_within_eq h

lemma ne.nhds_within_diff_singleton [t1_space α] {x y : α} (h : x  y) (s : set α) :
  𝓝[s \ {y}] x = 𝓝[s] x :=
begin
  rw [diff_eq, inter_comm, nhds_within_inter_of_mem],
  exact mem_nhds_within_of_mem_nhds (is_open_ne.mem_nhds h)
end

protected lemma set.finite.is_closed [t1_space α] {s : set α} (hs : set.finite s) :
  is_closed s :=
begin
  rw  bUnion_of_singleton s,
  exact is_closed_bUnion hs (λ i hi, is_closed_singleton)
end

lemma topological_space.is_topological_basis.exists_mem_of_ne
  [t1_space α] {b : set (set α)} (hb : is_topological_basis b) {x y : α} (h : x  y) :
   a  b, x  a  y  a :=
begin
  rcases hb.is_open_iff.1 is_open_ne x h with a, ab, xa, ha,
  exact a, ab, xa, λ h, ha h rfl,
end

lemma filter.coclosed_compact_le_cofinite [t1_space α] :
  filter.coclosed_compact α  filter.cofinite :=
λ s hs, compl_compl s  hs.is_compact.compl_mem_coclosed_compact_of_is_closed hs.is_closed

variable (α)

/-- In a `t1_space`, relatively compact sets form a bornology. Its cobounded filter is
`filter.coclosed_compact`. See also `bornology.in_compact` the bornology of sets contained
in a compact set. -/
def bornology.relatively_compact [t1_space α] : bornology α :=
{ cobounded := filter.coclosed_compact α,
  le_cofinite := filter.coclosed_compact_le_cofinite }

variable {α}

lemma bornology.relatively_compact.is_bounded_iff [t1_space α] {s : set α} :
  @bornology.is_bounded _ (bornology.relatively_compact α) s  is_compact (closure s) :=
begin
  change sᶜ  filter.coclosed_compact α  _,
  rw filter.mem_coclosed_compact,
  split,
  { rintros t, ht₁, ht₂, hst,
    rw compl_subset_compl at hst,
    exact compact_of_is_closed_subset ht₂ is_closed_closure (closure_minimal hst ht₁) },
  { intros h,
    exact closure s, is_closed_closure, h, compl_subset_compl.mpr subset_closure }
end

protected lemma finset.is_closed [t1_space α] (s : finset α) : is_closed (s : set α) :=
s.finite_to_set.is_closed

lemma t1_space_tfae (α : Type u) [topological_space α] :
  tfae [t1_space α,
     x, is_closed ({x} : set α),
     x, is_open ({x}ᶜ : set α),
    continuous (@cofinite_topology.of α),
     x y : α, x  y  {y}ᶜ  𝓝 x,
     x y : α, x  y   s  𝓝 x, y  s,
     x y : α, x  y   (U : set α) (hU : is_open U), x  U  y  U,
     x y : α, x  y  disjoint (𝓝 x) (pure y),
     x y : α, x  y  disjoint (pure x) (𝓝 y),
     x y : α, x  y  x = y] :=
begin
  tfae_have : 1  2, from λ h, h.1, λ h, h⟩⟩,
  tfae_have : 2  3, by simp only [is_open_compl_iff],
  tfae_have : 5  3,
  { refine forall_swap.trans _,
    simp only [is_open_iff_mem_nhds, mem_compl_iff, mem_singleton_iff] },
  tfae_have : 5  6,
    by simp only [ subset_compl_singleton_iff, exists_mem_subset_iff],
  tfae_have : 5  7,
    by simp only [(nhds_basis_opens _).mem_iff, subset_compl_singleton_iff, exists_prop, and.assoc,
      and.left_comm],
  tfae_have : 5  8,
    by simp only [ principal_singleton, disjoint_principal_right],
  tfae_have : 8  9, from forall_swap.trans (by simp only [disjoint.comm, ne_comm]),
  tfae_have : 1  4,
  { simp only [continuous_def, cofinite_topology.is_open_iff'],
    rintro H s (rfl|hs),
    exacts [is_open_empty, compl_compl s  (@set.finite.is_closed _ _ H _ hs).is_open_compl] },
  tfae_have : 4  2,
    from λ h x, (cofinite_topology.is_closed_iff.2 $ or.inr (finite_singleton _)).preimage h,
  tfae_have : 2  10,
  { simp only [ closure_subset_iff_is_closed, specializes_iff_mem_closure, subset_def,
      mem_singleton_iff, eq_comm] },
  tfae_finish
end

lemma t1_space_iff_continuous_cofinite_of {α : Type*} [topological_space α] :
  t1_space α  continuous (@cofinite_topology.of α) :=
(t1_space_tfae α).out 0 3

lemma cofinite_topology.continuous_of [t1_space α] : continuous (@cofinite_topology.of α) :=
t1_space_iff_continuous_cofinite_of.mp _

lemma t1_space_iff_exists_open : t1_space α 
   (x y), x  y  ( (U : set α) (hU : is_open U), x  U  y  U) :=
(t1_space_tfae α).out 0 6

lemma t1_space_iff_disjoint_pure_nhds : t1_space α   x y : α, x  y  disjoint (pure x) (𝓝 y) :=
(t1_space_tfae α).out 0 8

lemma t1_space_iff_disjoint_nhds_pure : t1_space α   x y : α, x  y  disjoint (𝓝 x) (pure y) :=
(t1_space_tfae α).out 0 7

lemma t1_space_iff_specializes_imp_eq : t1_space α   x y : α, x  y  x = y :=
(t1_space_tfae α).out 0 9

lemma disjoint_pure_nhds [t1_space α] {x y : α} (h : x  y) : disjoint (pure x) (𝓝 y) :=
t1_space_iff_disjoint_pure_nhds.mp _ h

lemma disjoint_nhds_pure [t1_space α] {x y : α} (h : x  y) : disjoint (𝓝 x) (pure y) :=
t1_space_iff_disjoint_nhds_pure.mp _ h

lemma specializes.eq [t1_space α] {x y : α} (h : x  y) : x = y :=
t1_space_iff_specializes_imp_eq.1 _ h

@[simp] lemma specializes_iff_eq [t1_space α] {x y : α} : x  y  x = y :=
specializes.eq, λ h, h  specializes_rfl

instance {α : Type*} : t1_space (cofinite_topology α) :=
t1_space_iff_continuous_cofinite_of.mpr continuous_id

lemma t1_space_antitone {α : Type*} : antitone (@t1_space α) :=
begin
  simp only [antitone, t1_space_iff_continuous_cofinite_of, continuous_iff_le_induced],
  exact λ t₁ t₂ h, h.trans
end

lemma continuous_within_at_update_of_ne [t1_space α] [decidable_eq α] [topological_space β]
  {f : α  β} {s : set α} {x y : α} {z : β} (hne : y  x) :
  continuous_within_at (function.update f x z) s y  continuous_within_at f s y :=
eventually_eq.congr_continuous_within_at
  (mem_nhds_within_of_mem_nhds $ mem_of_superset (is_open_ne.mem_nhds hne) $
    λ y' hy', function.update_noteq hy' _ _)
  (function.update_noteq hne _ _)

lemma continuous_at_update_of_ne [t1_space α] [decidable_eq α] [topological_space β]
  {f : α  β} {x y : α} {z : β} (hne : y  x) :
  continuous_at (function.update f x z) y  continuous_at f y :=
by simp only [ continuous_within_at_univ, continuous_within_at_update_of_ne hne]

lemma continuous_on_update_iff [t1_space α] [decidable_eq α] [topological_space β]
  {f : α  β} {s : set α} {x : α} {y : β} :
  continuous_on (function.update f x y) s 
    continuous_on f (s \ {x})  (x  s  tendsto f (𝓝[s \ {x}] x) (𝓝 y)) :=
begin
  rw [continuous_on,  and_forall_ne x, and_comm],
  refine and_congr λ H z hz, _, λ H z hzx hzs, _ (forall_congr $ λ hxs, _),
  { specialize H z hz.2 hz.1,
    rw continuous_within_at_update_of_ne hz.2 at H,
    exact H.mono (diff_subset _ _) },
  { rw continuous_within_at_update_of_ne hzx,
    refine (H z hzs, hzx).mono_of_mem (inter_mem_nhds_within _ _),
    exact is_open_ne.mem_nhds hzx },
  { exact continuous_within_at_update_same }
end

lemma t1_space_of_injective_of_continuous [topological_space β] {f : α  β}
  (hf : function.injective f) (hf' : continuous f) [t1_space β] : t1_space α :=
t1_space_iff_specializes_imp_eq.2 $ λ x y h, hf (h.map hf').eq

protected lemma embedding.t1_space [topological_space β] [t1_space β] {f : α  β}
  (hf : embedding f) : t1_space α :=
t1_space_of_injective_of_continuous hf.inj hf.continuous

instance subtype.t1_space {α : Type u} [topological_space α] [t1_space α] {p : α  Prop} :
  t1_space (subtype p) :=
embedding_subtype_coe.t1_space

instance [topological_space β] [t1_space α] [t1_space β] : t1_space (α × β) :=
λ a, b, @singleton_prod_singleton _ _ a b  is_closed_singleton.prod is_closed_singleton

instance {ι : Type*} {π : ι  Type*} [Π i, topological_space (π i)] [Π i, t1_space (π i)] :
  t1_space (Π i, π i) :=
λ f, univ_pi_singleton f  is_closed_set_pi (λ i hi, is_closed_singleton)

@[priority 100] -- see Note [lower instance priority]
instance t1_space.t0_space [t1_space α] : t0_space α := λ x y h, h.specializes.eq

@[simp] lemma compl_singleton_mem_nhds_iff [t1_space α] {x y : α} : {x}ᶜ  𝓝 y  y  x :=
is_open_compl_singleton.mem_nhds_iff

lemma compl_singleton_mem_nhds [t1_space α] {x y : α} (h : y  x) : {x}ᶜ  𝓝 y :=
compl_singleton_mem_nhds_iff.mpr h

@[simp] lemma closure_singleton [t1_space α] {a : α} :
  closure ({a} : set α) = {a} :=
is_closed_singleton.closure_eq

lemma set.subsingleton.closure [t1_space α] {s : set α} (hs : s.subsingleton) :
  (closure s).subsingleton :=
hs.induction_on (by simp) $ λ x, by simp

@[simp] lemma subsingleton_closure [t1_space α] {s : set α} :
  (closure s).subsingleton  s.subsingleton :=
λ h, h.mono subset_closure, λ h, h.closure

lemma is_closed_map_const {α β} [topological_space α] [topological_space β] [t1_space β] {y : β} :
  is_closed_map (function.const α y) :=
is_closed_map.of_nonempty $ λ s hs h2s, by simp_rw [h2s.image_const, is_closed_singleton]

lemma bInter_basis_nhds [t1_space α] {ι : Sort*} {p : ι  Prop} {s : ι  set α} {x : α}
  (h : (𝓝 x).has_basis p s) : ( i (h : p i), s i) = {x} :=
begin
  simp only [eq_singleton_iff_unique_mem, mem_Inter],
  refine λ i hi, mem_of_mem_nhds $ h.mem_of_mem hi, λ y hy, _,
  contrapose! hy,
  rcases h.mem_iff.1 (compl_singleton_mem_nhds hy.symm) with i, hi, hsub,
  exact i, hi, λ h, hsub h rfl
end

@[simp] lemma pure_le_nhds_iff [t1_space α] {a b : α} : pure a  𝓝 b  a = b :=
begin
  refine λ h, _, λ h, h  pure_le_nhds a,
  by_contra hab,
  simpa only [mem_pure, mem_compl_iff, mem_singleton, not_true] using
    h (compl_singleton_mem_nhds $ ne.symm hab)
end

@[simp] lemma nhds_le_nhds_iff [t1_space α] {a b : α} : 𝓝 a  𝓝 b  a = b :=
λ h, pure_le_nhds_iff.mp $ (pure_le_nhds a).trans h, λ h, h  le_rfl

@[simp] lemma compl_singleton_mem_nhds_set_iff [t1_space α] {x : α} {s : set α} :
  {x}ᶜ  𝓝ˢ s  x  s :=
by rwa [is_open_compl_singleton.mem_nhds_set, subset_compl_singleton_iff]

@[simp] lemma nhds_set_le_iff [t1_space α] {s t : set α} : 𝓝ˢ s  𝓝ˢ t  s  t :=
begin
  refine _, λ h, monotone_nhds_set h,
  simp_rw [filter.le_def], intros h x hx,
  specialize h {x}ᶜ,
  simp_rw [compl_singleton_mem_nhds_set_iff] at h,
  by_contra hxt,
  exact h hxt hx,
end

@[simp] lemma nhds_set_inj_iff [t1_space α] {s t : set α} : 𝓝ˢ s = 𝓝ˢ t  s = t :=
by { simp_rw [le_antisymm_iff], exact and_congr nhds_set_le_iff nhds_set_le_iff }

lemma injective_nhds_set [t1_space α] : function.injective (𝓝ˢ : set α  filter α) :=
λ s t hst, nhds_set_inj_iff.mp hst

lemma strict_mono_nhds_set [t1_space α] : strict_mono (𝓝ˢ : set α  filter α) :=
monotone_nhds_set.strict_mono_of_injective injective_nhds_set

@[simp] lemma nhds_le_nhds_set [t1_space α] {s : set α} {x : α} : 𝓝 x  𝓝ˢ s  x  s :=
by rw [ nhds_set_singleton, nhds_set_le_iff, singleton_subset_iff]

/-- Removing a non-isolated point from a dense set, one still obtains a dense set. -/
lemma dense.diff_singleton [t1_space α] {s : set α} (hs : dense s) (x : α) [ne_bot (𝓝[] x)] :
  dense (s \ {x}) :=
hs.inter_of_open_right (dense_compl_singleton x) is_open_compl_singleton

/-- Removing a finset from a dense set in a space without isolated points, one still
obtains a dense set. -/
lemma dense.diff_finset [t1_space α] [ (x : α), ne_bot (𝓝[] x)]
  {s : set α} (hs : dense s) (t : finset α) :
  dense (s \ t) :=
begin
  induction t using finset.induction_on with x s hxs ih hd,
  { simpa using hs },
  { rw [finset.coe_insert,  union_singleton,  diff_diff],
    exact ih.diff_singleton _, }
end

/-- Removing a finite set from a dense set in a space without isolated points, one still
obtains a dense set. -/
lemma dense.diff_finite [t1_space α] [ (x : α), ne_bot (𝓝[] x)]
  {s : set α} (hs : dense s) {t : set α} (ht : t.finite) :
  dense (s \ t) :=
begin
  convert hs.diff_finset ht.to_finset,
  exact (finite.coe_to_finset _).symm,
end

/-- If a function to a `t1_space` tends to some limit `b` at some point `a`, then necessarily
`b = f a`. -/
lemma eq_of_tendsto_nhds [topological_space β] [t1_space β] {f : α  β} {a : α} {b : β}
  (h : tendsto f (𝓝 a) (𝓝 b)) : f a = b :=
by_contra $ assume (hfa : f a  b),
have fact₁ : {f a}ᶜ  𝓝 b := compl_singleton_mem_nhds hfa.symm,
have fact₂ : tendsto f (pure a) (𝓝 b) := h.comp (tendsto_id'.2 $ pure_le_nhds a),
fact₂ fact₁ (eq.refl $ f a)

/-- To prove a function to a `t1_space` is continuous at some point `a`, it suffices to prove that
`f` admits *some* limit at `a`. -/
lemma continuous_at_of_tendsto_nhds [topological_space β] [t1_space β] {f : α  β} {a : α} {b : β}
  (h : tendsto f (𝓝 a) (𝓝 b)) : continuous_at f a :=
show tendsto f (𝓝 a) (𝓝 $ f a), by rwa eq_of_tendsto_nhds h

lemma tendsto_const_nhds_iff [t1_space α] {l : filter α} [ne_bot l] {c d : α} :
  tendsto (λ x, c) l (𝓝 d)  c = d :=
by simp_rw [tendsto, filter.map_const, pure_le_nhds_iff]

/-- If the punctured neighborhoods of a point form a nontrivial filter, then any neighborhood is
infinite. -/
lemma infinite_of_mem_nhds {α} [topological_space α] [t1_space α] (x : α) [hx : ne_bot (𝓝[] x)]
  {s : set α} (hs : s  𝓝 x) : set.infinite s :=
begin
  intro hsf,
  have A : {x}  s, by simp only [singleton_subset_iff, mem_of_mem_nhds hs],
  have B : is_closed (s \ {x}) := (hsf.subset (diff_subset _ _)).is_closed,
  have C : (s \ {x})ᶜ  𝓝 x, from B.is_open_compl.mem_nhds (λ h, h.2 rfl),
  have D : {x}  𝓝 x, by simpa only [ diff_eq, diff_diff_cancel_left A] using inter_mem hs C,
  rwa [ mem_interior_iff_mem_nhds, interior_singleton] at D
end

lemma discrete_of_t1_of_finite {X : Type*} [topological_space X] [t1_space X] [fintype X] :
  discrete_topology X :=
begin
  apply singletons_open_iff_discrete.mp,
  intros x,
  rw [ is_closed_compl_iff],
  exact (set.to_finite _).is_closed
end

lemma singleton_mem_nhds_within_of_mem_discrete {s : set α} [discrete_topology s]
  {x : α} (hx : x  s) :
  {x}  𝓝[s] x :=
begin
  have : ({x, hx} : set s)  𝓝 (x, hx : s), by simp [nhds_discrete],
  simpa only [nhds_within_eq_map_subtype_coe hx, image_singleton]
    using @image_mem_map _ _ _ (coe : s  α) _ this
end

/-- The neighbourhoods filter of `x` within `s`, under the discrete topology, is equal to
the pure `x` filter (which is the principal filter at the singleton `{x}`.) -/
lemma nhds_within_of_mem_discrete {s : set α} [discrete_topology s] {x : α} (hx : x  s) :
  𝓝[s] x = pure x :=
le_antisymm (le_pure_iff.2 $ singleton_mem_nhds_within_of_mem_discrete hx) (pure_le_nhds_within hx)

lemma filter.has_basis.exists_inter_eq_singleton_of_mem_discrete
  {ι : Type*} {p : ι  Prop} {t : ι  set α} {s : set α} [discrete_topology s] {x : α}
  (hb : (𝓝 x).has_basis p t) (hx : x  s) :
   i (hi : p i), t i  s = {x} :=
begin
  rcases (nhds_within_has_basis hb s).mem_iff.1 (singleton_mem_nhds_within_of_mem_discrete hx)
    with i, hi, hix,
  exact i, hi, subset.antisymm hix $ singleton_subset_iff.2
    mem_of_mem_nhds $ hb.mem_of_mem hi, hx⟩⟩
end

/-- A point `x` in a discrete subset `s` of a topological space admits a neighbourhood
that only meets `s` at `x`.  -/
lemma nhds_inter_eq_singleton_of_mem_discrete {s : set α} [discrete_topology s]
  {x : α} (hx : x  s) :
   U  𝓝 x, U  s = {x} :=
by simpa using (𝓝 x).basis_sets.exists_inter_eq_singleton_of_mem_discrete hx

/-- For point `x` in a discrete subset `s` of a topological space, there is a set `U`
such that
1. `U` is a punctured neighborhood of `x` (ie. `U  {x}` is a neighbourhood of `x`),
2. `U` is disjoint from `s`.
-/
lemma disjoint_nhds_within_of_mem_discrete {s : set α} [discrete_topology s] {x : α} (hx : x  s) :
   U  𝓝[] x, disjoint U s :=
let V, h, h' := nhds_inter_eq_singleton_of_mem_discrete hx in
  {x}ᶜ  V, inter_mem_nhds_within _ h,
    (disjoint_iff_inter_eq_empty.mpr (by { rw [inter_assoc, h', compl_inter_self] }))

/-- Let `X` be a topological space and let `s, t  X` be two subsets.  If there is an inclusion
`t  s`, then the topological space structure on `t` induced by `X` is the same as the one
obtained by the induced topological space structure on `s`. -/
lemma topological_space.subset_trans {X : Type*} [tX : topological_space X]
  {s t : set X} (ts : t  s) :
  (subtype.topological_space : topological_space t) =
    (subtype.topological_space : topological_space s).induced (set.inclusion ts) :=
begin
  change tX.induced ((coe : s  X)  (set.inclusion ts)) =
    topological_space.induced (set.inclusion ts) (tX.induced _),
  rw  induced_compose,
end

/-- This lemma characterizes discrete topological spaces as those whose singletons are
neighbourhoods. -/
lemma discrete_topology_iff_nhds {X : Type*} [topological_space X] :
  discrete_topology X  (nhds : X  filter X) = pure :=
begin
  split,
  { introI hX,
    exact nhds_discrete X },
  { intro h,
    constructor,
    apply eq_of_nhds_eq_nhds,
    simp [h, nhds_bot] }
end

/-- The topology pulled-back under an inclusion `f : X  Y` from the discrete topology (``) is the
discrete topology.
This version does not assume the choice of a topology on either the source `X`
nor the target `Y` of the inclusion `f`. -/
lemma induced_bot {X Y : Type*} {f : X  Y} (hf : function.injective f) :
  topological_space.induced f  =  :=
eq_of_nhds_eq_nhds (by simp [nhds_induced,  set.image_singleton, hf.preimage_image, nhds_bot])

/-- The topology induced under an inclusion `f : X  Y` from the discrete topological space `Y`
is the discrete topology on `X`. -/
lemma discrete_topology_induced {X Y : Type*} [tY : topological_space Y] [discrete_topology Y]
  {f : X  Y} (hf : function.injective f) : @discrete_topology X (topological_space.induced f tY) :=
begin
  constructor,
  rw discrete_topology.eq_bot Y,
  exact induced_bot hf
end

/-- Let `s, t  X` be two subsets of a topological space `X`.  If `t  s` and the topology induced
by `X`on `s` is discrete, then also the topology induces on `t` is discrete.  -/
lemma discrete_topology.of_subset {X : Type*} [topological_space X] {s t : set X}
  (ds : discrete_topology s) (ts : t  s) :
  discrete_topology t :=
begin
  rw [topological_space.subset_trans ts, ds.eq_bot],
  exact {eq_bot := induced_bot (set.inclusion_injective ts)}
end

/-- A T₂ space, also known as a Hausdorff space, is one in which for every
  `x  y` there exists disjoint open sets around `x` and `y`. This is
  the most widely used of the separation axioms. -/
@[mk_iff] class t2_space (α : Type u) [topological_space α] : Prop :=
(t2 : ∀ x y, xy → ∃ u v : set α, is_open uis_open vxuyvdisjoint u v)

/-- Two different points can be separated by open sets. -/
lemma t2_separation [t2_space α] {x y : α} (h : x  y) :
   u v : set α, is_open u  is_open v  x  u  y  v  disjoint u v :=
t2_space.t2 x y h

lemma t2_space_iff_disjoint_nhds : t2_space α   x y : α, x  y  disjoint (𝓝 x) (𝓝 y) :=
begin
  refine (t2_space_iff α).trans (forall₃_congr $ λ x y hne, _),
  simp only [(nhds_basis_opens x).disjoint_iff (nhds_basis_opens y), exists_prop,
     exists_and_distrib_left, and.assoc, and_comm, and.left_comm]
end

@[simp] lemma disjoint_nhds_nhds [t2_space α] {x y : α} : disjoint (𝓝 x) (𝓝 y)  x  y :=
λ hd he, by simpa [he, nhds_ne_bot.ne] using hd, t2_space_iff_disjoint_nhds.mp _ x y

/-- A finite set can be separated by open sets. -/
lemma t2_separation_finset [t2_space α] (s : finset α) :
   f : α  set α, set.pairwise_disjoint s f   x  s, x  f x  is_open (f x) :=
finset.induction_on s (by simp) begin
  rintros t s ht f, hf, hf',
  have hty :  y : s, t  y := by { rintros y rfl, exact ht y.2 },
  choose u v hu hv htu hxv huv using λ {x} (h : t  x), t2_separation h,
  refine λ x, if ht : t = x then  y : s, u (hty y) else f x  v ht, _, _,
  { rintros x hx₁ y hy₁ hxy a hx, hy,
    rw [finset.mem_coe, finset.mem_insert, eq_comm] at hx₁ hy₁,
    rcases eq_or_ne t x with rfl | hx₂;
    rcases eq_or_ne t y with rfl | hy₂,
    { exact hxy rfl },
    { simp_rw [dif_pos rfl, mem_Inter] at hx,
      simp_rw [dif_neg hy₂] at hy,
      exact huv hy₂ hx y, hy₁.resolve_left hy₂, hy.2 },
    { simp_rw [dif_neg hx₂] at hx,
      simp_rw [dif_pos rfl, mem_Inter] at hy,
      exact huv hx₂ hy x, hx₁.resolve_left hx₂, hx.2 },
    { simp_rw [dif_neg hx₂] at hx,
      simp_rw [dif_neg hy₂] at hy,
      exact hf (hx₁.resolve_left hx₂) (hy₁.resolve_left hy₂) hxy hx.1, hy.1 } },
  { intros x hx,
    split_ifs with ht,
    { refine mem_Inter.2 (λ y, _), is_open_Inter (λ y, hu (hty y)),
      rw ht,
      exact htu (hty y) },
    { have hx := hf' x ((finset.mem_insert.1 hx).resolve_left (ne.symm ht)),
      exact ⟨⟨hx.1, hxv ht, is_open.inter hx.2 (hv ht) } }
end

@[priority 100] -- see Note [lower instance priority]
instance t2_space.t1_space [t2_space α] : t1_space α :=
t1_space_iff_disjoint_pure_nhds.mpr $ λ x y hne, (disjoint_nhds_nhds.2 hne).mono_left $
  pure_le_nhds _

/-- A space is T₂ iff the neighbourhoods of distinct points generate the bottom filter. -/
lemma t2_iff_nhds : t2_space α   {x y : α}, ne_bot (𝓝 x  𝓝 y)  x = y :=
by simp only [t2_space_iff_disjoint_nhds, disjoint_iff, ne_bot_iff, ne.def, not_imp_comm]

lemma eq_of_nhds_ne_bot [t2_space α] {x y : α} (h : ne_bot (𝓝 x  𝓝 y)) : x = y :=
t2_iff_nhds.mp _ h

lemma t2_space_iff_nhds : t2_space α   {x y : α}, x  y   (U  𝓝 x) (V  𝓝 y), disjoint U V :=
by simp only [t2_space_iff_disjoint_nhds, filter.disjoint_iff]

lemma t2_separation_nhds [t2_space α] {x y : α} (h : x  y) :
   u v, u  𝓝 x  v  𝓝 y  disjoint u v :=
let u, v, open_u, open_v, x_in, y_in, huv := t2_separation h in
u, v, open_u.mem_nhds x_in, open_v.mem_nhds y_in, huv

lemma t2_separation_compact_nhds [locally_compact_space α] [t2_space α] {x y : α} (h : x  y) :
   u v, u  𝓝 x  v  𝓝 y  is_compact u  is_compact v  disjoint u v :=
by simpa only [exists_prop,  exists_and_distrib_left, and_comm, and.assoc, and.left_comm]
  using ((compact_basis_nhds x).disjoint_iff (compact_basis_nhds y)).1 (disjoint_nhds_nhds.2 h)

lemma t2_iff_ultrafilter :
  t2_space α   {x y : α} (f : ultrafilter α), f  𝓝 x  f  𝓝 y  x = y :=
t2_iff_nhds.trans $ by simp only [exists_ultrafilter_iff, and_imp, le_inf_iff, exists_imp_distrib]

lemma t2_iff_is_closed_diagonal : t2_space α  is_closed (diagonal α) :=
by simp only [t2_space_iff_disjoint_nhds,  is_open_compl_iff, is_open_iff_mem_nhds, prod.forall,
  nhds_prod_eq, compl_diagonal_mem_prod, mem_compl_iff, mem_diagonal_iff]

lemma is_closed_diagonal [t2_space α] : is_closed (diagonal α) :=
t2_iff_is_closed_diagonal.mp _

section separated

open separated finset

lemma finset_disjoint_finset_opens_of_t2 [t2_space α] :
   (s t : finset α), disjoint s t  separated (s : set α) t :=
begin
  refine induction_on_union _ (λ a b hi d, (hi d.symm).symm) (λ a d, empty_right a) (λ a b ab, _) _,
  { obtain U, V, oU, oV, aU, bV, UV := t2_separation (finset.disjoint_singleton.1 ab),
    refine U, V, oU, oV, _, _, UV;
    exact singleton_subset_set_iff.mpr _ },
  { intros a b c ac bc d,
    apply_mod_cast union_left (ac (disjoint_of_subset_left (a.subset_union_left b) d)) (bc _),
    exact disjoint_of_subset_left (a.subset_union_right b) d },
end

lemma point_disjoint_finset_opens_of_t2 [t2_space α] {x : α} {s : finset α} (h : x  s) :
  separated ({x} : set α) s :=
by exact_mod_cast finset_disjoint_finset_opens_of_t2 {x} s (finset.disjoint_singleton_left.mpr h)

end separated

lemma tendsto_nhds_unique [t2_space α] {f : β  α} {l : filter β} {a b : α}
  [ne_bot l] (ha : tendsto f l (𝓝 a)) (hb : tendsto f l (𝓝 b)) : a = b :=
eq_of_nhds_ne_bot $ ne_bot_of_le $ le_inf ha hb

lemma tendsto_nhds_unique' [t2_space α] {f : β  α} {l : filter β} {a b : α}
  (hl : ne_bot l) (ha : tendsto f l (𝓝 a)) (hb : tendsto f l (𝓝 b)) : a = b :=
eq_of_nhds_ne_bot $ ne_bot_of_le $ le_inf ha hb

lemma tendsto_nhds_unique_of_eventually_eq [t2_space α] {f g : β  α} {l : filter β} {a b : α}
  [ne_bot l] (ha : tendsto f l (𝓝 a)) (hb : tendsto g l (𝓝 b)) (hfg : f =ᶠ[l] g) :
  a = b :=
tendsto_nhds_unique (ha.congr' hfg) hb

lemma tendsto_nhds_unique_of_frequently_eq [t2_space α] {f g : β  α} {l : filter β} {a b : α}
  (ha : tendsto f l (𝓝 a)) (hb : tendsto g l (𝓝 b)) (hfg : ᶠ x in l, f x = g x) :
  a = b :=
have ᶠ z : α × α in 𝓝 (a, b), z.1 = z.2 := (ha.prod_mk_nhds hb).frequently hfg,
not_not.1 $ λ hne, this (is_closed_diagonal.is_open_compl.mem_nhds hne)

/-- A T₂.₅ space, also known as a Urysohn space, is a topological space
  where for every pair `x  y`, there are two open sets, with the intersection of closures
  empty, one containing `x` and the other `y` . -/
class t2_5_space (α : Type u) [topological_space α]: Prop :=
(t2_5 : ∀ x y  (h : xy), ∃ (U V: set α), is_open Uis_open Vdisjoint (closure U) (closure V) ∧ xUyV)

@[priority 100] -- see Note [lower instance priority]
instance t2_5_space.t2_space [t2_5_space α] : t2_space α :=
⟨λ x y hxy,
  letU, V, hU, hV, hUV, hh⟩ := t2_5_space.t2_5 x y hxy inU, V, hU, hV, hh.1, hh.2, hUV.mono subset_closure subset_closure⟩⟩

section lim
variables [t2_space α] {f : filter α}

/-!
### Properties of `Lim` and `lim`

In this section we use explicit `nonempty α` instances for `Lim` and `lim`. This way the lemmas
are useful without a `nonempty α` instance.
-/

lemma Lim_eq {a : α} [ne_bot f] (h : f  𝓝 a) :
  @Lim _ _ a f = a :=
tendsto_nhds_unique (le_nhds_Lim a, h) h

lemma Lim_eq_iff [ne_bot f] (h :  (a : α), f  nhds a) {a} : @Lim _ _ a f = a  f  𝓝 a :=
λ c, c  le_nhds_Lim h, Lim_eq

lemma ultrafilter.Lim_eq_iff_le_nhds [compact_space α] {x : α} {F : ultrafilter α} :
  F.Lim = x  F  𝓝 x :=
λ h, h  F.le_nhds_Lim, Lim_eq

lemma is_open_iff_ultrafilter' [compact_space α] (U : set α) :
  is_open U  ( F : ultrafilter α, F.Lim  U  U  F.1) :=
begin
  rw is_open_iff_ultrafilter,
  refine λ h F hF, h F.Lim hF F F.le_nhds_Lim, _,
  intros cond x hx f h,
  rw [ (ultrafilter.Lim_eq_iff_le_nhds.2 h)] at hx,
  exact cond _ hx
end

lemma filter.tendsto.lim_eq {a : α} {f : filter β} [ne_bot f] {g : β  α} (h : tendsto g f (𝓝 a)) :
  @lim _ _ _ a f g = a :=
Lim_eq h

lemma filter.lim_eq_iff {f : filter β} [ne_bot f] {g : β  α} (h :  a, tendsto g f (𝓝 a)) {a} :
  @lim _ _ _ a f g = a  tendsto g f (𝓝 a) :=
λ c, c  tendsto_nhds_lim h, filter.tendsto.lim_eq

lemma continuous.lim_eq [topological_space β] {f : β  α} (h : continuous f) (a : β) :
  @lim _ _ _ f a (𝓝 a) f = f a :=
(h.tendsto a).lim_eq

@[simp] lemma Lim_nhds (a : α) : @Lim _ _ a (𝓝 a) = a :=
Lim_eq le_rfl

@[simp] lemma lim_nhds_id (a : α) : @lim _ _ _ a (𝓝 a) id = a :=
Lim_nhds a

@[simp] lemma Lim_nhds_within {a : α} {s : set α} (h : a  closure s) :
  @Lim _ _ a (𝓝[s] a) = a :=
by haveI : ne_bot (𝓝[s] a) := mem_closure_iff_cluster_pt.1 h;
exact Lim_eq inf_le_left

@[simp] lemma lim_nhds_within_id {a : α} {s : set α} (h : a  closure s) :
  @lim _ _ _ a (𝓝[s] a) id = a :=
Lim_nhds_within h

end lim

/-!
### `t2_space` constructions

We use two lemmas to prove that various standard constructions generate Hausdorff spaces from
Hausdorff spaces:

* `separated_by_continuous` says that two points `x y : α` can be separated by open neighborhoods
  provided that there exists a continuous map `f : α  β` with a Hausdorff codomain such that
  `f x  f y`. We use this lemma to prove that topological spaces defined using `induced` are
  Hausdorff spaces.

* `separated_by_open_embedding` says that for an open embedding `f : α  β` of a Hausdorff space
  `α`, the images of two distinct points `x y : α`, `x  y` can be separated by open neighborhoods.
  We use this lemma to prove that topological spaces defined using `coinduced` are Hausdorff spaces.
-/

@[priority 100] -- see Note [lower instance priority]
instance discrete_topology.to_t2_space {α : Type*} [topological_space α] [discrete_topology α] :
  t2_space α :=
λ x y h, {x}, {y}, is_open_discrete _, is_open_discrete _, rfl, rfl, disjoint_singleton.2 h⟩⟩

lemma separated_by_continuous {α : Type*} {β : Type*}
  [topological_space α] [topological_space β] [t2_space β]
  {f : α  β} (hf : continuous f) {x y : α} (h : f x  f y) :
  u v : set α, is_open u  is_open v  x  u  y  v  disjoint u v :=
let u, v, uo, vo, xu, yv, uv := t2_separation h in
f ⁻¹' u, f ⁻¹' v, uo.preimage hf, vo.preimage hf, xu, yv, uv.preimage _

lemma separated_by_open_embedding {α β : Type*} [topological_space α] [topological_space β]
  [t2_space α] {f : α  β} (hf : open_embedding f) {x y : α} (h : x  y) :
   u v : set β, is_open u  is_open v  f x  u  f y  v  disjoint u v :=
let u, v, uo, vo, xu, yv, uv := t2_separation h in
f '' u, f '' v, hf.is_open_map _ uo, hf.is_open_map _ vo,
  mem_image_of_mem _ xu, mem_image_of_mem _ yv, disjoint_image_of_injective hf.inj uv

instance {α : Type*} {p : α  Prop} [t : topological_space α] [t2_space α] : t2_space (subtype p) :=
assume x y h, separated_by_continuous continuous_subtype_val (mt subtype.eq h)

instance {α : Type*} {β : Type*} [t₁ : topological_space α] [t2_space α]
  [t₂ : topological_space β] [t2_space β] : t2_space (α × β) :=
assume x₁,x₂ y₁,y₂ h,
  or.elim (not_and_distrib.mp (mt prod.ext_iff.mpr h))
    (λ h₁, separated_by_continuous continuous_fst h₁)
    (λ h₂, separated_by_continuous continuous_snd h₂)

lemma embedding.t2_space [topological_space β] [t2_space β] {f : α  β} (hf : embedding f) :
  t2_space α :=
λ x y h, separated_by_continuous hf.continuous (hf.inj.ne h)

instance {α : Type*} {β : Type*} [t₁ : topological_space α] [t2_space α]
  [t₂ : topological_space β] [t2_space β] : t2_space (α  β) :=
begin
  constructor,
  rintros (x|x) (y|y) h,
  { replace h : x  y := λ c, (c.subst h) rfl,
    exact separated_by_open_embedding open_embedding_inl h },
  { exact _, _, is_open_range_inl, is_open_range_inr, x, rfl, y, rfl,
      is_compl_range_inl_range_inr.disjoint },
  { exact _, _, is_open_range_inr, is_open_range_inl, x, rfl, y, rfl,
      is_compl_range_inl_range_inr.disjoint.symm },
  { replace h : x  y := λ c, (c.subst h) rfl,
    exact separated_by_open_embedding open_embedding_inr h }
end

instance Pi.t2_space {α : Type*} {β : α  Type v} [t₂ : Πa, topological_space (β a)]
  [a, t2_space (β a)] :
  t2_space (Πa, β a) :=
assume x y h,
  let i, hi := not_forall.mp (mt funext h) in
  separated_by_continuous (continuous_apply i) hi

instance sigma.t2_space {ι : Type*} {α : ι  Type*} [Πi, topological_space (α i)]
  [a, t2_space (α a)] :
  t2_space (Σi, α i) :=
begin
  constructor,
  rintros i, x j, y neq,
  rcases em (i = j) with (rfl|h),
  { replace neq : x  y := λ c, (c.subst neq) rfl,
    exact separated_by_open_embedding open_embedding_sigma_mk neq },
  { exact _, _, is_open_range_sigma_mk, is_open_range_sigma_mk, x, rfl, y, rfl, by tidy }
end

variables [topological_space β]

lemma is_closed_eq [t2_space α] {f g : β  α}
  (hf : continuous f) (hg : continuous g) : is_closed {x:β | f x = g x} :=
continuous_iff_is_closed.mp (hf.prod_mk hg) _ is_closed_diagonal

lemma is_open_ne_fun [t2_space α] {f g : β  α}
  (hf : continuous f) (hg : continuous g) : is_open {x:β | f x  g x} :=
is_open_compl_iff.mpr $ is_closed_eq hf hg

/-- If two continuous maps are equal on `s`, then they are equal on the closure of `s`. See also
`set.eq_on.of_subset_closure` for a more general version. -/
lemma set.eq_on.closure [t2_space α] {s : set β} {f g : β  α} (h : eq_on f g s)
  (hf : continuous f) (hg : continuous g) :
  eq_on f g (closure s) :=
closure_minimal h (is_closed_eq hf hg)

/-- If two continuous functions are equal on a dense set, then they are equal. -/
lemma continuous.ext_on [t2_space α] {s : set β} (hs : dense s) {f g : β  α}
  (hf : continuous f) (hg : continuous g) (h : eq_on f g s) :
  f = g :=
funext $ λ x, h.closure hf hg (hs x)

/-- If `f x = g x` for all `x  s` and `f`, `g` are continuous on `t`, `s  t  closure s`, then
`f x = g x` for all `x  t`. See also `set.eq_on.closure`. -/
lemma set.eq_on.of_subset_closure [t2_space α] {s t : set β} {f g : β  α} (h : eq_on f g s)
  (hf : continuous_on f t) (hg : continuous_on g t) (hst : s  t) (hts : t  closure s) :
  eq_on f g t :=
begin
  intros x hx,
  haveI : (𝓝[s] x).ne_bot, from mem_closure_iff_cluster_pt.mp (hts hx),
  exact tendsto_nhds_unique_of_eventually_eq ((hf x hx).mono_left $ nhds_within_mono _ hst)
    ((hg x hx).mono_left $ nhds_within_mono _ hst) (h.eventually_eq_of_mem self_mem_nhds_within)
end

lemma function.left_inverse.closed_range [t2_space α] {f : α  β} {g : β  α}
  (h : function.left_inverse f g) (hf : continuous f) (hg : continuous g) :
  is_closed (range g) :=
have eq_on (g  f) id (closure $ range g),
  from h.right_inv_on_range.eq_on.closure (hg.comp hf) continuous_id,
is_closed_of_closure_subset $ λ x hx,
calc x = g (f x) : (this hx).symm
   ...  _ : mem_range_self _

lemma function.left_inverse.closed_embedding [t2_space α] {f : α  β} {g : β  α}
  (h : function.left_inverse f g) (hf : continuous f) (hg : continuous g) :
  closed_embedding g :=
h.embedding hf hg, h.closed_range hf hg

lemma compact_compact_separated [t2_space α] {s t : set α}
  (hs : is_compact s) (ht : is_compact t) (hst : disjoint s t) :
   u v, is_open u  is_open v  s  u  t  v  disjoint u v :=
by simp only [prod_subset_compl_diagonal_iff_disjoint.symm] at  hst;
   exact generalized_tube_lemma hs ht is_closed_diagonal.is_open_compl hst

/-- In a `t2_space`, every compact set is closed. -/
lemma is_compact.is_closed [t2_space α] {s : set α} (hs : is_compact s) : is_closed s :=
is_open_compl_iff.1 $ is_open_iff_forall_mem_open.mpr $ assume x hx,
  let u, v, uo, vo, su, xv, uv :=
    compact_compact_separated hs is_compact_singleton (disjoint_singleton_right.2 hx) in
v, (uv.mono_left $ show s  u, from su).subset_compl_left, vo, by simpa using xv

@[simp] lemma filter.coclosed_compact_eq_cocompact [t2_space α] :
  coclosed_compact α = cocompact α :=
by simp [coclosed_compact, cocompact, infi_and', and_iff_right_of_imp is_compact.is_closed]

@[simp] lemma bornology.relatively_compact_eq_in_compact [t2_space α] :
  bornology.relatively_compact α = bornology.in_compact α :=
by rw bornology.ext_iff; exact filter.coclosed_compact_eq_cocompact

/-- If `V : ι  set α` is a decreasing family of compact sets then any neighborhood of
` i, V i` contains some `V i`. This is a version of `exists_subset_nhd_of_compact'` where we
don't need to assume each `V i` closed because it follows from compactness since `α` is
assumed to be Hausdorff. -/
lemma exists_subset_nhd_of_compact [t2_space α] {ι : Type*} [nonempty ι] {V : ι  set α}
  (hV : directed () V) (hV_cpct :  i, is_compact (V i)) {U : set α}
  (hU :  x   i, V i, U  𝓝 x) :  i, V i  U :=
exists_subset_nhd_of_compact' hV hV_cpct (λ i, (hV_cpct i).is_closed) hU

lemma compact_exhaustion.is_closed [t2_space α] (K : compact_exhaustion α) (n : ℕ) :
  is_closed (K n) :=
(K.is_compact n).is_closed

lemma is_compact.inter [t2_space α] {s t : set α} (hs : is_compact s) (ht : is_compact t) :
  is_compact (s  t) :=
hs.inter_right $ ht.is_closed

lemma compact_closure_of_subset_compact [t2_space α] {s t : set α} (ht : is_compact t) (h : s  t) :
  is_compact (closure s) :=
compact_of_is_closed_subset ht is_closed_closure (closure_minimal h ht.is_closed)

@[simp]
lemma exists_compact_superset_iff [t2_space α] {s : set α} :
  ( K, is_compact K  s  K)  is_compact (closure s) :=
λ K, hK, hsK, compact_closure_of_subset_compact hK hsK, λ h, closure s, h, subset_closure⟩⟩

lemma image_closure_of_compact [t2_space β]
  {s : set α} (hs : is_compact (closure s)) {f : α  β} (hf : continuous_on f (closure s)) :
  f '' closure s = closure (f '' s) :=
subset.antisymm hf.image_closure $ closure_minimal (image_subset f subset_closure)
  (hs.image_of_continuous_on hf).is_closed

/-- If a compact set is covered by two open sets, then we can cover it by two compact subsets. -/
lemma is_compact.binary_compact_cover [t2_space α] {K U V : set α} (hK : is_compact K)
  (hU : is_open U) (hV : is_open V) (h2K : K  U  V) :
   K₁ K₂ : set α, is_compact K₁  is_compact K₂  K₁  U  K₂  V  K = K₁  K₂ :=
begin
  obtain O₁, O₂, h1O₁, h1O₂, h2O₁, h2O₂, hO := compact_compact_separated (hK.diff hU) (hK.diff hV)
    (by rwa [disjoint_iff_inter_eq_empty, diff_inter_diff, diff_eq_empty]),
  exact _, _, hK.diff h1O₁, hK.diff h1O₂, by rwa [diff_subset_comm], by rwa [diff_subset_comm],
    by rw [ diff_inter, hO.inter_eq, diff_empty]
end

lemma continuous.is_closed_map [compact_space α] [t2_space β] {f : α  β} (h : continuous f) :
  is_closed_map f :=
λ s hs, (hs.is_compact.image h).is_closed

lemma continuous.closed_embedding [compact_space α] [t2_space β] {f : α  β} (h : continuous f)
  (hf : function.injective f) : closed_embedding f :=
closed_embedding_of_continuous_injective_closed h hf h.is_closed_map

section
open finset function
/-- For every finite open cover `Uᵢ` of a compact set, there exists a compact cover `Kᵢ  Uᵢ`. -/
lemma is_compact.finite_compact_cover [t2_space α] {s : set α} (hs : is_compact s)
  {ι} (t : finset ι) (U : ι  set α) (hU :  i  t, is_open (U i)) (hsC : s   i  t, U i) :
   K : ι  set α, ( i, is_compact (K i))  (i, K i  U i)  s =  i  t, K i :=
begin
  classical,
  induction t using finset.induction with x t hx ih generalizing U hU s hs hsC,
  { refine λ _, , λ i, is_compact_empty, λ i, empty_subset _, _,
    simpa only [subset_empty_iff, Union_false, Union_empty] using hsC },
  simp only [finset.set_bUnion_insert] at hsC,
  simp only [finset.mem_insert] at hU,
  have hU' :  i  t, is_open (U i) := λ i hi, hU i (or.inr hi),
  rcases hs.binary_compact_cover (hU x (or.inl rfl)) (is_open_bUnion hU') hsC
    with K₁, K₂, h1K₁, h1K₂, h2K₁, h2K₂, hK,
  rcases ih U hU' h1K₂ h2K₂ with K, h1K, h2K, h3K,
  refine update K x K₁, _, _, _,
  { intros i, by_cases hi : i = x,
    { simp only [update_same, hi, h1K₁] },
    { rw [ ne.def] at hi, simp only [update_noteq hi, h1K] }},
  { intros i, by_cases hi : i = x,
    { simp only [update_same, hi, h2K₁] },
    { rw [ ne.def] at hi, simp only [update_noteq hi, h2K] }},
  { simp only [set_bUnion_insert_update _ hx, hK, h3K] }
end
end

lemma locally_compact_of_compact_nhds [t2_space α] (h :  x : α,  s, s  𝓝 x  is_compact s) :
  locally_compact_space α :=
assume x n hn,
  let u, un, uo, xu := mem_nhds_iff.mp hn in
  let k, kx, kc := h x in
  -- K is compact but not necessarily contained in N.
  -- K \ U is again compact and doesn't contain x, so
  -- we may find open sets V, W separating x from K \ U.
  -- Then K \ W is a compact neighborhood of x contained in U.
  let v, w, vo, wo, xv, kuw, vw := compact_compact_separated is_compact_singleton (kc.diff uo)
      (disjoint_singleton_left.2 $ λ h, h.2 xu) in
  have wn : wᶜ  𝓝 x, from
   mem_nhds_iff.mpr v, vw.subset_compl_right, vo, singleton_subset_iff.mp xv,
  k \ w,
   filter.inter_mem kx wn,
   subset.trans (diff_subset_comm.mp kuw) un,
   kc.diff wo⟩⟩

@[priority 100] -- see Note [lower instance priority]
instance locally_compact_of_compact [t2_space α] [compact_space α] : locally_compact_space α :=
locally_compact_of_compact_nhds (assume x, univ, is_open_univ.mem_nhds trivial, compact_univ)

/-- In a locally compact T₂ space, every point has an open neighborhood with compact closure -/
lemma exists_open_with_compact_closure [locally_compact_space α] [t2_space α] (x : α) :
   (U : set α), is_open U  x  U  is_compact (closure U) :=
begin
  rcases exists_compact_mem_nhds x with K, hKc, hxK,
  rcases mem_nhds_iff.1 hxK with t, h1t, h2t, h3t,
  exact t, h2t, h3t, compact_closure_of_subset_compact hKc h1t
end

/--
In a locally compact T₂ space, every compact set has an open neighborhood with compact closure.
-/
lemma exists_open_superset_and_is_compact_closure [locally_compact_space α] [t2_space α]
  {K : set α} (hK : is_compact K) :  V, is_open V  K  V  is_compact (closure V) :=
begin
  rcases exists_compact_superset hK with K', hK', hKK',
  refine interior K', is_open_interior, hKK',
    compact_closure_of_subset_compact hK' interior_subset,
end

lemma is_preirreducible_iff_subsingleton [t2_space α] (S : set α) :
  is_preirreducible S  S.subsingleton :=
begin
  refine λ h x hx y hy, _, set.subsingleton.is_preirreducible,
  by_contradiction e,
  obtain U, V, hU, hV, hxU, hyV, h' := t2_separation e,
  exact ((h U V hU hV x, hx, hxU y, hy, hyV).mono $ inter_subset_right _ _).not_disjoint h',
end

lemma is_irreducible_iff_singleton [t2_space α] (S : set α) :
  is_irreducible S   x, S = {x} :=
by rw [is_irreducible, is_preirreducible_iff_subsingleton,
  exists_eq_singleton_iff_nonempty_subsingleton]

end separation

section t3

/-- A T₃ space is a T₀ space in which for every closed `C` and `x  C`, there exist
  disjoint open sets containing `x` and `C` respectively. -/
class t3_space (α : Type u) [topological_space α] extends t0_space α : Prop :=
(regular : ∀{s:set α} {a}, is_closed s  a  s  t, is_open t  s  t  𝓝[t] a = )

@[priority 100] -- see Note [lower instance priority]
instance t3_space.t1_space [t3_space α] : t1_space α :=
begin
  rw t1_space_iff_exists_open,
  intros x y hxy,
  obtain U, hU, h := exists_is_open_xor_mem hxy,
  cases h,
  { exact U, hU, h },
  { obtain R, hR, hh := t3_space.regular (is_closed_compl_iff.mpr hU) (not_not.mpr h.1),
    obtain V, hV, hhh := mem_nhds_iff.1 (filter.inf_principal_eq_bot.1 hh.2),
    exact R, hR, hh.1 (mem_compl h.2), hV hhh.2 }
end

lemma nhds_is_closed [t3_space α] {a : α} {s : set α} (h : s  𝓝 a) :
   t  𝓝 a, t  s  is_closed t :=
let s', h₁, h₂, h₃ := mem_nhds_iff.mp h in
have t, is_open t  s'ᶜ  t  𝓝[t] a = ,
  from t3_space.regular h₂.is_closed_compl (not_not_intro h₃),
let t, ht₁, ht₂, ht₃ := this in
tᶜ,
  mem_of_eq_bot $ by rwa [compl_compl],
  subset.trans (compl_subset_comm.1 ht₂) h₁,
  is_closed_compl_iff.mpr ht₁

lemma closed_nhds_basis [t3_space α] (a : α) :
  (𝓝 a).has_basis (λ s : set α, s  𝓝 a  is_closed s) id :=
λ t, λ t_in, let s, s_in, h_st, h := nhds_is_closed t_in in s, s_in, h, h_st,
       λ s, s_in, hs, hst, mem_of_superset s_in hst⟩⟩

lemma topological_space.is_topological_basis.exists_closure_subset [t3_space α]
  {B : set (set α)} (hB : topological_space.is_topological_basis B) {a : α} {s : set α}
  (h : s  𝓝 a) :
   t  B, a  t  closure t  s :=
begin
  rcases nhds_is_closed h with t, hat, hts, htc,
  rcases hB.mem_nhds_iff.1 hat with u, huB, hau, hut,
  exact u, huB, hau, (closure_minimal hut htc).trans hts
end

lemma topological_space.is_topological_basis.nhds_basis_closure [t3_space α]
  {B : set (set α)} (hB : topological_space.is_topological_basis B) (a : α) :
  (𝓝 a).has_basis (λ s : set α, a  s  s  B) closure :=
λ s, λ h, let t, htB, hat, hts := hB.exists_closure_subset h in t, hat, htB, hts,
  λ t, hat, htB, hts, mem_of_superset (hB.mem_nhds htB hat) (subset_closure.trans hts)⟩⟩

protected lemma embedding.t3_space [topological_space β] [t3_space β] {f : α  β}
  (hf : embedding f) : t3_space α :=
{ to_t0_space := hf.t0_space,
  regular :=
  begin
    intros s a hs ha,
    rcases hf.to_inducing.is_closed_iff.1 hs with s, hs', rfl,
    rcases t3_space.regular hs' ha with t, ht, hst, hat,
    refine f ⁻¹' t, ht.preimage hf.continuous, preimage_mono hst, _,
    rw [nhds_within, hf.to_inducing.nhds_eq_comap,  comap_principal,  comap_inf,
         nhds_within, hat, comap_bot]
  end }

instance subtype.t3_space [t3_space α] {p : α  Prop} : t3_space (subtype p) :=
embedding_subtype_coe.t3_space

variable (α)
@[priority 100] -- see Note [lower instance priority]
instance t3_space.t2_space [t3_space α] : t2_space α :=
λ x y hxy,
let s, hs, hys, hxs := t3_space.regular is_closed_singleton
    (mt mem_singleton_iff.1 hxy),
  t, hxt, u, hsu, htu := empty_mem_iff_bot.2 hxs,
  v, hvt, hv, hxv := mem_nhds_iff.1 hxt in
v, s, hv, hs, hxv, singleton_subset_iff.1 hys,
  (disjoint_iff_inter_eq_empty.2 htu.symm).mono hvt hsu⟩⟩

@[priority 100] -- see Note [lower instance priority]
instance t3_space.t2_5_space [t3_space α] : t2_5_space α :=
λ x y hxy,
let U, V, hU, hV, hh_1, hh_2, hUV := t2_separation hxy,
  hxcV := not_not.mpr (interior_maximal hUV.subset_compl_right hU hh_1),
  R, hR, hh := t3_space.regular is_closed_closure (by rwa closure_eq_compl_interior_compl),
  A, hA, hhh := mem_nhds_iff.1 (filter.inf_principal_eq_bot.1 hh.2) in
A, V, hhh.1, hV, disjoint_compl_left.mono_left ((closure_minimal hA hR.is_closed_compl).trans $
  compl_subset_compl.mpr hh.1), hhh.2, hh_2⟩⟩

variable {α}

/-- Given two points `x  y`, we can find neighbourhoods `x  V₁  U₁` and `y  V₂  U₂`,
with the `Vₖ` closed and the `Uₖ` open, such that the `Uₖ` are disjoint. -/
lemma disjoint_nested_nhds [t3_space α] {x y : α} (h : x  y) :
   (U₁ V₁  𝓝 x) (U₂ V₂  𝓝 y), is_closed V₁  is_closed V₂  is_open U₁  is_open U₂ 
  V₁  U₁  V₂  U₂  disjoint U₁ U₂ :=
begin
  rcases t2_separation h with U₁, U₂, U₁_op, U₂_op, x_in, y_in, H,
  rcases nhds_is_closed (is_open.mem_nhds U₁_op x_in) with V₁, V₁_in, h₁, V₁_closed,
  rcases nhds_is_closed (is_open.mem_nhds U₂_op y_in) with V₂, V₂_in, h₂, V₂_closed,
  use [U₁, mem_of_superset V₁_in h₁, V₁, V₁_in,
       U₂, mem_of_superset V₂_in h₂, V₂, V₂_in],
  tauto
end

/--
In a locally compact T₃ space, given a compact set `K` inside an open set `U`, we can find a
compact set `K'` between these sets: `K` is inside the interior of `K'` and `K'  U`.
-/
lemma exists_compact_between [locally_compact_space α] [t3_space α]
  {K U : set α} (hK : is_compact K) (hU : is_open U) (hKU : K  U) :
   K', is_compact K'  K  interior K'  K'  U :=
begin
  choose C hxC hCU hC using λ x : K, nhds_is_closed (hU.mem_nhds $ hKU x.2),
  choose L hL hxL using λ x : K, exists_compact_mem_nhds (x : α),
  have : K   x, interior (L x)  interior (C x), from
  λ x hx, mem_Union.mpr ⟨⟨x, hx,
    mem_interior_iff_mem_nhds.mpr (hxL _), mem_interior_iff_mem_nhds.mpr (hxC _)⟩⟩,
  rcases hK.elim_finite_subcover _ _ this with t, ht,
  { refine ⟨⋃ x  t, L x  C x, t.compact_bUnion (λ x _, (hL x).inter_right (hC x)), λ x hx, _, _,
    { obtain y, hyt, hy : x  interior (L y)  interior (C y) := mem_Union₂.mp (ht hx),
      rw [ interior_inter] at hy,
      refine interior_mono (subset_bUnion_of_mem hyt) hy },
    { simp_rw [Union_subset_iff], rintro x -, exact (inter_subset_right _ _).trans (hCU _) } },
  { exact λ _, is_open_interior.inter is_open_interior }
end

/--
In a locally compact regular space, given a compact set `K` inside an open set `U`, we can find a
open set `V` between these sets with compact closure: `K  V` and the closure of `V` is inside `U`.
-/
lemma exists_open_between_and_is_compact_closure [locally_compact_space α] [t3_space α]
  {K U : set α} (hK : is_compact K) (hU : is_open U) (hKU : K  U) :
   V, is_open V  K  V  closure V  U  is_compact (closure V) :=
begin
  rcases exists_compact_between hK hU hKU with V, hV, hKV, hVU,
  refine interior V, is_open_interior, hKV,
    (closure_minimal interior_subset hV.is_closed).trans hVU,
    compact_closure_of_subset_compact hV interior_subset,
end

end t3

section normality

/-- A T₄ space, also known as a normal space (although this condition sometimes
  omits T₂), is one in which for every pair of disjoint closed sets `C` and `D`,
  there exist disjoint open sets containing `C` and `D` respectively. -/
class normal_space (α : Type u) [topological_space α] extends t1_space α : Prop :=
(normal : ∀ s t : set α, is_closed sis_closed tdisjoint s t →
  ∃ u v, is_open uis_open vsutvdisjoint u v)

theorem normal_separation [normal_space α] {s t : set α}
  (H1 : is_closed s) (H2 : is_closed t) (H3 : disjoint s t) :
   u v, is_open u  is_open v  s  u  t  v  disjoint u v :=
normal_space.normal s t H1 H2 H3

theorem normal_exists_closure_subset [normal_space α] {s t : set α} (hs : is_closed s)
  (ht : is_open t) (hst : s  t) :
   u, is_open u  s  u  closure u  t :=
begin
  have : disjoint s tᶜ, from λ x hxs, hxt, hxt (hst hxs),
  rcases normal_separation hs (is_closed_compl_iff.2 ht) this
    with s', t', hs', ht', hss', htt', hs't',
  refine s', hs', hss',
    subset.trans (closure_minimal _ (is_closed_compl_iff.2 ht')) (compl_subset_comm.1 htt'),
  exact λ x hxs hxt, hs't' hxs, hxt
end

@[priority 100] -- see Note [lower instance priority]
instance normal_space.t3_space [normal_space α] : t3_space α :=
{ regular := λ s x hs hxs, let u, v, hu, hv, hsu, hxv, huv :=
    normal_separation hs is_closed_singleton
      (λ _ hx, hy, hxs $ mem_of_eq_of_mem (eq_of_mem_singleton hy).symm hx) in
    u, hu, hsu, filter.empty_mem_iff_bot.1 $ filter.mem_inf_iff.2
      v, is_open.mem_nhds hv (singleton_subset_iff.1 hxv), u, filter.mem_principal_self u,
       by rwa [eq_comm, inter_comm,  disjoint_iff_inter_eq_empty]⟩⟩ }

-- We can't make this an instance because it could cause an instance loop.
lemma normal_of_compact_t2 [compact_space α] [t2_space α] : normal_space α :=
λ s t hs ht, compact_compact_separated hs.is_compact ht.is_compact

protected lemma closed_embedding.normal_space [topological_space β] [normal_space β] {f : α  β}
  (hf : closed_embedding f) : normal_space α :=
{ to_t1_space := hf.to_embedding.t1_space,
  normal :=
  begin
    intros s t hs ht hst,
    rcases normal_space.normal (f '' s) (f '' t) (hf.is_closed_map s hs) (hf.is_closed_map t ht)
      (disjoint_image_of_injective hf.inj hst) with u, v, hu, hv, hsu, htv, huv,
    rw image_subset_iff at hsu htv,
    exact f ⁻¹' u, f ⁻¹' v, hu.preimage hf.continuous, hv.preimage hf.continuous,
            hsu, htv, huv.preimage f
  end }

variable (α)

/-- A T₃ topological space with second countable topology is a normal space.
This lemma is not an instance to avoid a loop. -/
lemma normal_space_of_t3_second_countable [second_countable_topology α] [t3_space α] :
  normal_space α :=
begin
  have key :  {s t : set α}, is_closed t  disjoint s t 
     U : set (countable_basis α), (s   u  U, u) 
      ( u  U, disjoint (closure u) t) 
       n : ℕ, is_closed ( (u  U) (h : encodable.encode u  n), closure (u : set α)),
  { intros s t hc hd,
    rw disjoint_left at hd,
    have :  x  s,  U  countable_basis α, x  U  disjoint (closure U) t,
    { intros x hx,
      rcases (is_basis_countable_basis α).exists_closure_subset (hc.is_open_compl.mem_nhds (hd hx))
        with u, hu, hxu, hut,
      exact u, hu, hxu, disjoint_left.2 hut },
    choose! U hu hxu hd,
    set V : s  countable_basis α := maps_to.restrict _ _ _ hu,
    refine range V, _, forall_range_iff.2 $ subtype.forall.2 hd, λ n, _,
    { rw bUnion_range,
      exact λ x hx, mem_Union.2 ⟨⟨x, hx, hxu x hx },
    { simp only [ supr_eq_Union, supr_and'],
      exact is_closed_bUnion (((finite_le_nat n).preimage_embedding (encodable.encode' _)).subset $
        inter_subset_right _ _) (λ u hu, is_closed_closure) } },
  refine λ s t hs ht hd, _,
  rcases key ht hd with U, hsU, hUd, hUc,
  rcases key hs hd.symm with V, htV, hVd, hVc,
  refine ⟨⋃ u  U, u \  (v  V) (hv : encodable.encode v  encodable.encode u), closure v,
     v  V, v \  (u  U) (hu : encodable.encode u  encodable.encode v), closure u,
    is_open_bUnion $ λ u hu, (is_open_of_mem_countable_basis u.2).sdiff (hVc _),
    is_open_bUnion $ λ v hv, (is_open_of_mem_countable_basis v.2).sdiff (hUc _),
    λ x hx, _, λ x hx, _, _,
  { rcases mem_Union₂.1 (hsU hx) with u, huU, hxu,
    refine mem_bUnion huU hxu, _,
    simp only [mem_Union],
    rintro v, hvV, -, hxv,
    exact hVd v hvV hxv, hx },
  { rcases mem_Union₂.1 (htV hx) with v, hvV, hxv,
    refine mem_bUnion hvV hxv, _,
    simp only [mem_Union],
    rintro u, huU, -, hxu,
    exact hUd u huU hxu, hx },
  { simp only [disjoint_left, mem_Union, mem_diff, not_exists, not_and, not_forall, not_not],
    rintro a u, huU, hau, haV v hvV hav,
    cases le_total (encodable.encode u) (encodable.encode v) with hle hle,
    exacts [u, huU, hle, subset_closure hau, (haV _ hvV hle $ subset_closure hav).elim] }
end

end normality

/-- In a compact t2 space, the connected component of a point equals the intersection of all
its clopen neighbourhoods. -/
lemma connected_component_eq_Inter_clopen [t2_space α] [compact_space α] (x : α) :
  connected_component x =  Z : {Z : set α // is_clopen Z ∧ x ∈ Z}, Z :=
begin
  apply eq_of_subset_of_subset connected_component_subset_Inter_clopen,
  -- Reduce to showing that the clopen intersection is connected.
  refine is_preconnected.subset_connected_component _ (mem_Inter.2Z, Z.2.2)),
  -- We do this by showing that any disjoint cover by two closed sets implies
  -- that one of these closed sets must contain our whole thing.
  -- To reduce to the case where the cover is disjoint on all of `α` we need that `s` is closed
  have hs : @is_closed _ _inst_1 ( (Z : {Z : set α // is_clopen Z ∧ x ∈ Z}), Z) :=
    is_closed_Inter (λ Z, Z.2.1.2),
  rw (is_preconnected_iff_subset_of_fully_disjoint_closed hs),
  intros a b ha hb hab ab_disj,
  haveI := @normal_of_compact_t2 α _ _ _,
  -- Since our space is normal, we get two larger disjoint open sets containing the disjoint
  -- closed sets. If we can show that our intersection is a subset of any of these we can then
  -- "descend" this to show that it is a subset of either a or b.
  rcases normal_separation ha hb ab_disj with u, v, hu, hv, hau, hbv, huv,
  -- If we can find a clopen set around x, contained in u  v, we get a disjoint decomposition
  -- Z = Z  u  Z  v of clopen sets. The intersection of all clopen neighbourhoods will then lie
  -- in whichever of u or v x lies in and hence will be a subset of either a or b.
  suffices :  (Z : set α), is_clopen Z  x  Z  Z  u  v,
  { cases this with Z H,
    have H1 := is_clopen_inter_of_disjoint_cover_clopen H.1 H.2.2 hu hv huv,
    rw [union_comm] at H,
    have H2 := is_clopen_inter_of_disjoint_cover_clopen H.1 H.2.2 hv hu huv.symm,
    by_cases (x  u),
    -- The x  u case.
    { left,
      suffices : ( (Z : {Z : set α // is_clopen Z ∧ x ∈ Z}), ↑Z) ⊆ u,
      { replace hab : ( (Z : {Z // is_clopen Z ∧ x ∈ Z}), ↑Z) ≤ a ∪ b := hab,
        replace this : ( (Z : {Z // is_clopen Z ∧ x ∈ Z}), ↑Z) ≤ u := this,
        exact disjoint.left_le_of_le_sup_right hab (huv.mono this hbv) },
      { apply subset.trans _ (inter_subset_right Z u),
        apply Inter_subset (λ Z : {Z : set α // is_clopen Z ∧ x ∈ Z}, ↑Z)
          Z  u, H1, mem_inter H.2.1 h } },
    -- If x  u, we get x  v since x  u  v. The rest is then like the x  u case.
    have h1 : x  v,
    { cases (mem_union x u v).1 (mem_of_subset_of_mem (subset.trans hab
        (union_subset_union hau hbv)) (mem_Inter.2 (λ i, i.2.2))) with h1 h1,
      { exfalso, exact h h1},
      { exact h1} },
    right,
    suffices : ( (Z : {Z : set α // is_clopen Z ∧ x ∈ Z}), ↑Z) ⊆ v,
    { replace this : ( (Z : {Z // is_clopen Z ∧ x ∈ Z}), ↑Z) ≤ v := this,
      exact (huv.symm.mono this hau).left_le_of_le_sup_left hab },
    { apply subset.trans _ (inter_subset_right Z v),
      apply Inter_subset (λ Z : {Z : set α // is_clopen Z ∧ x ∈ Z}, ↑Z)
        Z  v, H2, mem_inter H.2.1 h1 } },
  -- Now we find the required Z. We utilize the fact that X \ u  v will be compact,
  -- so there must be some finite intersection of clopen neighbourhoods of X disjoint to it,
  -- but a finite intersection of clopen sets is clopen so we let this be our Z.
  have H1 := (hu.union hv).is_closed_compl.is_compact.inter_Inter_nonempty
    (λ Z : {Z : set α // is_clopen Z ∧ x ∈ Z}, Z) (λ Z, Z.2.1.2),
  rw [not_disjoint_iff_nonempty_inter, imp_not_comm, not_forall] at H1,
  cases H1 (disjoint_compl_left_iff_subset.2 $ hab.trans $ union_subset_union hau hbv) with Zi H2,
  refine ( (U  Zi), subtype.val U), _, _, _,
  { exact is_clopen_bInter_finset (λ Z hZ, Z.2.1) },
  { exact mem_Inter₂.2Z hZ, Z.2.2) },
  { rwa [disjoint_compl_left_iff_subset, disjoint_iff_inter_eq_empty, not_nonempty_iff_eq_empty] }
end

section profinite

variables [t2_space α]

/-- A Hausdorff space with a clopen basis is totally separated. -/
lemma tot_sep_of_zero_dim (h : is_topological_basis {s : set α | is_clopen s}) :
  totally_separated_space α :=
begin
  constructor,
  rintros x - y - hxy,
  obtain u, v, hu, hv, xu, yv, disj := t2_separation hxy,
  obtain w, hw : is_clopen w, xw, wu := (is_topological_basis.mem_nhds_iff h).1
    (is_open.mem_nhds hu xu),
  refine w, wᶜ, hw.1, hw.compl.1, xw, λ h, disj wu h, yv, _, disjoint_compl_right,
  rw set.union_compl_self,
end

variables [compact_space α]

/-- A compact Hausdorff space is totally disconnected if and only if it is totally separated, this
  is also true for locally compact spaces. -/
theorem compact_t2_tot_disc_iff_tot_sep :
  totally_disconnected_space α  totally_separated_space α :=
begin
  split,
  { intro h, constructor,
    rintros x - y -,
    contrapose!,
    intros hyp,
    suffices : x  connected_component y,
      by simpa [totally_disconnected_space_iff_connected_component_singleton.1 h y,
                mem_singleton_iff],
    rw [connected_component_eq_Inter_clopen, mem_Inter],
    rintro w : set α, hw : is_clopen w, hy : y  w,
    by_contra hx,
    exact hyp wᶜ w hw.2.is_open_compl hw.1 hx hy (@is_compl_compl _ w _).symm.2
      disjoint_compl_left },
  apply totally_separated_space.totally_disconnected_space,
end

variables [totally_disconnected_space α]

lemma nhds_basis_clopen (x : α) : (𝓝 x).has_basis (λ s : set α, x  s  is_clopen s) id :=
λ U, begin
  split,
  { have : connected_component x = {x},
      from totally_disconnected_space_iff_connected_component_singleton.mp _ x,
    rw connected_component_eq_Inter_clopen at this,
    intros hU,
    let N := {Z // is_clopen Z ∧ x ∈ Z},
    suffices :  Z : N, Z.val  U,
    { rcases this with ⟨⟨s, hs, hs', hs'',
      exact s, hs', hs, hs'' },
    haveI : nonempty N := ⟨⟨univ, is_clopen_univ, mem_univ x⟩⟩,
    have hNcl :  Z : N, is_closed Z.val :=Z, Z.property.1.2),
    have hdir : directed superset (λ Z : N, Z.val),
    { rintros s, hs, hxs t, ht, hxt,
      exact ⟨⟨s  t, hs.inter ht, hxs, hxt⟩⟩, inter_subset_left s t, inter_subset_right s t },
    have h_nhd:  y  ( Z : N, Z.val), U  𝓝 y,
    { intros y y_in,
      erw [this, mem_singleton_iff] at y_in,
      rwa y_in },
    exact exists_subset_nhd_of_compact_space hdir hNcl h_nhd },
  { rintro V, hxV, V_op, -⟩, hUV : V  U,
    rw mem_nhds_iff,
    exact V, hUV, V_op, hxV }
end

lemma is_topological_basis_clopen : is_topological_basis {s : set α | is_clopen s} :=
begin
  apply is_topological_basis_of_open_of_nhds (λ U (hU : is_clopen U), hU.1),
  intros x U hxU U_op,
  have : U  𝓝 x,
  from is_open.mem_nhds U_op hxU,
  rcases (nhds_basis_clopen x).mem_iff.mp this with V, hxV, hV, hVU : V  U,
  use V,
  tauto
end

/-- Every member of an open set in a compact Hausdorff totally disconnected space
  is contained in a clopen set contained in the open set.  -/
lemma compact_exists_clopen_in_open {x : α} {U : set α} (is_open : is_open U) (memU : x  U) :
     (V : set α) (hV : is_clopen V), x  V  V  U :=
  (is_topological_basis.mem_nhds_iff is_topological_basis_clopen).1 (is_open.mem_nhds memU)

end profinite

section locally_compact

variables {H : Type*} [topological_space H] [locally_compact_space H] [t2_space H]

/-- A locally compact Hausdorff totally disconnected space has a basis with clopen elements. -/
lemma loc_compact_Haus_tot_disc_of_zero_dim [totally_disconnected_space H] :
  is_topological_basis {s : set H | is_clopen s} :=
begin
  refine is_topological_basis_of_open_of_nhds (λ u hu, hu.1) _,
  rintros x U memU hU,
  obtain s, comp, xs, sU := exists_compact_subset hU memU,
  obtain t, h, ht, xt := mem_interior.1 xs,
  let u : set s := (coe : s  H)⁻¹' (interior s),
  have u_open_in_s : is_open u := is_open_interior.preimage continuous_subtype_coe,
  let X : s := x, h xt,
  have Xu : X  u := xs,
  haveI : compact_space s := is_compact_iff_compact_space.1 comp,
  obtain V : set s, clopen_in_s, Vx, V_sub := compact_exists_clopen_in_open u_open_in_s Xu,
  have V_clopen : is_clopen ((coe : s  H) '' V),
  { refine _, (comp.is_closed.closed_embedding_subtype_coe.closed_iff_image_closed).1
               clopen_in_s.2,
    let v : set u := (coe : u  s)⁻¹' V,
    have : (coe : u  H) = (coe : s  H)  (coe : u  s) := rfl,
    have f0 : embedding (coe : u  H) := embedding_subtype_coe.comp embedding_subtype_coe,
    have f1 : open_embedding (coe : u  H),
    { refine f0, _,
      { have : set.range (coe : u  H) = interior s,
        { rw [this, set.range_comp, subtype.range_coe, subtype.image_preimage_coe],
          apply set.inter_eq_self_of_subset_left interior_subset, },
        rw this,
        apply is_open_interior } },
    have f2 : is_open v := clopen_in_s.1.preimage continuous_subtype_coe,
    have f3 : (coe : s  H) '' V = (coe : u  H) '' v,
    { rw [this, image_comp coe coe, subtype.image_preimage_coe,
          inter_eq_self_of_subset_left V_sub] },
    rw f3,
    apply f1.is_open_map v f2 },
  refine coe '' V, V_clopen, by simp [Vx, h xt], _,
  transitivity s,
  { simp },
  assumption
end

/-- A locally compact Hausdorff space is totally disconnected
  if and only if it is totally separated. -/
theorem loc_compact_t2_tot_disc_iff_tot_sep :
  totally_disconnected_space H  totally_separated_space H :=
begin
  split,
  { introI h,
    exact tot_sep_of_zero_dim loc_compact_Haus_tot_disc_of_zero_dim, },
  apply totally_separated_space.totally_disconnected_space,
end

end locally_compact

/-- `connected_components α` is Hausdorff when `α` is Hausdorff and compact -/
instance connected_components.t2 [t2_space α] [compact_space α] :
  t2_space (connected_components α) :=
begin
  -- Proof follows that of: https://stacks.math.columbia.edu/tag/0900
  -- Fix 2 distinct connected components, with points a and b
  refine connected_components.surjective_coe.forall₂.2 $ λ a b ne, _,
  rw connected_components.coe_ne_coe at ne,
  have h := connected_component_disjoint ne,
  -- write b as the intersection of all clopen subsets containing it
  rw [connected_component_eq_Inter_clopen b, disjoint_iff_inter_eq_empty] at h,
  -- Now we show that this can be reduced to some clopen containing `b` being disjoint to `a`
  obtain U, V, hU, ha, hb, rfl :  (U : set α) (V : set (connected_components α)), is_clopen U 
    connected_component a  U =   connected_component b  U  coe ⁻¹' V = U,
  { cases is_closed_connected_component.is_compact.elim_finite_subfamily_closed _ _ h with fin_a ha,
    swap, { exact λ Z, Z.2.1.2 },
    -- This clopen and its complement will separate the connected components of `a` and `b`
    set U : set α := ( (i : {Z // is_clopen Z ∧ b ∈ Z}) (H : i ∈ fin_a), i),
    have hU : is_clopen U := is_clopen_bInter_finset (λ i j, i.2.1),
    exact U, coe '' U, hU, ha, subset_Inter₂ (λ Z _, Z.2.1.connected_component_subset Z.2.2),
      (connected_components_preimage_image U).symm  hU.bUnion_connected_component_eq },
  rw connected_components.quotient_map_coe.is_clopen_preimage at hU,
  refine Vᶜ, V, hU.compl.is_open, hU.is_open, _, hb mem_connected_component, disjoint_compl_left,
  exact λ h, flip set.nonempty.ne_empty ha a, mem_connected_component, h,
end