Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 81,604 Bytes
4365a98 fc5e983 4365a98 fc5e983 4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 |
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import topology.subset_properties
import topology.connected
import topology.nhds_set
import topology.inseparable
/-!
# Separation properties of topological spaces.
This file defines the predicate `separated`, and common separation axioms
(under the Kolmogorov classification).
## Main definitions
* `separated`: Two `set`s are separated if they are contained in disjoint open sets.
* `t0_space`: A T₀/Kolmogorov space is a space where, for every two points `x ≠ y`,
there is an open set that contains one, but not the other.
* `t1_space`: A T₁/Fréchet space is a space where every singleton set is closed.
This is equivalent to, for every pair `x ≠ y`, there existing an open set containing `x`
but not `y` (`t1_space_iff_exists_open` shows that these conditions are equivalent.)
* `t2_space`: A T₂/Hausdorff space is a space where, for every two points `x ≠ y`,
there is two disjoint open sets, one containing `x`, and the other `y`.
* `t2_5_space`: A T₂.₅/Urysohn space is a space where, for every two points `x ≠ y`,
there is two open sets, one containing `x`, and the other `y`, whose closures are disjoint.
* `t3_space`: A T₃ space, is one where given any closed `C` and `x ∉ C`,
there is disjoint open sets containing `x` and `C` respectively. In `mathlib`, T₃ implies T₂.₅.
* `normal_space`: A T₄ space (sometimes referred to as normal, but authors vary on
whether this includes T₂; `mathlib` does), is one where given two disjoint closed sets,
we can find two open sets that separate them. In `mathlib`, T₄ implies T₃.
## Main results
### T₀ spaces
* `is_closed.exists_closed_singleton` Given a closed set `S` in a compact T₀ space,
there is some `x ∈ S` such that `{x}` is closed.
* `exists_open_singleton_of_open_finset` Given an open `finset` `S` in a T₀ space,
there is some `x ∈ S` such that `{x}` is open.
### T₁ spaces
* `is_closed_map_const`: The constant map is a closed map.
* `discrete_of_t1_of_finite`: A finite T₁ space must have the discrete topology.
### T₂ spaces
* `t2_iff_nhds`: A space is T₂ iff the neighbourhoods of distinct points generate the bottom filter.
* `t2_iff_is_closed_diagonal`: A space is T₂ iff the `diagonal` of `α` (that is, the set of all
points of the form `(a, a) : α × α`) is closed under the product topology.
* `finset_disjoint_finset_opens_of_t2`: Any two disjoint finsets are `separated`.
* Most topological constructions preserve Hausdorffness;
these results are part of the typeclass inference system (e.g. `embedding.t2_space`)
* `set.eq_on.closure`: If two functions are equal on some set `s`, they are equal on its closure.
* `is_compact.is_closed`: All compact sets are closed.
* `locally_compact_of_compact_nhds`: If every point has a compact neighbourhood,
then the space is locally compact.
* `tot_sep_of_zero_dim`: If `α` has a clopen basis, it is a `totally_separated_space`.
* `loc_compact_t2_tot_disc_iff_tot_sep`: A locally compact T₂ space is totally disconnected iff
it is totally separated.
If the space is also compact:
* `normal_of_compact_t2`: A compact T₂ space is a `normal_space`.
* `connected_components_eq_Inter_clopen`: The connected component of a point
is the intersection of all its clopen neighbourhoods.
* `compact_t2_tot_disc_iff_tot_sep`: Being a `totally_disconnected_space`
is equivalent to being a `totally_separated_space`.
* `connected_components.t2`: `connected_components α` is T₂ for `α` T₂ and compact.
### T₃ spaces
* `disjoint_nested_nhds`: Given two points `x ≠ y`, we can find neighbourhoods `x ∈ V₁ ⊆ U₁` and
`y ∈ V₂ ⊆ U₂`, with the `Vₖ` closed and the `Uₖ` open, such that the `Uₖ` are disjoint.
### Discrete spaces
* `discrete_topology_iff_nhds`: Discrete topological spaces are those whose neighbourhood
filters are the `pure` filter (which is the principal filter at a singleton).
* `induced_bot`/`discrete_topology_induced`: The pullback of the discrete topology
under an inclusion is the discrete topology.
## References
https://en.wikipedia.org/wiki/Separation_axiom
-/
open function set filter topological_space
open_locale topological_space filter classical
universes u v
variables {α : Type u} {β : Type v} [topological_space α]
section separation
/--
`separated` is a predicate on pairs of sub`set`s of a topological space. It holds if the two
sub`set`s are contained in disjoint open sets.
-/
def separated : set α → set α → Prop :=
λ (s t : set α), ∃ U V : (set α), (is_open U) ∧ is_open V ∧
(s ⊆ U) ∧ (t ⊆ V) ∧ disjoint U V
namespace separated
open separated
@[symm] lemma symm {s t : set α} : separated s t → separated t s :=
λ ⟨U, V, oU, oV, aU, bV, UV⟩, ⟨V, U, oV, oU, bV, aU, disjoint.symm UV⟩
lemma comm (s t : set α) : separated s t ↔ separated t s :=
⟨symm, symm⟩
lemma preimage [topological_space β] {f : α → β} {s t : set β} (h : separated s t)
(hf : continuous f) : separated (f ⁻¹' s) (f ⁻¹' t) :=
let ⟨U, V, oU, oV, sU, tV, UV⟩ := h in
⟨f ⁻¹' U, f ⁻¹' V, oU.preimage hf, oV.preimage hf, preimage_mono sU, preimage_mono tV,
UV.preimage f⟩
protected lemma disjoint {s t : set α} (h : separated s t) : disjoint s t :=
let ⟨U, V, hU, hV, hsU, htV, hd⟩ := h in hd.mono hsU htV
lemma disjoint_closure_left {s t : set α} (h : separated s t) : disjoint (closure s) t :=
let ⟨U, V, hU, hV, hsU, htV, hd⟩ := h
in (hd.closure_left hV).mono (closure_mono hsU) htV
lemma disjoint_closure_right {s t : set α} (h : separated s t) : disjoint s (closure t) :=
h.symm.disjoint_closure_left.symm
lemma empty_right (a : set α) : separated a ∅ :=
⟨_, _, is_open_univ, is_open_empty, λ a h, mem_univ a, λ a h, by cases h, disjoint_empty _⟩
lemma empty_left (a : set α) : separated ∅ a :=
(empty_right _).symm
lemma mono {s₁ s₂ t₁ t₂ : set α} (h : separated s₂ t₂) (hs : s₁ ⊆ s₂) (ht : t₁ ⊆ t₂) :
separated s₁ t₁ :=
let ⟨U, V, hU, hV, hsU, htV, hd⟩ := h in ⟨U, V, hU, hV, hs.trans hsU, ht.trans htV, hd⟩
lemma union_left {a b c : set α} : separated a c → separated b c → separated (a ∪ b) c :=
λ ⟨U, V, oU, oV, aU, bV, UV⟩ ⟨W, X, oW, oX, aW, bX, WX⟩,
⟨U ∪ W, V ∩ X, is_open.union oU oW, is_open.inter oV oX,
union_subset_union aU aW, subset_inter bV bX, set.disjoint_union_left.mpr
⟨disjoint_of_subset_right (inter_subset_left _ _) UV,
disjoint_of_subset_right (inter_subset_right _ _) WX⟩⟩
lemma union_right {a b c : set α} (ab : separated a b) (ac : separated a c) :
separated a (b ∪ c) :=
(ab.symm.union_left ac.symm).symm
end separated
/-- A T₀ space, also known as a Kolmogorov space, is a topological space such that for every pair
`x ≠ y`, there is an open set containing one but not the other. We formulate the definition in terms
of the `inseparable` relation. -/
class t0_space (α : Type u) [topological_space α] : Prop :=
(t0 : ∀ ⦃x y : α⦄, inseparable x y → x = y)
lemma t0_space_iff_inseparable (α : Type u) [topological_space α] :
t0_space α ↔ ∀ (x y : α), inseparable x y → x = y :=
⟨λ ⟨h⟩, h, λ h, ⟨h⟩⟩
lemma t0_space_iff_not_inseparable (α : Type u) [topological_space α] :
t0_space α ↔ ∀ (x y : α), x ≠ y → ¬inseparable x y :=
by simp only [t0_space_iff_inseparable, ne.def, not_imp_not]
lemma inseparable.eq [t0_space α] {x y : α} (h : inseparable x y) : x = y :=
t0_space.t0 h
lemma t0_space_iff_nhds_injective (α : Type u) [topological_space α] :
t0_space α ↔ injective (𝓝 : α → filter α) :=
t0_space_iff_inseparable α
lemma nhds_injective [t0_space α] : injective (𝓝 : α → filter α) :=
(t0_space_iff_nhds_injective α).1 ‹_›
@[simp] lemma nhds_eq_nhds_iff [t0_space α] {a b : α} : 𝓝 a = 𝓝 b ↔ a = b :=
nhds_injective.eq_iff
lemma t0_space_iff_exists_is_open_xor_mem (α : Type u) [topological_space α] :
t0_space α ↔ ∀ x y, x ≠ y → ∃ U:set α, is_open U ∧ (xor (x ∈ U) (y ∈ U)) :=
by simp only [t0_space_iff_not_inseparable, xor_iff_not_iff, not_forall, exists_prop,
inseparable_iff_forall_open]
lemma exists_is_open_xor_mem [t0_space α] {x y : α} (h : x ≠ y) :
∃ U : set α, is_open U ∧ xor (x ∈ U) (y ∈ U) :=
(t0_space_iff_exists_is_open_xor_mem α).1 ‹_› x y h
/-- Specialization forms a partial order on a t0 topological space. -/
def specialization_order (α : Type*) [topological_space α] [t0_space α] : partial_order α :=
{ .. specialization_preorder α,
.. partial_order.lift (order_dual.to_dual ∘ 𝓝) nhds_injective }
instance : t0_space (separation_quotient α) :=
⟨λ x' y', quotient.induction_on₂' x' y' $
λ x y h, separation_quotient.mk_eq_mk.2 $ separation_quotient.inducing_mk.inseparable_iff.1 h⟩
theorem minimal_nonempty_closed_subsingleton [t0_space α] {s : set α} (hs : is_closed s)
(hmin : ∀ t ⊆ s, t.nonempty → is_closed t → t = s) :
s.subsingleton :=
begin
refine λ x hx y hy, of_not_not (λ hxy, _),
rcases exists_is_open_xor_mem hxy with ⟨U, hUo, hU⟩,
wlog h : x ∈ U ∧ y ∉ U := hU using [x y, y x], cases h with hxU hyU,
have : s \ U = s := hmin (s \ U) (diff_subset _ _) ⟨y, hy, hyU⟩ (hs.sdiff hUo),
exact (this.symm.subset hx).2 hxU
end
theorem minimal_nonempty_closed_eq_singleton [t0_space α] {s : set α} (hs : is_closed s)
(hne : s.nonempty) (hmin : ∀ t ⊆ s, t.nonempty → is_closed t → t = s) :
∃ x, s = {x} :=
exists_eq_singleton_iff_nonempty_subsingleton.2 ⟨hne, minimal_nonempty_closed_subsingleton hs hmin⟩
/-- Given a closed set `S` in a compact T₀ space,
there is some `x ∈ S` such that `{x}` is closed. -/
theorem is_closed.exists_closed_singleton {α : Type*} [topological_space α]
[t0_space α] [compact_space α] {S : set α} (hS : is_closed S) (hne : S.nonempty) :
∃ (x : α), x ∈ S ∧ is_closed ({x} : set α) :=
begin
obtain ⟨V, Vsub, Vne, Vcls, hV⟩ := hS.exists_minimal_nonempty_closed_subset hne,
rcases minimal_nonempty_closed_eq_singleton Vcls Vne hV with ⟨x, rfl⟩,
exact ⟨x, Vsub (mem_singleton x), Vcls⟩
end
theorem minimal_nonempty_open_subsingleton [t0_space α] {s : set α} (hs : is_open s)
(hmin : ∀ t ⊆ s, t.nonempty → is_open t → t = s) :
s.subsingleton :=
begin
refine λ x hx y hy, of_not_not (λ hxy, _),
rcases exists_is_open_xor_mem hxy with ⟨U, hUo, hU⟩,
wlog h : x ∈ U ∧ y ∉ U := hU using [x y, y x], cases h with hxU hyU,
have : s ∩ U = s := hmin (s ∩ U) (inter_subset_left _ _) ⟨x, hx, hxU⟩ (hs.inter hUo),
exact hyU (this.symm.subset hy).2
end
theorem minimal_nonempty_open_eq_singleton [t0_space α] {s : set α} (hs : is_open s)
(hne : s.nonempty) (hmin : ∀ t ⊆ s, t.nonempty → is_open t → t = s) :
∃ x, s = {x} :=
exists_eq_singleton_iff_nonempty_subsingleton.2 ⟨hne, minimal_nonempty_open_subsingleton hs hmin⟩
/-- Given an open finite set `S` in a T₀ space, there is some `x ∈ S` such that `{x}` is open. -/
theorem exists_open_singleton_of_open_finite [t0_space α] {s : set α} (hfin : s.finite)
(hne : s.nonempty) (ho : is_open s) :
∃ x ∈ s, is_open ({x} : set α) :=
begin
lift s to finset α using hfin,
induction s using finset.strong_induction_on with s ihs,
rcases em (∃ t ⊂ s, t.nonempty ∧ is_open (t : set α)) with ⟨t, hts, htne, hto⟩|ht,
{ rcases ihs t hts htne hto with ⟨x, hxt, hxo⟩,
exact ⟨x, hts.1 hxt, hxo⟩ },
{ rcases minimal_nonempty_open_eq_singleton ho hne _ with ⟨x, hx⟩,
{ exact ⟨x, hx.symm ▸ rfl, hx ▸ ho⟩ },
refine λ t hts htne hto, of_not_not (λ hts', ht _),
lift t to finset α using s.finite_to_set.subset hts,
exact ⟨t, ssubset_iff_subset_ne.2 ⟨hts, mt finset.coe_inj.2 hts'⟩, htne, hto⟩ }
end
theorem exists_open_singleton_of_fintype [t0_space α] [finite α] [nonempty α] :
∃ x : α, is_open ({x} : set α) :=
let ⟨x, _, h⟩ := exists_open_singleton_of_open_finite (set.to_finite _) univ_nonempty
is_open_univ in ⟨x, h⟩
lemma t0_space_of_injective_of_continuous [topological_space β] {f : α → β}
(hf : function.injective f) (hf' : continuous f) [t0_space β] : t0_space α :=
⟨λ x y h, hf $ (h.map hf').eq⟩
protected lemma embedding.t0_space [topological_space β] [t0_space β] {f : α → β}
(hf : embedding f) : t0_space α :=
t0_space_of_injective_of_continuous hf.inj hf.continuous
instance subtype.t0_space [t0_space α] {p : α → Prop} : t0_space (subtype p) :=
embedding_subtype_coe.t0_space
theorem t0_space_iff_or_not_mem_closure (α : Type u) [topological_space α] :
t0_space α ↔ (∀ a b : α, a ≠ b → (a ∉ closure ({b} : set α) ∨ b ∉ closure ({a} : set α))) :=
by simp only [t0_space_iff_not_inseparable, inseparable_iff_mem_closure, not_and_distrib]
instance [topological_space β] [t0_space α] [t0_space β] : t0_space (α × β) :=
⟨λ x y h, prod.ext (h.map continuous_fst).eq (h.map continuous_snd).eq⟩
instance {ι : Type*} {π : ι → Type*} [Π i, topological_space (π i)] [Π i, t0_space (π i)] :
t0_space (Π i, π i) :=
⟨λ x y h, funext $ λ i, (h.map (continuous_apply i)).eq⟩
lemma t0_space.of_cover (h : ∀ x y, inseparable x y → ∃ s : set α, x ∈ s ∧ y ∈ s ∧ t0_space s) :
t0_space α :=
begin
refine ⟨λ x y hxy, _⟩,
rcases h x y hxy with ⟨s, hxs, hys, hs⟩, resetI,
lift x to s using hxs, lift y to s using hys,
rw ← subtype_inseparable_iff at hxy,
exact congr_arg coe hxy.eq
end
lemma t0_space.of_open_cover (h : ∀ x, ∃ s : set α, x ∈ s ∧ is_open s ∧ t0_space s) : t0_space α :=
t0_space.of_cover $ λ x y hxy,
let ⟨s, hxs, hso, hs⟩ := h x in ⟨s, hxs, (hxy.mem_open_iff hso).1 hxs, hs⟩
/-- A T₁ space, also known as a Fréchet space, is a topological space
where every singleton set is closed. Equivalently, for every pair
`x ≠ y`, there is an open set containing `x` and not `y`. -/
class t1_space (α : Type u) [topological_space α] : Prop :=
(t1 : ∀x, is_closed ({x} : set α))
lemma is_closed_singleton [t1_space α] {x : α} : is_closed ({x} : set α) :=
t1_space.t1 x
lemma is_open_compl_singleton [t1_space α] {x : α} : is_open ({x}ᶜ : set α) :=
is_closed_singleton.is_open_compl
lemma is_open_ne [t1_space α] {x : α} : is_open {y | y ≠ x} :=
is_open_compl_singleton
lemma ne.nhds_within_compl_singleton [t1_space α] {x y : α} (h : x ≠ y) :
𝓝[{y}ᶜ] x = 𝓝 x :=
is_open_ne.nhds_within_eq h
lemma ne.nhds_within_diff_singleton [t1_space α] {x y : α} (h : x ≠ y) (s : set α) :
𝓝[s \ {y}] x = 𝓝[s] x :=
begin
rw [diff_eq, inter_comm, nhds_within_inter_of_mem],
exact mem_nhds_within_of_mem_nhds (is_open_ne.mem_nhds h)
end
protected lemma set.finite.is_closed [t1_space α] {s : set α} (hs : set.finite s) :
is_closed s :=
begin
rw ← bUnion_of_singleton s,
exact is_closed_bUnion hs (λ i hi, is_closed_singleton)
end
lemma topological_space.is_topological_basis.exists_mem_of_ne
[t1_space α] {b : set (set α)} (hb : is_topological_basis b) {x y : α} (h : x ≠ y) :
∃ a ∈ b, x ∈ a ∧ y ∉ a :=
begin
rcases hb.is_open_iff.1 is_open_ne x h with ⟨a, ab, xa, ha⟩,
exact ⟨a, ab, xa, λ h, ha h rfl⟩,
end
lemma filter.coclosed_compact_le_cofinite [t1_space α] :
filter.coclosed_compact α ≤ filter.cofinite :=
λ s hs, compl_compl s ▸ hs.is_compact.compl_mem_coclosed_compact_of_is_closed hs.is_closed
variable (α)
/-- In a `t1_space`, relatively compact sets form a bornology. Its cobounded filter is
`filter.coclosed_compact`. See also `bornology.in_compact` the bornology of sets contained
in a compact set. -/
def bornology.relatively_compact [t1_space α] : bornology α :=
{ cobounded := filter.coclosed_compact α,
le_cofinite := filter.coclosed_compact_le_cofinite }
variable {α}
lemma bornology.relatively_compact.is_bounded_iff [t1_space α] {s : set α} :
@bornology.is_bounded _ (bornology.relatively_compact α) s ↔ is_compact (closure s) :=
begin
change sᶜ ∈ filter.coclosed_compact α ↔ _,
rw filter.mem_coclosed_compact,
split,
{ rintros ⟨t, ht₁, ht₂, hst⟩,
rw compl_subset_compl at hst,
exact compact_of_is_closed_subset ht₂ is_closed_closure (closure_minimal hst ht₁) },
{ intros h,
exact ⟨closure s, is_closed_closure, h, compl_subset_compl.mpr subset_closure⟩ }
end
protected lemma finset.is_closed [t1_space α] (s : finset α) : is_closed (s : set α) :=
s.finite_to_set.is_closed
lemma t1_space_tfae (α : Type u) [topological_space α] :
tfae [t1_space α,
∀ x, is_closed ({x} : set α),
∀ x, is_open ({x}ᶜ : set α),
continuous (@cofinite_topology.of α),
∀ ⦃x y : α⦄, x ≠ y → {y}ᶜ ∈ 𝓝 x,
∀ ⦃x y : α⦄, x ≠ y → ∃ s ∈ 𝓝 x, y ∉ s,
∀ ⦃x y : α⦄, x ≠ y → ∃ (U : set α) (hU : is_open U), x ∈ U ∧ y ∉ U,
∀ ⦃x y : α⦄, x ≠ y → disjoint (𝓝 x) (pure y),
∀ ⦃x y : α⦄, x ≠ y → disjoint (pure x) (𝓝 y),
∀ ⦃x y : α⦄, x ⤳ y → x = y] :=
begin
tfae_have : 1 ↔ 2, from ⟨λ h, h.1, λ h, ⟨h⟩⟩,
tfae_have : 2 ↔ 3, by simp only [is_open_compl_iff],
tfae_have : 5 ↔ 3,
{ refine forall_swap.trans _,
simp only [is_open_iff_mem_nhds, mem_compl_iff, mem_singleton_iff] },
tfae_have : 5 ↔ 6,
by simp only [← subset_compl_singleton_iff, exists_mem_subset_iff],
tfae_have : 5 ↔ 7,
by simp only [(nhds_basis_opens _).mem_iff, subset_compl_singleton_iff, exists_prop, and.assoc,
and.left_comm],
tfae_have : 5 ↔ 8,
by simp only [← principal_singleton, disjoint_principal_right],
tfae_have : 8 ↔ 9, from forall_swap.trans (by simp only [disjoint.comm, ne_comm]),
tfae_have : 1 → 4,
{ simp only [continuous_def, cofinite_topology.is_open_iff'],
rintro H s (rfl|hs),
exacts [is_open_empty, compl_compl s ▸ (@set.finite.is_closed _ _ H _ hs).is_open_compl] },
tfae_have : 4 → 2,
from λ h x, (cofinite_topology.is_closed_iff.2 $ or.inr (finite_singleton _)).preimage h,
tfae_have : 2 ↔ 10,
{ simp only [← closure_subset_iff_is_closed, specializes_iff_mem_closure, subset_def,
mem_singleton_iff, eq_comm] },
tfae_finish
end
lemma t1_space_iff_continuous_cofinite_of {α : Type*} [topological_space α] :
t1_space α ↔ continuous (@cofinite_topology.of α) :=
(t1_space_tfae α).out 0 3
lemma cofinite_topology.continuous_of [t1_space α] : continuous (@cofinite_topology.of α) :=
t1_space_iff_continuous_cofinite_of.mp ‹_›
lemma t1_space_iff_exists_open : t1_space α ↔
∀ (x y), x ≠ y → (∃ (U : set α) (hU : is_open U), x ∈ U ∧ y ∉ U) :=
(t1_space_tfae α).out 0 6
lemma t1_space_iff_disjoint_pure_nhds : t1_space α ↔ ∀ ⦃x y : α⦄, x ≠ y → disjoint (pure x) (𝓝 y) :=
(t1_space_tfae α).out 0 8
lemma t1_space_iff_disjoint_nhds_pure : t1_space α ↔ ∀ ⦃x y : α⦄, x ≠ y → disjoint (𝓝 x) (pure y) :=
(t1_space_tfae α).out 0 7
lemma t1_space_iff_specializes_imp_eq : t1_space α ↔ ∀ ⦃x y : α⦄, x ⤳ y → x = y :=
(t1_space_tfae α).out 0 9
lemma disjoint_pure_nhds [t1_space α] {x y : α} (h : x ≠ y) : disjoint (pure x) (𝓝 y) :=
t1_space_iff_disjoint_pure_nhds.mp ‹_› h
lemma disjoint_nhds_pure [t1_space α] {x y : α} (h : x ≠ y) : disjoint (𝓝 x) (pure y) :=
t1_space_iff_disjoint_nhds_pure.mp ‹_› h
lemma specializes.eq [t1_space α] {x y : α} (h : x ⤳ y) : x = y :=
t1_space_iff_specializes_imp_eq.1 ‹_› h
@[simp] lemma specializes_iff_eq [t1_space α] {x y : α} : x ⤳ y ↔ x = y :=
⟨specializes.eq, λ h, h ▸ specializes_rfl⟩
instance {α : Type*} : t1_space (cofinite_topology α) :=
t1_space_iff_continuous_cofinite_of.mpr continuous_id
lemma t1_space_antitone {α : Type*} : antitone (@t1_space α) :=
begin
simp only [antitone, t1_space_iff_continuous_cofinite_of, continuous_iff_le_induced],
exact λ t₁ t₂ h, h.trans
end
lemma continuous_within_at_update_of_ne [t1_space α] [decidable_eq α] [topological_space β]
{f : α → β} {s : set α} {x y : α} {z : β} (hne : y ≠ x) :
continuous_within_at (function.update f x z) s y ↔ continuous_within_at f s y :=
eventually_eq.congr_continuous_within_at
(mem_nhds_within_of_mem_nhds $ mem_of_superset (is_open_ne.mem_nhds hne) $
λ y' hy', function.update_noteq hy' _ _)
(function.update_noteq hne _ _)
lemma continuous_at_update_of_ne [t1_space α] [decidable_eq α] [topological_space β]
{f : α → β} {x y : α} {z : β} (hne : y ≠ x) :
continuous_at (function.update f x z) y ↔ continuous_at f y :=
by simp only [← continuous_within_at_univ, continuous_within_at_update_of_ne hne]
lemma continuous_on_update_iff [t1_space α] [decidable_eq α] [topological_space β]
{f : α → β} {s : set α} {x : α} {y : β} :
continuous_on (function.update f x y) s ↔
continuous_on f (s \ {x}) ∧ (x ∈ s → tendsto f (𝓝[s \ {x}] x) (𝓝 y)) :=
begin
rw [continuous_on, ← and_forall_ne x, and_comm],
refine and_congr ⟨λ H z hz, _, λ H z hzx hzs, _⟩ (forall_congr $ λ hxs, _),
{ specialize H z hz.2 hz.1,
rw continuous_within_at_update_of_ne hz.2 at H,
exact H.mono (diff_subset _ _) },
{ rw continuous_within_at_update_of_ne hzx,
refine (H z ⟨hzs, hzx⟩).mono_of_mem (inter_mem_nhds_within _ _),
exact is_open_ne.mem_nhds hzx },
{ exact continuous_within_at_update_same }
end
lemma t1_space_of_injective_of_continuous [topological_space β] {f : α → β}
(hf : function.injective f) (hf' : continuous f) [t1_space β] : t1_space α :=
t1_space_iff_specializes_imp_eq.2 $ λ x y h, hf (h.map hf').eq
protected lemma embedding.t1_space [topological_space β] [t1_space β] {f : α → β}
(hf : embedding f) : t1_space α :=
t1_space_of_injective_of_continuous hf.inj hf.continuous
instance subtype.t1_space {α : Type u} [topological_space α] [t1_space α] {p : α → Prop} :
t1_space (subtype p) :=
embedding_subtype_coe.t1_space
instance [topological_space β] [t1_space α] [t1_space β] : t1_space (α × β) :=
⟨λ ⟨a, b⟩, @singleton_prod_singleton _ _ a b ▸ is_closed_singleton.prod is_closed_singleton⟩
instance {ι : Type*} {π : ι → Type*} [Π i, topological_space (π i)] [Π i, t1_space (π i)] :
t1_space (Π i, π i) :=
⟨λ f, univ_pi_singleton f ▸ is_closed_set_pi (λ i hi, is_closed_singleton)⟩
@[priority 100] -- see Note [lower instance priority]
instance t1_space.t0_space [t1_space α] : t0_space α := ⟨λ x y h, h.specializes.eq⟩
@[simp] lemma compl_singleton_mem_nhds_iff [t1_space α] {x y : α} : {x}ᶜ ∈ 𝓝 y ↔ y ≠ x :=
is_open_compl_singleton.mem_nhds_iff
lemma compl_singleton_mem_nhds [t1_space α] {x y : α} (h : y ≠ x) : {x}ᶜ ∈ 𝓝 y :=
compl_singleton_mem_nhds_iff.mpr h
@[simp] lemma closure_singleton [t1_space α] {a : α} :
closure ({a} : set α) = {a} :=
is_closed_singleton.closure_eq
lemma set.subsingleton.closure [t1_space α] {s : set α} (hs : s.subsingleton) :
(closure s).subsingleton :=
hs.induction_on (by simp) $ λ x, by simp
@[simp] lemma subsingleton_closure [t1_space α] {s : set α} :
(closure s).subsingleton ↔ s.subsingleton :=
⟨λ h, h.mono subset_closure, λ h, h.closure⟩
lemma is_closed_map_const {α β} [topological_space α] [topological_space β] [t1_space β] {y : β} :
is_closed_map (function.const α y) :=
is_closed_map.of_nonempty $ λ s hs h2s, by simp_rw [h2s.image_const, is_closed_singleton]
lemma bInter_basis_nhds [t1_space α] {ι : Sort*} {p : ι → Prop} {s : ι → set α} {x : α}
(h : (𝓝 x).has_basis p s) : (⋂ i (h : p i), s i) = {x} :=
begin
simp only [eq_singleton_iff_unique_mem, mem_Inter],
refine ⟨λ i hi, mem_of_mem_nhds $ h.mem_of_mem hi, λ y hy, _⟩,
contrapose! hy,
rcases h.mem_iff.1 (compl_singleton_mem_nhds hy.symm) with ⟨i, hi, hsub⟩,
exact ⟨i, hi, λ h, hsub h rfl⟩
end
@[simp] lemma pure_le_nhds_iff [t1_space α] {a b : α} : pure a ≤ 𝓝 b ↔ a = b :=
begin
refine ⟨λ h, _, λ h, h ▸ pure_le_nhds a⟩,
by_contra hab,
simpa only [mem_pure, mem_compl_iff, mem_singleton, not_true] using
h (compl_singleton_mem_nhds $ ne.symm hab)
end
@[simp] lemma nhds_le_nhds_iff [t1_space α] {a b : α} : 𝓝 a ≤ 𝓝 b ↔ a = b :=
⟨λ h, pure_le_nhds_iff.mp $ (pure_le_nhds a).trans h, λ h, h ▸ le_rfl⟩
@[simp] lemma compl_singleton_mem_nhds_set_iff [t1_space α] {x : α} {s : set α} :
{x}ᶜ ∈ 𝓝ˢ s ↔ x ∉ s :=
by rwa [is_open_compl_singleton.mem_nhds_set, subset_compl_singleton_iff]
@[simp] lemma nhds_set_le_iff [t1_space α] {s t : set α} : 𝓝ˢ s ≤ 𝓝ˢ t ↔ s ⊆ t :=
begin
refine ⟨_, λ h, monotone_nhds_set h⟩,
simp_rw [filter.le_def], intros h x hx,
specialize h {x}ᶜ,
simp_rw [compl_singleton_mem_nhds_set_iff] at h,
by_contra hxt,
exact h hxt hx,
end
@[simp] lemma nhds_set_inj_iff [t1_space α] {s t : set α} : 𝓝ˢ s = 𝓝ˢ t ↔ s = t :=
by { simp_rw [le_antisymm_iff], exact and_congr nhds_set_le_iff nhds_set_le_iff }
lemma injective_nhds_set [t1_space α] : function.injective (𝓝ˢ : set α → filter α) :=
λ s t hst, nhds_set_inj_iff.mp hst
lemma strict_mono_nhds_set [t1_space α] : strict_mono (𝓝ˢ : set α → filter α) :=
monotone_nhds_set.strict_mono_of_injective injective_nhds_set
@[simp] lemma nhds_le_nhds_set [t1_space α] {s : set α} {x : α} : 𝓝 x ≤ 𝓝ˢ s ↔ x ∈ s :=
by rw [← nhds_set_singleton, nhds_set_le_iff, singleton_subset_iff]
/-- Removing a non-isolated point from a dense set, one still obtains a dense set. -/
lemma dense.diff_singleton [t1_space α] {s : set α} (hs : dense s) (x : α) [ne_bot (𝓝[≠] x)] :
dense (s \ {x}) :=
hs.inter_of_open_right (dense_compl_singleton x) is_open_compl_singleton
/-- Removing a finset from a dense set in a space without isolated points, one still
obtains a dense set. -/
lemma dense.diff_finset [t1_space α] [∀ (x : α), ne_bot (𝓝[≠] x)]
{s : set α} (hs : dense s) (t : finset α) :
dense (s \ t) :=
begin
induction t using finset.induction_on with x s hxs ih hd,
{ simpa using hs },
{ rw [finset.coe_insert, ← union_singleton, ← diff_diff],
exact ih.diff_singleton _, }
end
/-- Removing a finite set from a dense set in a space without isolated points, one still
obtains a dense set. -/
lemma dense.diff_finite [t1_space α] [∀ (x : α), ne_bot (𝓝[≠] x)]
{s : set α} (hs : dense s) {t : set α} (ht : t.finite) :
dense (s \ t) :=
begin
convert hs.diff_finset ht.to_finset,
exact (finite.coe_to_finset _).symm,
end
/-- If a function to a `t1_space` tends to some limit `b` at some point `a`, then necessarily
`b = f a`. -/
lemma eq_of_tendsto_nhds [topological_space β] [t1_space β] {f : α → β} {a : α} {b : β}
(h : tendsto f (𝓝 a) (𝓝 b)) : f a = b :=
by_contra $ assume (hfa : f a ≠ b),
have fact₁ : {f a}ᶜ ∈ 𝓝 b := compl_singleton_mem_nhds hfa.symm,
have fact₂ : tendsto f (pure a) (𝓝 b) := h.comp (tendsto_id'.2 $ pure_le_nhds a),
fact₂ fact₁ (eq.refl $ f a)
/-- To prove a function to a `t1_space` is continuous at some point `a`, it suffices to prove that
`f` admits *some* limit at `a`. -/
lemma continuous_at_of_tendsto_nhds [topological_space β] [t1_space β] {f : α → β} {a : α} {b : β}
(h : tendsto f (𝓝 a) (𝓝 b)) : continuous_at f a :=
show tendsto f (𝓝 a) (𝓝 $ f a), by rwa eq_of_tendsto_nhds h
lemma tendsto_const_nhds_iff [t1_space α] {l : filter α} [ne_bot l] {c d : α} :
tendsto (λ x, c) l (𝓝 d) ↔ c = d :=
by simp_rw [tendsto, filter.map_const, pure_le_nhds_iff]
/-- If the punctured neighborhoods of a point form a nontrivial filter, then any neighborhood is
infinite. -/
lemma infinite_of_mem_nhds {α} [topological_space α] [t1_space α] (x : α) [hx : ne_bot (𝓝[≠] x)]
{s : set α} (hs : s ∈ 𝓝 x) : set.infinite s :=
begin
intro hsf,
have A : {x} ⊆ s, by simp only [singleton_subset_iff, mem_of_mem_nhds hs],
have B : is_closed (s \ {x}) := (hsf.subset (diff_subset _ _)).is_closed,
have C : (s \ {x})ᶜ ∈ 𝓝 x, from B.is_open_compl.mem_nhds (λ h, h.2 rfl),
have D : {x} ∈ 𝓝 x, by simpa only [← diff_eq, diff_diff_cancel_left A] using inter_mem hs C,
rwa [← mem_interior_iff_mem_nhds, interior_singleton] at D
end
lemma discrete_of_t1_of_finite {X : Type*} [topological_space X] [t1_space X] [fintype X] :
discrete_topology X :=
begin
apply singletons_open_iff_discrete.mp,
intros x,
rw [← is_closed_compl_iff],
exact (set.to_finite _).is_closed
end
lemma singleton_mem_nhds_within_of_mem_discrete {s : set α} [discrete_topology s]
{x : α} (hx : x ∈ s) :
{x} ∈ 𝓝[s] x :=
begin
have : ({⟨x, hx⟩} : set s) ∈ 𝓝 (⟨x, hx⟩ : s), by simp [nhds_discrete],
simpa only [nhds_within_eq_map_subtype_coe hx, image_singleton]
using @image_mem_map _ _ _ (coe : s → α) _ this
end
/-- The neighbourhoods filter of `x` within `s`, under the discrete topology, is equal to
the pure `x` filter (which is the principal filter at the singleton `{x}`.) -/
lemma nhds_within_of_mem_discrete {s : set α} [discrete_topology s] {x : α} (hx : x ∈ s) :
𝓝[s] x = pure x :=
le_antisymm (le_pure_iff.2 $ singleton_mem_nhds_within_of_mem_discrete hx) (pure_le_nhds_within hx)
lemma filter.has_basis.exists_inter_eq_singleton_of_mem_discrete
{ι : Type*} {p : ι → Prop} {t : ι → set α} {s : set α} [discrete_topology s] {x : α}
(hb : (𝓝 x).has_basis p t) (hx : x ∈ s) :
∃ i (hi : p i), t i ∩ s = {x} :=
begin
rcases (nhds_within_has_basis hb s).mem_iff.1 (singleton_mem_nhds_within_of_mem_discrete hx)
with ⟨i, hi, hix⟩,
exact ⟨i, hi, subset.antisymm hix $ singleton_subset_iff.2
⟨mem_of_mem_nhds $ hb.mem_of_mem hi, hx⟩⟩
end
/-- A point `x` in a discrete subset `s` of a topological space admits a neighbourhood
that only meets `s` at `x`. -/
lemma nhds_inter_eq_singleton_of_mem_discrete {s : set α} [discrete_topology s]
{x : α} (hx : x ∈ s) :
∃ U ∈ 𝓝 x, U ∩ s = {x} :=
by simpa using (𝓝 x).basis_sets.exists_inter_eq_singleton_of_mem_discrete hx
/-- For point `x` in a discrete subset `s` of a topological space, there is a set `U`
such that
1. `U` is a punctured neighborhood of `x` (ie. `U ∪ {x}` is a neighbourhood of `x`),
2. `U` is disjoint from `s`.
-/
lemma disjoint_nhds_within_of_mem_discrete {s : set α} [discrete_topology s] {x : α} (hx : x ∈ s) :
∃ U ∈ 𝓝[≠] x, disjoint U s :=
let ⟨V, h, h'⟩ := nhds_inter_eq_singleton_of_mem_discrete hx in
⟨{x}ᶜ ∩ V, inter_mem_nhds_within _ h,
(disjoint_iff_inter_eq_empty.mpr (by { rw [inter_assoc, h', compl_inter_self] }))⟩
/-- Let `X` be a topological space and let `s, t ⊆ X` be two subsets. If there is an inclusion
`t ⊆ s`, then the topological space structure on `t` induced by `X` is the same as the one
obtained by the induced topological space structure on `s`. -/
lemma topological_space.subset_trans {X : Type*} [tX : topological_space X]
{s t : set X} (ts : t ⊆ s) :
(subtype.topological_space : topological_space t) =
(subtype.topological_space : topological_space s).induced (set.inclusion ts) :=
begin
change tX.induced ((coe : s → X) ∘ (set.inclusion ts)) =
topological_space.induced (set.inclusion ts) (tX.induced _),
rw ← induced_compose,
end
/-- This lemma characterizes discrete topological spaces as those whose singletons are
neighbourhoods. -/
lemma discrete_topology_iff_nhds {X : Type*} [topological_space X] :
discrete_topology X ↔ (nhds : X → filter X) = pure :=
begin
split,
{ introI hX,
exact nhds_discrete X },
{ intro h,
constructor,
apply eq_of_nhds_eq_nhds,
simp [h, nhds_bot] }
end
/-- The topology pulled-back under an inclusion `f : X → Y` from the discrete topology (`⊥`) is the
discrete topology.
This version does not assume the choice of a topology on either the source `X`
nor the target `Y` of the inclusion `f`. -/
lemma induced_bot {X Y : Type*} {f : X → Y} (hf : function.injective f) :
topological_space.induced f ⊥ = ⊥ :=
eq_of_nhds_eq_nhds (by simp [nhds_induced, ← set.image_singleton, hf.preimage_image, nhds_bot])
/-- The topology induced under an inclusion `f : X → Y` from the discrete topological space `Y`
is the discrete topology on `X`. -/
lemma discrete_topology_induced {X Y : Type*} [tY : topological_space Y] [discrete_topology Y]
{f : X → Y} (hf : function.injective f) : @discrete_topology X (topological_space.induced f tY) :=
begin
constructor,
rw discrete_topology.eq_bot Y,
exact induced_bot hf
end
/-- Let `s, t ⊆ X` be two subsets of a topological space `X`. If `t ⊆ s` and the topology induced
by `X`on `s` is discrete, then also the topology induces on `t` is discrete. -/
lemma discrete_topology.of_subset {X : Type*} [topological_space X] {s t : set X}
(ds : discrete_topology s) (ts : t ⊆ s) :
discrete_topology t :=
begin
rw [topological_space.subset_trans ts, ds.eq_bot],
exact {eq_bot := induced_bot (set.inclusion_injective ts)}
end
/-- A T₂ space, also known as a Hausdorff space, is one in which for every
`x ≠ y` there exists disjoint open sets around `x` and `y`. This is
the most widely used of the separation axioms. -/
@[mk_iff] class t2_space (α : Type u) [topological_space α] : Prop :=
(t2 : ∀ x y, x ≠ y → ∃ u v : set α, is_open u ∧ is_open v ∧ x ∈ u ∧ y ∈ v ∧ disjoint u v)
/-- Two different points can be separated by open sets. -/
lemma t2_separation [t2_space α] {x y : α} (h : x ≠ y) :
∃ u v : set α, is_open u ∧ is_open v ∧ x ∈ u ∧ y ∈ v ∧ disjoint u v :=
t2_space.t2 x y h
lemma t2_space_iff_disjoint_nhds : t2_space α ↔ ∀ x y : α, x ≠ y → disjoint (𝓝 x) (𝓝 y) :=
begin
refine (t2_space_iff α).trans (forall₃_congr $ λ x y hne, _),
simp only [(nhds_basis_opens x).disjoint_iff (nhds_basis_opens y), exists_prop,
← exists_and_distrib_left, and.assoc, and_comm, and.left_comm]
end
@[simp] lemma disjoint_nhds_nhds [t2_space α] {x y : α} : disjoint (𝓝 x) (𝓝 y) ↔ x ≠ y :=
⟨λ hd he, by simpa [he, nhds_ne_bot.ne] using hd, t2_space_iff_disjoint_nhds.mp ‹_› x y⟩
/-- A finite set can be separated by open sets. -/
lemma t2_separation_finset [t2_space α] (s : finset α) :
∃ f : α → set α, set.pairwise_disjoint ↑s f ∧ ∀ x ∈ s, x ∈ f x ∧ is_open (f x) :=
finset.induction_on s (by simp) begin
rintros t s ht ⟨f, hf, hf'⟩,
have hty : ∀ y : s, t ≠ y := by { rintros y rfl, exact ht y.2 },
choose u v hu hv htu hxv huv using λ {x} (h : t ≠ x), t2_separation h,
refine ⟨λ x, if ht : t = x then ⋂ y : s, u (hty y) else f x ∩ v ht, _, _⟩,
{ rintros x hx₁ y hy₁ hxy a ⟨hx, hy⟩,
rw [finset.mem_coe, finset.mem_insert, eq_comm] at hx₁ hy₁,
rcases eq_or_ne t x with rfl | hx₂;
rcases eq_or_ne t y with rfl | hy₂,
{ exact hxy rfl },
{ simp_rw [dif_pos rfl, mem_Inter] at hx,
simp_rw [dif_neg hy₂] at hy,
exact huv hy₂ ⟨hx ⟨y, hy₁.resolve_left hy₂⟩, hy.2⟩ },
{ simp_rw [dif_neg hx₂] at hx,
simp_rw [dif_pos rfl, mem_Inter] at hy,
exact huv hx₂ ⟨hy ⟨x, hx₁.resolve_left hx₂⟩, hx.2⟩ },
{ simp_rw [dif_neg hx₂] at hx,
simp_rw [dif_neg hy₂] at hy,
exact hf (hx₁.resolve_left hx₂) (hy₁.resolve_left hy₂) hxy ⟨hx.1, hy.1⟩ } },
{ intros x hx,
split_ifs with ht,
{ refine ⟨mem_Inter.2 (λ y, _), is_open_Inter (λ y, hu (hty y))⟩,
rw ←ht,
exact htu (hty y) },
{ have hx := hf' x ((finset.mem_insert.1 hx).resolve_left (ne.symm ht)),
exact ⟨⟨hx.1, hxv ht⟩, is_open.inter hx.2 (hv ht)⟩ } }
end
@[priority 100] -- see Note [lower instance priority]
instance t2_space.t1_space [t2_space α] : t1_space α :=
t1_space_iff_disjoint_pure_nhds.mpr $ λ x y hne, (disjoint_nhds_nhds.2 hne).mono_left $
pure_le_nhds _
/-- A space is T₂ iff the neighbourhoods of distinct points generate the bottom filter. -/
lemma t2_iff_nhds : t2_space α ↔ ∀ {x y : α}, ne_bot (𝓝 x ⊓ 𝓝 y) → x = y :=
by simp only [t2_space_iff_disjoint_nhds, disjoint_iff, ne_bot_iff, ne.def, not_imp_comm]
lemma eq_of_nhds_ne_bot [t2_space α] {x y : α} (h : ne_bot (𝓝 x ⊓ 𝓝 y)) : x = y :=
t2_iff_nhds.mp ‹_› h
lemma t2_space_iff_nhds : t2_space α ↔ ∀ {x y : α}, x ≠ y → ∃ (U ∈ 𝓝 x) (V ∈ 𝓝 y), disjoint U V :=
by simp only [t2_space_iff_disjoint_nhds, filter.disjoint_iff]
lemma t2_separation_nhds [t2_space α] {x y : α} (h : x ≠ y) :
∃ u v, u ∈ 𝓝 x ∧ v ∈ 𝓝 y ∧ disjoint u v :=
let ⟨u, v, open_u, open_v, x_in, y_in, huv⟩ := t2_separation h in
⟨u, v, open_u.mem_nhds x_in, open_v.mem_nhds y_in, huv⟩
lemma t2_separation_compact_nhds [locally_compact_space α] [t2_space α] {x y : α} (h : x ≠ y) :
∃ u v, u ∈ 𝓝 x ∧ v ∈ 𝓝 y ∧ is_compact u ∧ is_compact v ∧ disjoint u v :=
by simpa only [exists_prop, ← exists_and_distrib_left, and_comm, and.assoc, and.left_comm]
using ((compact_basis_nhds x).disjoint_iff (compact_basis_nhds y)).1 (disjoint_nhds_nhds.2 h)
lemma t2_iff_ultrafilter :
t2_space α ↔ ∀ {x y : α} (f : ultrafilter α), ↑f ≤ 𝓝 x → ↑f ≤ 𝓝 y → x = y :=
t2_iff_nhds.trans $ by simp only [←exists_ultrafilter_iff, and_imp, le_inf_iff, exists_imp_distrib]
lemma t2_iff_is_closed_diagonal : t2_space α ↔ is_closed (diagonal α) :=
by simp only [t2_space_iff_disjoint_nhds, ← is_open_compl_iff, is_open_iff_mem_nhds, prod.forall,
nhds_prod_eq, compl_diagonal_mem_prod, mem_compl_iff, mem_diagonal_iff]
lemma is_closed_diagonal [t2_space α] : is_closed (diagonal α) :=
t2_iff_is_closed_diagonal.mp ‹_›
section separated
open separated finset
lemma finset_disjoint_finset_opens_of_t2 [t2_space α] :
∀ (s t : finset α), disjoint s t → separated (s : set α) t :=
begin
refine induction_on_union _ (λ a b hi d, (hi d.symm).symm) (λ a d, empty_right a) (λ a b ab, _) _,
{ obtain ⟨U, V, oU, oV, aU, bV, UV⟩ := t2_separation (finset.disjoint_singleton.1 ab),
refine ⟨U, V, oU, oV, _, _, UV⟩;
exact singleton_subset_set_iff.mpr ‹_› },
{ intros a b c ac bc d,
apply_mod_cast union_left (ac (disjoint_of_subset_left (a.subset_union_left b) d)) (bc _),
exact disjoint_of_subset_left (a.subset_union_right b) d },
end
lemma point_disjoint_finset_opens_of_t2 [t2_space α] {x : α} {s : finset α} (h : x ∉ s) :
separated ({x} : set α) s :=
by exact_mod_cast finset_disjoint_finset_opens_of_t2 {x} s (finset.disjoint_singleton_left.mpr h)
end separated
lemma tendsto_nhds_unique [t2_space α] {f : β → α} {l : filter β} {a b : α}
[ne_bot l] (ha : tendsto f l (𝓝 a)) (hb : tendsto f l (𝓝 b)) : a = b :=
eq_of_nhds_ne_bot $ ne_bot_of_le $ le_inf ha hb
lemma tendsto_nhds_unique' [t2_space α] {f : β → α} {l : filter β} {a b : α}
(hl : ne_bot l) (ha : tendsto f l (𝓝 a)) (hb : tendsto f l (𝓝 b)) : a = b :=
eq_of_nhds_ne_bot $ ne_bot_of_le $ le_inf ha hb
lemma tendsto_nhds_unique_of_eventually_eq [t2_space α] {f g : β → α} {l : filter β} {a b : α}
[ne_bot l] (ha : tendsto f l (𝓝 a)) (hb : tendsto g l (𝓝 b)) (hfg : f =ᶠ[l] g) :
a = b :=
tendsto_nhds_unique (ha.congr' hfg) hb
lemma tendsto_nhds_unique_of_frequently_eq [t2_space α] {f g : β → α} {l : filter β} {a b : α}
(ha : tendsto f l (𝓝 a)) (hb : tendsto g l (𝓝 b)) (hfg : ∃ᶠ x in l, f x = g x) :
a = b :=
have ∃ᶠ z : α × α in 𝓝 (a, b), z.1 = z.2 := (ha.prod_mk_nhds hb).frequently hfg,
not_not.1 $ λ hne, this (is_closed_diagonal.is_open_compl.mem_nhds hne)
/-- A T₂.₅ space, also known as a Urysohn space, is a topological space
where for every pair `x ≠ y`, there are two open sets, with the intersection of closures
empty, one containing `x` and the other `y` . -/
class t2_5_space (α : Type u) [topological_space α]: Prop :=
(t2_5 : ∀ x y (h : x ≠ y), ∃ (U V: set α), is_open U ∧ is_open V ∧
disjoint (closure U) (closure V) ∧ x ∈ U ∧ y ∈ V)
@[priority 100] -- see Note [lower instance priority]
instance t2_5_space.t2_space [t2_5_space α] : t2_space α :=
⟨λ x y hxy,
let ⟨U, V, hU, hV, hUV, hh⟩ := t2_5_space.t2_5 x y hxy in
⟨U, V, hU, hV, hh.1, hh.2, hUV.mono subset_closure subset_closure⟩⟩
section lim
variables [t2_space α] {f : filter α}
/-!
### Properties of `Lim` and `lim`
In this section we use explicit `nonempty α` instances for `Lim` and `lim`. This way the lemmas
are useful without a `nonempty α` instance.
-/
lemma Lim_eq {a : α} [ne_bot f] (h : f ≤ 𝓝 a) :
@Lim _ _ ⟨a⟩ f = a :=
tendsto_nhds_unique (le_nhds_Lim ⟨a, h⟩) h
lemma Lim_eq_iff [ne_bot f] (h : ∃ (a : α), f ≤ nhds a) {a} : @Lim _ _ ⟨a⟩ f = a ↔ f ≤ 𝓝 a :=
⟨λ c, c ▸ le_nhds_Lim h, Lim_eq⟩
lemma ultrafilter.Lim_eq_iff_le_nhds [compact_space α] {x : α} {F : ultrafilter α} :
F.Lim = x ↔ ↑F ≤ 𝓝 x :=
⟨λ h, h ▸ F.le_nhds_Lim, Lim_eq⟩
lemma is_open_iff_ultrafilter' [compact_space α] (U : set α) :
is_open U ↔ (∀ F : ultrafilter α, F.Lim ∈ U → U ∈ F.1) :=
begin
rw is_open_iff_ultrafilter,
refine ⟨λ h F hF, h F.Lim hF F F.le_nhds_Lim, _⟩,
intros cond x hx f h,
rw [← (ultrafilter.Lim_eq_iff_le_nhds.2 h)] at hx,
exact cond _ hx
end
lemma filter.tendsto.lim_eq {a : α} {f : filter β} [ne_bot f] {g : β → α} (h : tendsto g f (𝓝 a)) :
@lim _ _ _ ⟨a⟩ f g = a :=
Lim_eq h
lemma filter.lim_eq_iff {f : filter β} [ne_bot f] {g : β → α} (h : ∃ a, tendsto g f (𝓝 a)) {a} :
@lim _ _ _ ⟨a⟩ f g = a ↔ tendsto g f (𝓝 a) :=
⟨λ c, c ▸ tendsto_nhds_lim h, filter.tendsto.lim_eq⟩
lemma continuous.lim_eq [topological_space β] {f : β → α} (h : continuous f) (a : β) :
@lim _ _ _ ⟨f a⟩ (𝓝 a) f = f a :=
(h.tendsto a).lim_eq
@[simp] lemma Lim_nhds (a : α) : @Lim _ _ ⟨a⟩ (𝓝 a) = a :=
Lim_eq le_rfl
@[simp] lemma lim_nhds_id (a : α) : @lim _ _ _ ⟨a⟩ (𝓝 a) id = a :=
Lim_nhds a
@[simp] lemma Lim_nhds_within {a : α} {s : set α} (h : a ∈ closure s) :
@Lim _ _ ⟨a⟩ (𝓝[s] a) = a :=
by haveI : ne_bot (𝓝[s] a) := mem_closure_iff_cluster_pt.1 h;
exact Lim_eq inf_le_left
@[simp] lemma lim_nhds_within_id {a : α} {s : set α} (h : a ∈ closure s) :
@lim _ _ _ ⟨a⟩ (𝓝[s] a) id = a :=
Lim_nhds_within h
end lim
/-!
### `t2_space` constructions
We use two lemmas to prove that various standard constructions generate Hausdorff spaces from
Hausdorff spaces:
* `separated_by_continuous` says that two points `x y : α` can be separated by open neighborhoods
provided that there exists a continuous map `f : α → β` with a Hausdorff codomain such that
`f x ≠ f y`. We use this lemma to prove that topological spaces defined using `induced` are
Hausdorff spaces.
* `separated_by_open_embedding` says that for an open embedding `f : α → β` of a Hausdorff space
`α`, the images of two distinct points `x y : α`, `x ≠ y` can be separated by open neighborhoods.
We use this lemma to prove that topological spaces defined using `coinduced` are Hausdorff spaces.
-/
@[priority 100] -- see Note [lower instance priority]
instance discrete_topology.to_t2_space {α : Type*} [topological_space α] [discrete_topology α] :
t2_space α :=
⟨λ x y h, ⟨{x}, {y}, is_open_discrete _, is_open_discrete _, rfl, rfl, disjoint_singleton.2 h⟩⟩
lemma separated_by_continuous {α : Type*} {β : Type*}
[topological_space α] [topological_space β] [t2_space β]
{f : α → β} (hf : continuous f) {x y : α} (h : f x ≠ f y) :
∃u v : set α, is_open u ∧ is_open v ∧ x ∈ u ∧ y ∈ v ∧ disjoint u v :=
let ⟨u, v, uo, vo, xu, yv, uv⟩ := t2_separation h in
⟨f ⁻¹' u, f ⁻¹' v, uo.preimage hf, vo.preimage hf, xu, yv, uv.preimage _⟩
lemma separated_by_open_embedding {α β : Type*} [topological_space α] [topological_space β]
[t2_space α] {f : α → β} (hf : open_embedding f) {x y : α} (h : x ≠ y) :
∃ u v : set β, is_open u ∧ is_open v ∧ f x ∈ u ∧ f y ∈ v ∧ disjoint u v :=
let ⟨u, v, uo, vo, xu, yv, uv⟩ := t2_separation h in
⟨f '' u, f '' v, hf.is_open_map _ uo, hf.is_open_map _ vo,
mem_image_of_mem _ xu, mem_image_of_mem _ yv, disjoint_image_of_injective hf.inj uv⟩
instance {α : Type*} {p : α → Prop} [t : topological_space α] [t2_space α] : t2_space (subtype p) :=
⟨assume x y h, separated_by_continuous continuous_subtype_val (mt subtype.eq h)⟩
instance {α : Type*} {β : Type*} [t₁ : topological_space α] [t2_space α]
[t₂ : topological_space β] [t2_space β] : t2_space (α × β) :=
⟨assume ⟨x₁,x₂⟩ ⟨y₁,y₂⟩ h,
or.elim (not_and_distrib.mp (mt prod.ext_iff.mpr h))
(λ h₁, separated_by_continuous continuous_fst h₁)
(λ h₂, separated_by_continuous continuous_snd h₂)⟩
lemma embedding.t2_space [topological_space β] [t2_space β] {f : α → β} (hf : embedding f) :
t2_space α :=
⟨λ x y h, separated_by_continuous hf.continuous (hf.inj.ne h)⟩
instance {α : Type*} {β : Type*} [t₁ : topological_space α] [t2_space α]
[t₂ : topological_space β] [t2_space β] : t2_space (α ⊕ β) :=
begin
constructor,
rintros (x|x) (y|y) h,
{ replace h : x ≠ y := λ c, (c.subst h) rfl,
exact separated_by_open_embedding open_embedding_inl h },
{ exact ⟨_, _, is_open_range_inl, is_open_range_inr, ⟨x, rfl⟩, ⟨y, rfl⟩,
is_compl_range_inl_range_inr.disjoint⟩ },
{ exact ⟨_, _, is_open_range_inr, is_open_range_inl, ⟨x, rfl⟩, ⟨y, rfl⟩,
is_compl_range_inl_range_inr.disjoint.symm⟩ },
{ replace h : x ≠ y := λ c, (c.subst h) rfl,
exact separated_by_open_embedding open_embedding_inr h }
end
instance Pi.t2_space {α : Type*} {β : α → Type v} [t₂ : Πa, topological_space (β a)]
[∀a, t2_space (β a)] :
t2_space (Πa, β a) :=
⟨assume x y h,
let ⟨i, hi⟩ := not_forall.mp (mt funext h) in
separated_by_continuous (continuous_apply i) hi⟩
instance sigma.t2_space {ι : Type*} {α : ι → Type*} [Πi, topological_space (α i)]
[∀a, t2_space (α a)] :
t2_space (Σi, α i) :=
begin
constructor,
rintros ⟨i, x⟩ ⟨j, y⟩ neq,
rcases em (i = j) with (rfl|h),
{ replace neq : x ≠ y := λ c, (c.subst neq) rfl,
exact separated_by_open_embedding open_embedding_sigma_mk neq },
{ exact ⟨_, _, is_open_range_sigma_mk, is_open_range_sigma_mk, ⟨x, rfl⟩, ⟨y, rfl⟩, by tidy⟩ }
end
variables [topological_space β]
lemma is_closed_eq [t2_space α] {f g : β → α}
(hf : continuous f) (hg : continuous g) : is_closed {x:β | f x = g x} :=
continuous_iff_is_closed.mp (hf.prod_mk hg) _ is_closed_diagonal
lemma is_open_ne_fun [t2_space α] {f g : β → α}
(hf : continuous f) (hg : continuous g) : is_open {x:β | f x ≠ g x} :=
is_open_compl_iff.mpr $ is_closed_eq hf hg
/-- If two continuous maps are equal on `s`, then they are equal on the closure of `s`. See also
`set.eq_on.of_subset_closure` for a more general version. -/
lemma set.eq_on.closure [t2_space α] {s : set β} {f g : β → α} (h : eq_on f g s)
(hf : continuous f) (hg : continuous g) :
eq_on f g (closure s) :=
closure_minimal h (is_closed_eq hf hg)
/-- If two continuous functions are equal on a dense set, then they are equal. -/
lemma continuous.ext_on [t2_space α] {s : set β} (hs : dense s) {f g : β → α}
(hf : continuous f) (hg : continuous g) (h : eq_on f g s) :
f = g :=
funext $ λ x, h.closure hf hg (hs x)
/-- If `f x = g x` for all `x ∈ s` and `f`, `g` are continuous on `t`, `s ⊆ t ⊆ closure s`, then
`f x = g x` for all `x ∈ t`. See also `set.eq_on.closure`. -/
lemma set.eq_on.of_subset_closure [t2_space α] {s t : set β} {f g : β → α} (h : eq_on f g s)
(hf : continuous_on f t) (hg : continuous_on g t) (hst : s ⊆ t) (hts : t ⊆ closure s) :
eq_on f g t :=
begin
intros x hx,
haveI : (𝓝[s] x).ne_bot, from mem_closure_iff_cluster_pt.mp (hts hx),
exact tendsto_nhds_unique_of_eventually_eq ((hf x hx).mono_left $ nhds_within_mono _ hst)
((hg x hx).mono_left $ nhds_within_mono _ hst) (h.eventually_eq_of_mem self_mem_nhds_within)
end
lemma function.left_inverse.closed_range [t2_space α] {f : α → β} {g : β → α}
(h : function.left_inverse f g) (hf : continuous f) (hg : continuous g) :
is_closed (range g) :=
have eq_on (g ∘ f) id (closure $ range g),
from h.right_inv_on_range.eq_on.closure (hg.comp hf) continuous_id,
is_closed_of_closure_subset $ λ x hx,
calc x = g (f x) : (this hx).symm
... ∈ _ : mem_range_self _
lemma function.left_inverse.closed_embedding [t2_space α] {f : α → β} {g : β → α}
(h : function.left_inverse f g) (hf : continuous f) (hg : continuous g) :
closed_embedding g :=
⟨h.embedding hf hg, h.closed_range hf hg⟩
lemma compact_compact_separated [t2_space α] {s t : set α}
(hs : is_compact s) (ht : is_compact t) (hst : disjoint s t) :
∃ u v, is_open u ∧ is_open v ∧ s ⊆ u ∧ t ⊆ v ∧ disjoint u v :=
by simp only [prod_subset_compl_diagonal_iff_disjoint.symm] at ⊢ hst;
exact generalized_tube_lemma hs ht is_closed_diagonal.is_open_compl hst
/-- In a `t2_space`, every compact set is closed. -/
lemma is_compact.is_closed [t2_space α] {s : set α} (hs : is_compact s) : is_closed s :=
is_open_compl_iff.1 $ is_open_iff_forall_mem_open.mpr $ assume x hx,
let ⟨u, v, uo, vo, su, xv, uv⟩ :=
compact_compact_separated hs is_compact_singleton (disjoint_singleton_right.2 hx) in
⟨v, (uv.mono_left $ show s ≤ u, from su).subset_compl_left, vo, by simpa using xv⟩
@[simp] lemma filter.coclosed_compact_eq_cocompact [t2_space α] :
coclosed_compact α = cocompact α :=
by simp [coclosed_compact, cocompact, infi_and', and_iff_right_of_imp is_compact.is_closed]
@[simp] lemma bornology.relatively_compact_eq_in_compact [t2_space α] :
bornology.relatively_compact α = bornology.in_compact α :=
by rw bornology.ext_iff; exact filter.coclosed_compact_eq_cocompact
/-- If `V : ι → set α` is a decreasing family of compact sets then any neighborhood of
`⋂ i, V i` contains some `V i`. This is a version of `exists_subset_nhd_of_compact'` where we
don't need to assume each `V i` closed because it follows from compactness since `α` is
assumed to be Hausdorff. -/
lemma exists_subset_nhd_of_compact [t2_space α] {ι : Type*} [nonempty ι] {V : ι → set α}
(hV : directed (⊇) V) (hV_cpct : ∀ i, is_compact (V i)) {U : set α}
(hU : ∀ x ∈ ⋂ i, V i, U ∈ 𝓝 x) : ∃ i, V i ⊆ U :=
exists_subset_nhd_of_compact' hV hV_cpct (λ i, (hV_cpct i).is_closed) hU
lemma compact_exhaustion.is_closed [t2_space α] (K : compact_exhaustion α) (n : ℕ) :
is_closed (K n) :=
(K.is_compact n).is_closed
lemma is_compact.inter [t2_space α] {s t : set α} (hs : is_compact s) (ht : is_compact t) :
is_compact (s ∩ t) :=
hs.inter_right $ ht.is_closed
lemma compact_closure_of_subset_compact [t2_space α] {s t : set α} (ht : is_compact t) (h : s ⊆ t) :
is_compact (closure s) :=
compact_of_is_closed_subset ht is_closed_closure (closure_minimal h ht.is_closed)
@[simp]
lemma exists_compact_superset_iff [t2_space α] {s : set α} :
(∃ K, is_compact K ∧ s ⊆ K) ↔ is_compact (closure s) :=
⟨λ ⟨K, hK, hsK⟩, compact_closure_of_subset_compact hK hsK, λ h, ⟨closure s, h, subset_closure⟩⟩
lemma image_closure_of_compact [t2_space β]
{s : set α} (hs : is_compact (closure s)) {f : α → β} (hf : continuous_on f (closure s)) :
f '' closure s = closure (f '' s) :=
subset.antisymm hf.image_closure $ closure_minimal (image_subset f subset_closure)
(hs.image_of_continuous_on hf).is_closed
/-- If a compact set is covered by two open sets, then we can cover it by two compact subsets. -/
lemma is_compact.binary_compact_cover [t2_space α] {K U V : set α} (hK : is_compact K)
(hU : is_open U) (hV : is_open V) (h2K : K ⊆ U ∪ V) :
∃ K₁ K₂ : set α, is_compact K₁ ∧ is_compact K₂ ∧ K₁ ⊆ U ∧ K₂ ⊆ V ∧ K = K₁ ∪ K₂ :=
begin
obtain ⟨O₁, O₂, h1O₁, h1O₂, h2O₁, h2O₂, hO⟩ := compact_compact_separated (hK.diff hU) (hK.diff hV)
(by rwa [disjoint_iff_inter_eq_empty, diff_inter_diff, diff_eq_empty]),
exact ⟨_, _, hK.diff h1O₁, hK.diff h1O₂, by rwa [diff_subset_comm], by rwa [diff_subset_comm],
by rw [← diff_inter, hO.inter_eq, diff_empty]⟩
end
lemma continuous.is_closed_map [compact_space α] [t2_space β] {f : α → β} (h : continuous f) :
is_closed_map f :=
λ s hs, (hs.is_compact.image h).is_closed
lemma continuous.closed_embedding [compact_space α] [t2_space β] {f : α → β} (h : continuous f)
(hf : function.injective f) : closed_embedding f :=
closed_embedding_of_continuous_injective_closed h hf h.is_closed_map
section
open finset function
/-- For every finite open cover `Uᵢ` of a compact set, there exists a compact cover `Kᵢ ⊆ Uᵢ`. -/
lemma is_compact.finite_compact_cover [t2_space α] {s : set α} (hs : is_compact s)
{ι} (t : finset ι) (U : ι → set α) (hU : ∀ i ∈ t, is_open (U i)) (hsC : s ⊆ ⋃ i ∈ t, U i) :
∃ K : ι → set α, (∀ i, is_compact (K i)) ∧ (∀i, K i ⊆ U i) ∧ s = ⋃ i ∈ t, K i :=
begin
classical,
induction t using finset.induction with x t hx ih generalizing U hU s hs hsC,
{ refine ⟨λ _, ∅, λ i, is_compact_empty, λ i, empty_subset _, _⟩,
simpa only [subset_empty_iff, Union_false, Union_empty] using hsC },
simp only [finset.set_bUnion_insert] at hsC,
simp only [finset.mem_insert] at hU,
have hU' : ∀ i ∈ t, is_open (U i) := λ i hi, hU i (or.inr hi),
rcases hs.binary_compact_cover (hU x (or.inl rfl)) (is_open_bUnion hU') hsC
with ⟨K₁, K₂, h1K₁, h1K₂, h2K₁, h2K₂, hK⟩,
rcases ih U hU' h1K₂ h2K₂ with ⟨K, h1K, h2K, h3K⟩,
refine ⟨update K x K₁, _, _, _⟩,
{ intros i, by_cases hi : i = x,
{ simp only [update_same, hi, h1K₁] },
{ rw [← ne.def] at hi, simp only [update_noteq hi, h1K] }},
{ intros i, by_cases hi : i = x,
{ simp only [update_same, hi, h2K₁] },
{ rw [← ne.def] at hi, simp only [update_noteq hi, h2K] }},
{ simp only [set_bUnion_insert_update _ hx, hK, h3K] }
end
end
lemma locally_compact_of_compact_nhds [t2_space α] (h : ∀ x : α, ∃ s, s ∈ 𝓝 x ∧ is_compact s) :
locally_compact_space α :=
⟨assume x n hn,
let ⟨u, un, uo, xu⟩ := mem_nhds_iff.mp hn in
let ⟨k, kx, kc⟩ := h x in
-- K is compact but not necessarily contained in N.
-- K \ U is again compact and doesn't contain x, so
-- we may find open sets V, W separating x from K \ U.
-- Then K \ W is a compact neighborhood of x contained in U.
let ⟨v, w, vo, wo, xv, kuw, vw⟩ := compact_compact_separated is_compact_singleton (kc.diff uo)
(disjoint_singleton_left.2 $ λ h, h.2 xu) in
have wn : wᶜ ∈ 𝓝 x, from
mem_nhds_iff.mpr ⟨v, vw.subset_compl_right, vo, singleton_subset_iff.mp xv⟩,
⟨k \ w,
filter.inter_mem kx wn,
subset.trans (diff_subset_comm.mp kuw) un,
kc.diff wo⟩⟩
@[priority 100] -- see Note [lower instance priority]
instance locally_compact_of_compact [t2_space α] [compact_space α] : locally_compact_space α :=
locally_compact_of_compact_nhds (assume x, ⟨univ, is_open_univ.mem_nhds trivial, compact_univ⟩)
/-- In a locally compact T₂ space, every point has an open neighborhood with compact closure -/
lemma exists_open_with_compact_closure [locally_compact_space α] [t2_space α] (x : α) :
∃ (U : set α), is_open U ∧ x ∈ U ∧ is_compact (closure U) :=
begin
rcases exists_compact_mem_nhds x with ⟨K, hKc, hxK⟩,
rcases mem_nhds_iff.1 hxK with ⟨t, h1t, h2t, h3t⟩,
exact ⟨t, h2t, h3t, compact_closure_of_subset_compact hKc h1t⟩
end
/--
In a locally compact T₂ space, every compact set has an open neighborhood with compact closure.
-/
lemma exists_open_superset_and_is_compact_closure [locally_compact_space α] [t2_space α]
{K : set α} (hK : is_compact K) : ∃ V, is_open V ∧ K ⊆ V ∧ is_compact (closure V) :=
begin
rcases exists_compact_superset hK with ⟨K', hK', hKK'⟩,
refine ⟨interior K', is_open_interior, hKK',
compact_closure_of_subset_compact hK' interior_subset⟩,
end
lemma is_preirreducible_iff_subsingleton [t2_space α] (S : set α) :
is_preirreducible S ↔ S.subsingleton :=
begin
refine ⟨λ h x hx y hy, _, set.subsingleton.is_preirreducible⟩,
by_contradiction e,
obtain ⟨U, V, hU, hV, hxU, hyV, h'⟩ := t2_separation e,
exact ((h U V hU hV ⟨x, hx, hxU⟩ ⟨y, hy, hyV⟩).mono $ inter_subset_right _ _).not_disjoint h',
end
lemma is_irreducible_iff_singleton [t2_space α] (S : set α) :
is_irreducible S ↔ ∃ x, S = {x} :=
by rw [is_irreducible, is_preirreducible_iff_subsingleton,
exists_eq_singleton_iff_nonempty_subsingleton]
end separation
section t3
/-- A T₃ space is a T₀ space in which for every closed `C` and `x ∉ C`, there exist
disjoint open sets containing `x` and `C` respectively. -/
class t3_space (α : Type u) [topological_space α] extends t0_space α : Prop :=
(regular : ∀{s:set α} {a}, is_closed s → a ∉ s → ∃t, is_open t ∧ s ⊆ t ∧ 𝓝[t] a = ⊥)
@[priority 100] -- see Note [lower instance priority]
instance t3_space.t1_space [t3_space α] : t1_space α :=
begin
rw t1_space_iff_exists_open,
intros x y hxy,
obtain ⟨U, hU, h⟩ := exists_is_open_xor_mem hxy,
cases h,
{ exact ⟨U, hU, h⟩ },
{ obtain ⟨R, hR, hh⟩ := t3_space.regular (is_closed_compl_iff.mpr hU) (not_not.mpr h.1),
obtain ⟨V, hV, hhh⟩ := mem_nhds_iff.1 (filter.inf_principal_eq_bot.1 hh.2),
exact ⟨R, hR, hh.1 (mem_compl h.2), hV hhh.2⟩ }
end
lemma nhds_is_closed [t3_space α] {a : α} {s : set α} (h : s ∈ 𝓝 a) :
∃ t ∈ 𝓝 a, t ⊆ s ∧ is_closed t :=
let ⟨s', h₁, h₂, h₃⟩ := mem_nhds_iff.mp h in
have ∃t, is_open t ∧ s'ᶜ ⊆ t ∧ 𝓝[t] a = ⊥,
from t3_space.regular h₂.is_closed_compl (not_not_intro h₃),
let ⟨t, ht₁, ht₂, ht₃⟩ := this in
⟨tᶜ,
mem_of_eq_bot $ by rwa [compl_compl],
subset.trans (compl_subset_comm.1 ht₂) h₁,
is_closed_compl_iff.mpr ht₁⟩
lemma closed_nhds_basis [t3_space α] (a : α) :
(𝓝 a).has_basis (λ s : set α, s ∈ 𝓝 a ∧ is_closed s) id :=
⟨λ t, ⟨λ t_in, let ⟨s, s_in, h_st, h⟩ := nhds_is_closed t_in in ⟨s, ⟨s_in, h⟩, h_st⟩,
λ ⟨s, ⟨s_in, hs⟩, hst⟩, mem_of_superset s_in hst⟩⟩
lemma topological_space.is_topological_basis.exists_closure_subset [t3_space α]
{B : set (set α)} (hB : topological_space.is_topological_basis B) {a : α} {s : set α}
(h : s ∈ 𝓝 a) :
∃ t ∈ B, a ∈ t ∧ closure t ⊆ s :=
begin
rcases nhds_is_closed h with ⟨t, hat, hts, htc⟩,
rcases hB.mem_nhds_iff.1 hat with ⟨u, huB, hau, hut⟩,
exact ⟨u, huB, hau, (closure_minimal hut htc).trans hts⟩
end
lemma topological_space.is_topological_basis.nhds_basis_closure [t3_space α]
{B : set (set α)} (hB : topological_space.is_topological_basis B) (a : α) :
(𝓝 a).has_basis (λ s : set α, a ∈ s ∧ s ∈ B) closure :=
⟨λ s, ⟨λ h, let ⟨t, htB, hat, hts⟩ := hB.exists_closure_subset h in ⟨t, ⟨hat, htB⟩, hts⟩,
λ ⟨t, ⟨hat, htB⟩, hts⟩, mem_of_superset (hB.mem_nhds htB hat) (subset_closure.trans hts)⟩⟩
protected lemma embedding.t3_space [topological_space β] [t3_space β] {f : α → β}
(hf : embedding f) : t3_space α :=
{ to_t0_space := hf.t0_space,
regular :=
begin
intros s a hs ha,
rcases hf.to_inducing.is_closed_iff.1 hs with ⟨s, hs', rfl⟩,
rcases t3_space.regular hs' ha with ⟨t, ht, hst, hat⟩,
refine ⟨f ⁻¹' t, ht.preimage hf.continuous, preimage_mono hst, _⟩,
rw [nhds_within, hf.to_inducing.nhds_eq_comap, ← comap_principal, ← comap_inf,
← nhds_within, hat, comap_bot]
end }
instance subtype.t3_space [t3_space α] {p : α → Prop} : t3_space (subtype p) :=
embedding_subtype_coe.t3_space
variable (α)
@[priority 100] -- see Note [lower instance priority]
instance t3_space.t2_space [t3_space α] : t2_space α :=
⟨λ x y hxy,
let ⟨s, hs, hys, hxs⟩ := t3_space.regular is_closed_singleton
(mt mem_singleton_iff.1 hxy),
⟨t, hxt, u, hsu, htu⟩ := empty_mem_iff_bot.2 hxs,
⟨v, hvt, hv, hxv⟩ := mem_nhds_iff.1 hxt in
⟨v, s, hv, hs, hxv, singleton_subset_iff.1 hys,
(disjoint_iff_inter_eq_empty.2 htu.symm).mono hvt hsu⟩⟩
@[priority 100] -- see Note [lower instance priority]
instance t3_space.t2_5_space [t3_space α] : t2_5_space α :=
⟨λ x y hxy,
let ⟨U, V, hU, hV, hh_1, hh_2, hUV⟩ := t2_separation hxy,
hxcV := not_not.mpr (interior_maximal hUV.subset_compl_right hU hh_1),
⟨R, hR, hh⟩ := t3_space.regular is_closed_closure (by rwa closure_eq_compl_interior_compl),
⟨A, hA, hhh⟩ := mem_nhds_iff.1 (filter.inf_principal_eq_bot.1 hh.2) in
⟨A, V, hhh.1, hV, disjoint_compl_left.mono_left ((closure_minimal hA hR.is_closed_compl).trans $
compl_subset_compl.mpr hh.1), hhh.2, hh_2⟩⟩
variable {α}
/-- Given two points `x ≠ y`, we can find neighbourhoods `x ∈ V₁ ⊆ U₁` and `y ∈ V₂ ⊆ U₂`,
with the `Vₖ` closed and the `Uₖ` open, such that the `Uₖ` are disjoint. -/
lemma disjoint_nested_nhds [t3_space α] {x y : α} (h : x ≠ y) :
∃ (U₁ V₁ ∈ 𝓝 x) (U₂ V₂ ∈ 𝓝 y), is_closed V₁ ∧ is_closed V₂ ∧ is_open U₁ ∧ is_open U₂ ∧
V₁ ⊆ U₁ ∧ V₂ ⊆ U₂ ∧ disjoint U₁ U₂ :=
begin
rcases t2_separation h with ⟨U₁, U₂, U₁_op, U₂_op, x_in, y_in, H⟩,
rcases nhds_is_closed (is_open.mem_nhds U₁_op x_in) with ⟨V₁, V₁_in, h₁, V₁_closed⟩,
rcases nhds_is_closed (is_open.mem_nhds U₂_op y_in) with ⟨V₂, V₂_in, h₂, V₂_closed⟩,
use [U₁, mem_of_superset V₁_in h₁, V₁, V₁_in,
U₂, mem_of_superset V₂_in h₂, V₂, V₂_in],
tauto
end
/--
In a locally compact T₃ space, given a compact set `K` inside an open set `U`, we can find a
compact set `K'` between these sets: `K` is inside the interior of `K'` and `K' ⊆ U`.
-/
lemma exists_compact_between [locally_compact_space α] [t3_space α]
{K U : set α} (hK : is_compact K) (hU : is_open U) (hKU : K ⊆ U) :
∃ K', is_compact K' ∧ K ⊆ interior K' ∧ K' ⊆ U :=
begin
choose C hxC hCU hC using λ x : K, nhds_is_closed (hU.mem_nhds $ hKU x.2),
choose L hL hxL using λ x : K, exists_compact_mem_nhds (x : α),
have : K ⊆ ⋃ x, interior (L x) ∩ interior (C x), from
λ x hx, mem_Union.mpr ⟨⟨x, hx⟩,
⟨mem_interior_iff_mem_nhds.mpr (hxL _), mem_interior_iff_mem_nhds.mpr (hxC _)⟩⟩,
rcases hK.elim_finite_subcover _ _ this with ⟨t, ht⟩,
{ refine ⟨⋃ x ∈ t, L x ∩ C x, t.compact_bUnion (λ x _, (hL x).inter_right (hC x)), λ x hx, _, _⟩,
{ obtain ⟨y, hyt, hy : x ∈ interior (L y) ∩ interior (C y)⟩ := mem_Union₂.mp (ht hx),
rw [← interior_inter] at hy,
refine interior_mono (subset_bUnion_of_mem hyt) hy },
{ simp_rw [Union_subset_iff], rintro x -, exact (inter_subset_right _ _).trans (hCU _) } },
{ exact λ _, is_open_interior.inter is_open_interior }
end
/--
In a locally compact regular space, given a compact set `K` inside an open set `U`, we can find a
open set `V` between these sets with compact closure: `K ⊆ V` and the closure of `V` is inside `U`.
-/
lemma exists_open_between_and_is_compact_closure [locally_compact_space α] [t3_space α]
{K U : set α} (hK : is_compact K) (hU : is_open U) (hKU : K ⊆ U) :
∃ V, is_open V ∧ K ⊆ V ∧ closure V ⊆ U ∧ is_compact (closure V) :=
begin
rcases exists_compact_between hK hU hKU with ⟨V, hV, hKV, hVU⟩,
refine ⟨interior V, is_open_interior, hKV,
(closure_minimal interior_subset hV.is_closed).trans hVU,
compact_closure_of_subset_compact hV interior_subset⟩,
end
end t3
section normality
/-- A T₄ space, also known as a normal space (although this condition sometimes
omits T₂), is one in which for every pair of disjoint closed sets `C` and `D`,
there exist disjoint open sets containing `C` and `D` respectively. -/
class normal_space (α : Type u) [topological_space α] extends t1_space α : Prop :=
(normal : ∀ s t : set α, is_closed s → is_closed t → disjoint s t →
∃ u v, is_open u ∧ is_open v ∧ s ⊆ u ∧ t ⊆ v ∧ disjoint u v)
theorem normal_separation [normal_space α] {s t : set α}
(H1 : is_closed s) (H2 : is_closed t) (H3 : disjoint s t) :
∃ u v, is_open u ∧ is_open v ∧ s ⊆ u ∧ t ⊆ v ∧ disjoint u v :=
normal_space.normal s t H1 H2 H3
theorem normal_exists_closure_subset [normal_space α] {s t : set α} (hs : is_closed s)
(ht : is_open t) (hst : s ⊆ t) :
∃ u, is_open u ∧ s ⊆ u ∧ closure u ⊆ t :=
begin
have : disjoint s tᶜ, from λ x ⟨hxs, hxt⟩, hxt (hst hxs),
rcases normal_separation hs (is_closed_compl_iff.2 ht) this
with ⟨s', t', hs', ht', hss', htt', hs't'⟩,
refine ⟨s', hs', hss',
subset.trans (closure_minimal _ (is_closed_compl_iff.2 ht')) (compl_subset_comm.1 htt')⟩,
exact λ x hxs hxt, hs't' ⟨hxs, hxt⟩
end
@[priority 100] -- see Note [lower instance priority]
instance normal_space.t3_space [normal_space α] : t3_space α :=
{ regular := λ s x hs hxs, let ⟨u, v, hu, hv, hsu, hxv, huv⟩ :=
normal_separation hs is_closed_singleton
(λ _ ⟨hx, hy⟩, hxs $ mem_of_eq_of_mem (eq_of_mem_singleton hy).symm hx) in
⟨u, hu, hsu, filter.empty_mem_iff_bot.1 $ filter.mem_inf_iff.2
⟨v, is_open.mem_nhds hv (singleton_subset_iff.1 hxv), u, filter.mem_principal_self u,
by rwa [eq_comm, inter_comm, ← disjoint_iff_inter_eq_empty]⟩⟩ }
-- We can't make this an instance because it could cause an instance loop.
lemma normal_of_compact_t2 [compact_space α] [t2_space α] : normal_space α :=
⟨λ s t hs ht, compact_compact_separated hs.is_compact ht.is_compact⟩
protected lemma closed_embedding.normal_space [topological_space β] [normal_space β] {f : α → β}
(hf : closed_embedding f) : normal_space α :=
{ to_t1_space := hf.to_embedding.t1_space,
normal :=
begin
intros s t hs ht hst,
rcases normal_space.normal (f '' s) (f '' t) (hf.is_closed_map s hs) (hf.is_closed_map t ht)
(disjoint_image_of_injective hf.inj hst) with ⟨u, v, hu, hv, hsu, htv, huv⟩,
rw image_subset_iff at hsu htv,
exact ⟨f ⁻¹' u, f ⁻¹' v, hu.preimage hf.continuous, hv.preimage hf.continuous,
hsu, htv, huv.preimage f⟩
end }
variable (α)
/-- A T₃ topological space with second countable topology is a normal space.
This lemma is not an instance to avoid a loop. -/
lemma normal_space_of_t3_second_countable [second_countable_topology α] [t3_space α] :
normal_space α :=
begin
have key : ∀ {s t : set α}, is_closed t → disjoint s t →
∃ U : set (countable_basis α), (s ⊆ ⋃ u ∈ U, ↑u) ∧
(∀ u ∈ U, disjoint (closure ↑u) t) ∧
∀ n : ℕ, is_closed (⋃ (u ∈ U) (h : encodable.encode u ≤ n), closure (u : set α)),
{ intros s t hc hd,
rw disjoint_left at hd,
have : ∀ x ∈ s, ∃ U ∈ countable_basis α, x ∈ U ∧ disjoint (closure U) t,
{ intros x hx,
rcases (is_basis_countable_basis α).exists_closure_subset (hc.is_open_compl.mem_nhds (hd hx))
with ⟨u, hu, hxu, hut⟩,
exact ⟨u, hu, hxu, disjoint_left.2 hut⟩ },
choose! U hu hxu hd,
set V : s → countable_basis α := maps_to.restrict _ _ _ hu,
refine ⟨range V, _, forall_range_iff.2 $ subtype.forall.2 hd, λ n, _⟩,
{ rw bUnion_range,
exact λ x hx, mem_Union.2 ⟨⟨x, hx⟩, hxu x hx⟩ },
{ simp only [← supr_eq_Union, supr_and'],
exact is_closed_bUnion (((finite_le_nat n).preimage_embedding (encodable.encode' _)).subset $
inter_subset_right _ _) (λ u hu, is_closed_closure) } },
refine ⟨λ s t hs ht hd, _⟩,
rcases key ht hd with ⟨U, hsU, hUd, hUc⟩,
rcases key hs hd.symm with ⟨V, htV, hVd, hVc⟩,
refine ⟨⋃ u ∈ U, ↑u \ ⋃ (v ∈ V) (hv : encodable.encode v ≤ encodable.encode u), closure ↑v,
⋃ v ∈ V, ↑v \ ⋃ (u ∈ U) (hu : encodable.encode u ≤ encodable.encode v), closure ↑u,
is_open_bUnion $ λ u hu, (is_open_of_mem_countable_basis u.2).sdiff (hVc _),
is_open_bUnion $ λ v hv, (is_open_of_mem_countable_basis v.2).sdiff (hUc _),
λ x hx, _, λ x hx, _, _⟩,
{ rcases mem_Union₂.1 (hsU hx) with ⟨u, huU, hxu⟩,
refine mem_bUnion huU ⟨hxu, _⟩,
simp only [mem_Union],
rintro ⟨v, hvV, -, hxv⟩,
exact hVd v hvV ⟨hxv, hx⟩ },
{ rcases mem_Union₂.1 (htV hx) with ⟨v, hvV, hxv⟩,
refine mem_bUnion hvV ⟨hxv, _⟩,
simp only [mem_Union],
rintro ⟨u, huU, -, hxu⟩,
exact hUd u huU ⟨hxu, hx⟩ },
{ simp only [disjoint_left, mem_Union, mem_diff, not_exists, not_and, not_forall, not_not],
rintro a ⟨u, huU, hau, haV⟩ v hvV hav,
cases le_total (encodable.encode u) (encodable.encode v) with hle hle,
exacts [⟨u, huU, hle, subset_closure hau⟩, (haV _ hvV hle $ subset_closure hav).elim] }
end
end normality
/-- In a compact t2 space, the connected component of a point equals the intersection of all
its clopen neighbourhoods. -/
lemma connected_component_eq_Inter_clopen [t2_space α] [compact_space α] (x : α) :
connected_component x = ⋂ Z : {Z : set α // is_clopen Z ∧ x ∈ Z}, Z :=
begin
apply eq_of_subset_of_subset connected_component_subset_Inter_clopen,
-- Reduce to showing that the clopen intersection is connected.
refine is_preconnected.subset_connected_component _ (mem_Inter.2 (λ Z, Z.2.2)),
-- We do this by showing that any disjoint cover by two closed sets implies
-- that one of these closed sets must contain our whole thing.
-- To reduce to the case where the cover is disjoint on all of `α` we need that `s` is closed
have hs : @is_closed _ _inst_1 (⋂ (Z : {Z : set α // is_clopen Z ∧ x ∈ Z}), Z) :=
is_closed_Inter (λ Z, Z.2.1.2),
rw (is_preconnected_iff_subset_of_fully_disjoint_closed hs),
intros a b ha hb hab ab_disj,
haveI := @normal_of_compact_t2 α _ _ _,
-- Since our space is normal, we get two larger disjoint open sets containing the disjoint
-- closed sets. If we can show that our intersection is a subset of any of these we can then
-- "descend" this to show that it is a subset of either a or b.
rcases normal_separation ha hb ab_disj with ⟨u, v, hu, hv, hau, hbv, huv⟩,
-- If we can find a clopen set around x, contained in u ∪ v, we get a disjoint decomposition
-- Z = Z ∩ u ∪ Z ∩ v of clopen sets. The intersection of all clopen neighbourhoods will then lie
-- in whichever of u or v x lies in and hence will be a subset of either a or b.
suffices : ∃ (Z : set α), is_clopen Z ∧ x ∈ Z ∧ Z ⊆ u ∪ v,
{ cases this with Z H,
have H1 := is_clopen_inter_of_disjoint_cover_clopen H.1 H.2.2 hu hv huv,
rw [union_comm] at H,
have H2 := is_clopen_inter_of_disjoint_cover_clopen H.1 H.2.2 hv hu huv.symm,
by_cases (x ∈ u),
-- The x ∈ u case.
{ left,
suffices : (⋂ (Z : {Z : set α // is_clopen Z ∧ x ∈ Z}), ↑Z) ⊆ u,
{ replace hab : (⋂ (Z : {Z // is_clopen Z ∧ x ∈ Z}), ↑Z) ≤ a ∪ b := hab,
replace this : (⋂ (Z : {Z // is_clopen Z ∧ x ∈ Z}), ↑Z) ≤ u := this,
exact disjoint.left_le_of_le_sup_right hab (huv.mono this hbv) },
{ apply subset.trans _ (inter_subset_right Z u),
apply Inter_subset (λ Z : {Z : set α // is_clopen Z ∧ x ∈ Z}, ↑Z)
⟨Z ∩ u, H1, mem_inter H.2.1 h⟩ } },
-- If x ∉ u, we get x ∈ v since x ∈ u ∪ v. The rest is then like the x ∈ u case.
have h1 : x ∈ v,
{ cases (mem_union x u v).1 (mem_of_subset_of_mem (subset.trans hab
(union_subset_union hau hbv)) (mem_Inter.2 (λ i, i.2.2))) with h1 h1,
{ exfalso, exact h h1},
{ exact h1} },
right,
suffices : (⋂ (Z : {Z : set α // is_clopen Z ∧ x ∈ Z}), ↑Z) ⊆ v,
{ replace this : (⋂ (Z : {Z // is_clopen Z ∧ x ∈ Z}), ↑Z) ≤ v := this,
exact (huv.symm.mono this hau).left_le_of_le_sup_left hab },
{ apply subset.trans _ (inter_subset_right Z v),
apply Inter_subset (λ Z : {Z : set α // is_clopen Z ∧ x ∈ Z}, ↑Z)
⟨Z ∩ v, H2, mem_inter H.2.1 h1⟩ } },
-- Now we find the required Z. We utilize the fact that X \ u ∪ v will be compact,
-- so there must be some finite intersection of clopen neighbourhoods of X disjoint to it,
-- but a finite intersection of clopen sets is clopen so we let this be our Z.
have H1 := (hu.union hv).is_closed_compl.is_compact.inter_Inter_nonempty
(λ Z : {Z : set α // is_clopen Z ∧ x ∈ Z}, Z) (λ Z, Z.2.1.2),
rw [←not_disjoint_iff_nonempty_inter, imp_not_comm, not_forall] at H1,
cases H1 (disjoint_compl_left_iff_subset.2 $ hab.trans $ union_subset_union hau hbv) with Zi H2,
refine ⟨(⋂ (U ∈ Zi), subtype.val U), _, _, _⟩,
{ exact is_clopen_bInter_finset (λ Z hZ, Z.2.1) },
{ exact mem_Inter₂.2 (λ Z hZ, Z.2.2) },
{ rwa [←disjoint_compl_left_iff_subset, disjoint_iff_inter_eq_empty, ←not_nonempty_iff_eq_empty] }
end
section profinite
variables [t2_space α]
/-- A Hausdorff space with a clopen basis is totally separated. -/
lemma tot_sep_of_zero_dim (h : is_topological_basis {s : set α | is_clopen s}) :
totally_separated_space α :=
begin
constructor,
rintros x - y - hxy,
obtain ⟨u, v, hu, hv, xu, yv, disj⟩ := t2_separation hxy,
obtain ⟨w, hw : is_clopen w, xw, wu⟩ := (is_topological_basis.mem_nhds_iff h).1
(is_open.mem_nhds hu xu),
refine ⟨w, wᶜ, hw.1, hw.compl.1, xw, λ h, disj ⟨wu h, yv⟩, _, disjoint_compl_right⟩,
rw set.union_compl_self,
end
variables [compact_space α]
/-- A compact Hausdorff space is totally disconnected if and only if it is totally separated, this
is also true for locally compact spaces. -/
theorem compact_t2_tot_disc_iff_tot_sep :
totally_disconnected_space α ↔ totally_separated_space α :=
begin
split,
{ intro h, constructor,
rintros x - y -,
contrapose!,
intros hyp,
suffices : x ∈ connected_component y,
by simpa [totally_disconnected_space_iff_connected_component_singleton.1 h y,
mem_singleton_iff],
rw [connected_component_eq_Inter_clopen, mem_Inter],
rintro ⟨w : set α, hw : is_clopen w, hy : y ∈ w⟩,
by_contra hx,
exact hyp wᶜ w hw.2.is_open_compl hw.1 hx hy (@is_compl_compl _ w _).symm.2
disjoint_compl_left },
apply totally_separated_space.totally_disconnected_space,
end
variables [totally_disconnected_space α]
lemma nhds_basis_clopen (x : α) : (𝓝 x).has_basis (λ s : set α, x ∈ s ∧ is_clopen s) id :=
⟨λ U, begin
split,
{ have : connected_component x = {x},
from totally_disconnected_space_iff_connected_component_singleton.mp ‹_› x,
rw connected_component_eq_Inter_clopen at this,
intros hU,
let N := {Z // is_clopen Z ∧ x ∈ Z},
suffices : ∃ Z : N, Z.val ⊆ U,
{ rcases this with ⟨⟨s, hs, hs'⟩, hs''⟩,
exact ⟨s, ⟨hs', hs⟩, hs''⟩ },
haveI : nonempty N := ⟨⟨univ, is_clopen_univ, mem_univ x⟩⟩,
have hNcl : ∀ Z : N, is_closed Z.val := (λ Z, Z.property.1.2),
have hdir : directed superset (λ Z : N, Z.val),
{ rintros ⟨s, hs, hxs⟩ ⟨t, ht, hxt⟩,
exact ⟨⟨s ∩ t, hs.inter ht, ⟨hxs, hxt⟩⟩, inter_subset_left s t, inter_subset_right s t⟩ },
have h_nhd: ∀ y ∈ (⋂ Z : N, Z.val), U ∈ 𝓝 y,
{ intros y y_in,
erw [this, mem_singleton_iff] at y_in,
rwa y_in },
exact exists_subset_nhd_of_compact_space hdir hNcl h_nhd },
{ rintro ⟨V, ⟨hxV, V_op, -⟩, hUV : V ⊆ U⟩,
rw mem_nhds_iff,
exact ⟨V, hUV, V_op, hxV⟩ }
end⟩
lemma is_topological_basis_clopen : is_topological_basis {s : set α | is_clopen s} :=
begin
apply is_topological_basis_of_open_of_nhds (λ U (hU : is_clopen U), hU.1),
intros x U hxU U_op,
have : U ∈ 𝓝 x,
from is_open.mem_nhds U_op hxU,
rcases (nhds_basis_clopen x).mem_iff.mp this with ⟨V, ⟨hxV, hV⟩, hVU : V ⊆ U⟩,
use V,
tauto
end
/-- Every member of an open set in a compact Hausdorff totally disconnected space
is contained in a clopen set contained in the open set. -/
lemma compact_exists_clopen_in_open {x : α} {U : set α} (is_open : is_open U) (memU : x ∈ U) :
∃ (V : set α) (hV : is_clopen V), x ∈ V ∧ V ⊆ U :=
(is_topological_basis.mem_nhds_iff is_topological_basis_clopen).1 (is_open.mem_nhds memU)
end profinite
section locally_compact
variables {H : Type*} [topological_space H] [locally_compact_space H] [t2_space H]
/-- A locally compact Hausdorff totally disconnected space has a basis with clopen elements. -/
lemma loc_compact_Haus_tot_disc_of_zero_dim [totally_disconnected_space H] :
is_topological_basis {s : set H | is_clopen s} :=
begin
refine is_topological_basis_of_open_of_nhds (λ u hu, hu.1) _,
rintros x U memU hU,
obtain ⟨s, comp, xs, sU⟩ := exists_compact_subset hU memU,
obtain ⟨t, h, ht, xt⟩ := mem_interior.1 xs,
let u : set s := (coe : s → H)⁻¹' (interior s),
have u_open_in_s : is_open u := is_open_interior.preimage continuous_subtype_coe,
let X : s := ⟨x, h xt⟩,
have Xu : X ∈ u := xs,
haveI : compact_space s := is_compact_iff_compact_space.1 comp,
obtain ⟨V : set s, clopen_in_s, Vx, V_sub⟩ := compact_exists_clopen_in_open u_open_in_s Xu,
have V_clopen : is_clopen ((coe : s → H) '' V),
{ refine ⟨_, (comp.is_closed.closed_embedding_subtype_coe.closed_iff_image_closed).1
clopen_in_s.2⟩,
let v : set u := (coe : u → s)⁻¹' V,
have : (coe : u → H) = (coe : s → H) ∘ (coe : u → s) := rfl,
have f0 : embedding (coe : u → H) := embedding_subtype_coe.comp embedding_subtype_coe,
have f1 : open_embedding (coe : u → H),
{ refine ⟨f0, _⟩,
{ have : set.range (coe : u → H) = interior s,
{ rw [this, set.range_comp, subtype.range_coe, subtype.image_preimage_coe],
apply set.inter_eq_self_of_subset_left interior_subset, },
rw this,
apply is_open_interior } },
have f2 : is_open v := clopen_in_s.1.preimage continuous_subtype_coe,
have f3 : (coe : s → H) '' V = (coe : u → H) '' v,
{ rw [this, image_comp coe coe, subtype.image_preimage_coe,
inter_eq_self_of_subset_left V_sub] },
rw f3,
apply f1.is_open_map v f2 },
refine ⟨coe '' V, V_clopen, by simp [Vx, h xt], _⟩,
transitivity s,
{ simp },
assumption
end
/-- A locally compact Hausdorff space is totally disconnected
if and only if it is totally separated. -/
theorem loc_compact_t2_tot_disc_iff_tot_sep :
totally_disconnected_space H ↔ totally_separated_space H :=
begin
split,
{ introI h,
exact tot_sep_of_zero_dim loc_compact_Haus_tot_disc_of_zero_dim, },
apply totally_separated_space.totally_disconnected_space,
end
end locally_compact
/-- `connected_components α` is Hausdorff when `α` is Hausdorff and compact -/
instance connected_components.t2 [t2_space α] [compact_space α] :
t2_space (connected_components α) :=
begin
-- Proof follows that of: https://stacks.math.columbia.edu/tag/0900
-- Fix 2 distinct connected components, with points a and b
refine ⟨connected_components.surjective_coe.forall₂.2 $ λ a b ne, _⟩,
rw connected_components.coe_ne_coe at ne,
have h := connected_component_disjoint ne,
-- write ↑b as the intersection of all clopen subsets containing it
rw [connected_component_eq_Inter_clopen b, disjoint_iff_inter_eq_empty] at h,
-- Now we show that this can be reduced to some clopen containing `↑b` being disjoint to `↑a`
obtain ⟨U, V, hU, ha, hb, rfl⟩ : ∃ (U : set α) (V : set (connected_components α)), is_clopen U ∧
connected_component a ∩ U = ∅ ∧ connected_component b ⊆ U ∧ coe ⁻¹' V = U,
{ cases is_closed_connected_component.is_compact.elim_finite_subfamily_closed _ _ h with fin_a ha,
swap, { exact λ Z, Z.2.1.2 },
-- This clopen and its complement will separate the connected components of `a` and `b`
set U : set α := (⋂ (i : {Z // is_clopen Z ∧ b ∈ Z}) (H : i ∈ fin_a), i),
have hU : is_clopen U := is_clopen_bInter_finset (λ i j, i.2.1),
exact ⟨U, coe '' U, hU, ha, subset_Inter₂ (λ Z _, Z.2.1.connected_component_subset Z.2.2),
(connected_components_preimage_image U).symm ▸ hU.bUnion_connected_component_eq⟩ },
rw connected_components.quotient_map_coe.is_clopen_preimage at hU,
refine ⟨Vᶜ, V, hU.compl.is_open, hU.is_open, _, hb mem_connected_component, disjoint_compl_left⟩,
exact λ h, flip set.nonempty.ne_empty ha ⟨a, mem_connected_component, h⟩,
end
|