Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 9,657 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import continuous_valuations
import Huber_pair
/-!
# The adic spectrum as a topological space
In this file we define a structure (`rational_open_data`) that will parameterise
a basis for the topology on the adic spectrum of a Huber pair.
-/
open_locale classical
local attribute [instance] set.pointwise_mul_comm_semiring
local attribute [instance] set.smul_set_action
local postfix `⁺` : 66 := λ A : Huber_pair, A.plus
variables {Γ₀ : Type*} [linear_ordered_comm_group_with_zero Γ₀]
-- We reserve the name `Spa` (with upper case `S`) for the bundled adic spectrum (`adic_space.lean`)
/-- The space underlying the adic spectrum of a Huber pair (A,A⁺)
consists of all the equivalence classes of valuations that are continuous
and whose value on the ring A⁺ is ≤ 1. [Wedhorn, Def 7.23]. -/
definition spa (A : Huber_pair) : Type :=
{v : Spv A // v.is_continuous ∧ ∀ r : A⁺, v (algebra_map A r) ≤ 1}
/--The equivalence class of a valuation is contained in spa
if and only if the valuation is continuous and its values on the ring A⁺ are ≤ 1,
since these properties are constant on equivalence classes.-/
lemma mk_mem_spa {A : Huber_pair} {v : valuation A Γ₀} :
Spv.mk v ∈ {v : Spv A | v.is_continuous ∧ ∀ r : A⁺, v (algebra_map A r) ≤ 1} ↔
v.is_continuous ∧ ∀ r : A⁺, v (algebra_map A r) ≤ 1 :=
begin
apply and_congr,
{ exact (Spv.out_mk v).is_continuous_iff, },
{ apply forall_congr,
intro r,
simpa using (Spv.out_mk v) (algebra_map A r) 1, }
end
namespace spa
open set algebra
variables {A : Huber_pair}
/-- The coercion from the adic spectrum of a Huber pair to the ambient valuation spectrum.-/
instance : has_coe (spa A) (Spv A) := ⟨subtype.val⟩
@[ext]
lemma ext (v₁ v₂ : spa A) (h : (Spv.out ↑v₁).is_equiv (Spv.out (↑v₂ : Spv A))) :
v₁ = v₂ :=
subtype.val_injective $ Spv.ext _ _ h
lemma ext_iff {v₁ v₂ : spa A} :
v₁ = v₂ ↔ ((Spv.out ↑v₁).is_equiv (Spv.out (↑v₂ : Spv A))) :=
by rw [subtype.coe_ext, Spv.ext_iff]
/-- The value monoid of a random representative valuation of a point in the adic spectrum. -/
abbreviation out_Γ₀ (v : spa A) := Spv.out_Γ₀ (v : Spv A)
/-- A valuation in the adic spectrum is continuous. -/
lemma is_continuous (v : spa A) : Spv.is_continuous (v : Spv A) := v.property.left
/-- The valuation of an integral element is at most 1. -/
lemma map_plus (v : spa A) (a : (A⁺)) : v (algebra_map A a) ≤ 1 := v.property.right a
/-- The valuation of a unit of the ring of integral elements is 1. -/
@[simp] lemma map_unit (v : spa A) (u : units (A⁺)) :
v ((algebra_map A : (A⁺) → A) u) = 1 :=
begin
have h₁ := map_plus v u,
have h₂ := map_plus v (u⁻¹ : _),
have := actual_ordered_comm_monoid.mul_eq_one_iff_of_le_one' h₁ h₂,
apply (this.mp _).left,
erw ← valuation.map_mul,
rw ← is_ring_hom.map_mul (algebra_map A : (A⁺) → A),
simp only [units.mul_inv, algebra.map_one, valuation.map_one]
end
-- We are now going to setup the topology on `spa A`.
-- A basis of the topology is indexed by the following data:
/--A rational open subset of `spa A` is indexed by:
* an element s of A, and
* a finite set T ⊆ A that generates an open ideal in A.
In the literature, these sets are commonly denoted by D(T,s).-/
structure rational_open_data (A : Huber_pair) :=
(s : A)
(T : set A)
[Tfin : fintype T]
(Hopen : is_open ((ideal.span T) : set A))
namespace rational_open_data
variables (r : rational_open_data A)
attribute [instance] Tfin
@[ext]
lemma ext {r₁ r₂ : rational_open_data A} (hs : r₁.s = r₂.s) (hT : r₁.T = r₂.T) :
r₁ = r₂ :=
begin
cases r₁, cases r₂,
congr; assumption
end
/--The subset of the adic spectrum associated with the data for a rational open subset.
In the literature, these sets are commonly denoted by D(T,s).-/
def open_set (r : rational_open_data A) : set (spa A) :=
{v : spa A | (∀ t ∈ r.T, (v t ≤ v r.s)) ∧ (v r.s ≠ 0)}
variable (A)
/--The rational open subset covering the entire adic spectrum.-/
def univ : rational_open_data A :=
{ s := 1,
T := {1},
Hopen := by { rw ideal.span_singleton_one, exact is_open_univ } }
variable {A}
@[simp] lemma univ_s : (univ A).s = 1 := rfl
@[simp] lemma univ_T : (univ A).T = {1} := rfl
@[simp] lemma univ_open_set :
(univ A).open_set = set.univ :=
begin
rw eq_univ_iff_forall,
intros v,
split,
{ intros t ht,
erw mem_singleton_iff at ht,
rw [ht, univ_s], },
{ erw [univ_s, Spv.map_one],
exact one_ne_zero }
end
/--The rational open subset D(T,s) is the same as D(T ∪ {s}, s).-/
noncomputable def insert_s (r : rational_open_data A) : rational_open_data A :=
{ s := r.s,
T := insert r.s r.T,
Hopen := submodule.is_open_of_open_submodule
⟨ideal.span (r.T), r.Hopen, ideal.span_mono $ set.subset_insert _ _⟩ }
@[simp] lemma insert_s_s (r : rational_open_data A) :
(insert_s r).s = r.s := rfl
@[simp] lemma insert_s_T (r : rational_open_data A) :
(insert_s r).T = insert r.s r.T := rfl
@[simp] lemma insert_s_open_set (r : rational_open_data A) :
(insert_s r).open_set = r.open_set :=
begin
ext v,
split; rintros ⟨h₁, h₂⟩; split; try { exact h₂ }; intros t ht,
{ apply h₁ t,
exact mem_insert_of_mem _ ht },
{ cases ht,
{ rw [ht, insert_s_s], },
{ exact h₁ t ht } },
end
lemma mem_insert_s (r : rational_open_data A) :
r.s ∈ (insert_s r).T := by {left, refl}
/-- Auxilliary definition for the intersection of two rational open sets.-/
noncomputable def inter_aux (r1 r2 : rational_open_data A) : rational_open_data A :=
{ s := r1.s * r2.s,
T := r1.T * r2.T,
Tfin := set.pointwise_mul_fintype _ _,
Hopen :=
begin
rcases Huber_ring.exists_pod_subset _ (mem_nhds_sets r1.Hopen $ ideal.zero_mem $ ideal.span r1.T)
with ⟨A₀, _, _, _, ⟨_, emb, I, fg, top⟩, hI⟩,
dsimp only at hI,
resetI,
rw is_ideal_adic_iff at top,
cases top.2 (algebra_map A ⁻¹' ↑(ideal.span r2.T)) _ with n hn,
{ apply submodule.is_open_of_open_submodule,
use ideal.map (of_id A₀ A) (I^(n+1)),
refine ⟨is_open_ideal_map_open_embedding emb _ (top.1 (n+1)), _⟩,
delta ideal.span,
erw [pow_succ, ideal.map_mul, ← submodule.span_mul_span],
apply submodule.mul_le_mul,
{ exact (ideal.span_le.mpr hI) },
{ rw ← image_subset_iff at hn,
exact (ideal.span_le.mpr hn) } },
{ apply emb.continuous.tendsto,
rw show algebra.to_fun A (0:A₀) = 0,
{ haveI : is_ring_hom (algebra.to_fun A : A₀ → A) := algebra.is_ring_hom,
apply is_ring_hom.map_zero },
exact (mem_nhds_sets r2.Hopen $ ideal.zero_mem $ ideal.span r2.T) }
end }
/--The intersection of two rational open sets is a rational open set.-/
noncomputable def inter (r1 r2 : rational_open_data A) : rational_open_data A :=
inter_aux (rational_open_data.insert_s r1) (rational_open_data.insert_s r2)
@[simp] lemma inter_s (r1 r2 : rational_open_data A) :
(r1.inter r2).s = r1.s * r2.s := rfl
@[simp] lemma inter_T (r1 r2 : rational_open_data A) :
(r1.inter r2).T = (insert r1.s r1.T) * (insert r2.s r2.T) := rfl
lemma inter_open_set (r1 r2 : rational_open_data A) :
(inter r1 r2).open_set = r1.open_set ∩ r2.open_set :=
begin
rw [← insert_s_open_set r1, ← insert_s_open_set r2],
apply le_antisymm,
{ rintros v ⟨hv, hs⟩,
have vmuls : v (r1.s * r2.s) = v r1.s * v r2.s := valuation.map_mul _ _ _,
have hs₁ : v r1.s ≠ 0 := λ H, by simpa [-coe_fn_coe_base, vmuls, H] using hs,
have hs₂ : v r2.s ≠ 0 := λ H, by simpa [-coe_fn_coe_base, vmuls, H] using hs,
split; split; try { assumption };
intros t ht,
{ suffices H : v t * v r2.s ≤ v r1.s * v r2.s,
{ simpa [hs₂, mul_assoc, -coe_fn_coe_base] using
linear_ordered_structure.mul_le_mul_right H (group_with_zero.mk₀ _ hs₂)⁻¹, },
{ simpa using hv (t * r2.s) ⟨t, ht, r2.s, mem_insert_s r2, rfl⟩, } },
{ suffices H : v r1.s * v t ≤ v r1.s * v r2.s,
{ simpa [hs₁, mul_assoc, -coe_fn_coe_base] using
linear_ordered_structure.mul_le_mul_left H (group_with_zero.mk₀ _ hs₁)⁻¹, },
{ simpa using hv (r1.s * t) ⟨r1.s, mem_insert_s r1, t, ht, rfl⟩, } } },
{ rintros v ⟨⟨hv₁, hs₁⟩, ⟨hv₂, hs₂⟩⟩,
split,
{ rintros t ⟨t₁, ht₁, t₂, ht₂, rfl⟩,
convert le_trans
(linear_ordered_structure.mul_le_mul_right (hv₁ t₁ ht₁) _)
(linear_ordered_structure.mul_le_mul_left (hv₂ t₂ ht₂) _);
apply valuation.map_mul },
{ assume eq_zero, simp at eq_zero, tauto }, }
end
lemma inter_symm (r1 r2 : rational_open_data A) :
r1.inter r2 = r2.inter r1 :=
ext (mul_comm _ _) (mul_comm _ _)
end rational_open_data
variable (A)
/--The basis for the topology on the adic spectrum, consisting of rational open sets.-/
def rational_basis := {U : set (spa A) | ∃ r : rational_open_data A, U = r.open_set}
/--The topology on the adic spectrum, generated by rational open sets.-/
instance : topological_space (spa A) :=
topological_space.generate_from (rational_basis A)
variable {A}
/--The rational open sets form a basis for the topology on the adic spectrum.-/
lemma rational_basis.is_basis : topological_space.is_topological_basis (rational_basis A) :=
begin
refine ⟨_, _, rfl⟩,
{ rintros _ ⟨r₁, rfl⟩ _ ⟨r₂, rfl⟩ x hx,
refine ⟨_, ⟨_, (rational_open_data.inter_open_set r₁ r₂).symm⟩, hx, subset.refl _⟩, },
{ apply subset.antisymm (subset_univ _) (subset_sUnion_of_mem _),
exact ⟨_, rational_open_data.univ_open_set.symm⟩ }
end
end spa
|