Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 9,657 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import continuous_valuations
import Huber_pair

/-!
# The adic spectrum as a topological space

In this file we define a structure (`rational_open_data`) that will parameterise
a basis for the topology on the adic spectrum of a Huber pair.
-/

open_locale classical
local attribute [instance] set.pointwise_mul_comm_semiring
local attribute [instance] set.smul_set_action

local postfix `⁺` : 66 := λ A : Huber_pair, A.plus

variables {Γ₀ : Type*} [linear_ordered_comm_group_with_zero Γ₀]

-- We reserve the name `Spa` (with upper case `S`) for the bundled adic spectrum (`adic_space.lean`)
/-- The space underlying the adic spectrum of a Huber pair (A,A⁺)
consists of all the equivalence classes of valuations that are continuous
and whose value on the ring A⁺ is1. [Wedhorn, Def 7.23]. -/
definition spa (A : Huber_pair) : Type :=
{v : Spv A // v.is_continuous ∧ ∀ r : A⁺, v (algebra_map A r) ≤ 1}

/--The equivalence class of a valuation is contained in spa
if and only if the valuation is continuous and its values on the ring A⁺ are ≤ 1,
since these properties are constant on equivalence classes.-/
lemma mk_mem_spa {A : Huber_pair} {v : valuation A Γ₀} :
  Spv.mk v ∈ {v : Spv A | v.is_continuous ∧ ∀ r : A⁺, v (algebra_map A r) ≤ 1} ↔
  v.is_continuous ∧ ∀ r : A⁺, v (algebra_map A r) ≤ 1 :=
begin
  apply and_congr,
  { exact (Spv.out_mk v).is_continuous_iff, },
  { apply forall_congr,
    intro r,
    simpa using (Spv.out_mk v) (algebra_map A r) 1, }
end

namespace spa
open set algebra
variables {A : Huber_pair}

/-- The coercion from the adic spectrum of a Huber pair to the ambient valuation spectrum.-/
instance : has_coe (spa A) (Spv A) := ⟨subtype.val⟩

@[ext]
lemma ext (v₁ v₂ : spa A) (h : (Spv.out ↑v₁).is_equiv (Spv.out (↑v₂ : Spv A))) :
  v₁ = v₂ :=
subtype.val_injective $ Spv.ext _ _ h

lemma ext_iff {v₁ v₂ : spa A} :
  v₁ = v₂ ↔ ((Spv.out ↑v₁).is_equiv (Spv.out (↑v₂ : Spv A))) :=
by rw [subtype.coe_ext, Spv.ext_iff]

/-- The value monoid of a random representative valuation of a point in the adic spectrum. -/
abbreviation out_Γ₀ (v  : spa A) := Spv.out_Γ₀ (v : Spv A)

/-- A valuation in the adic spectrum is continuous. -/
lemma is_continuous (v : spa A) : Spv.is_continuous (v : Spv A) := v.property.left

/-- The valuation of an integral element is at most 1. -/
lemma map_plus (v : spa A) (a : (A⁺)) : v (algebra_map A a) ≤ 1 := v.property.right a

/-- The valuation of a unit of the ring of integral elements is 1. -/
@[simp] lemma map_unit (v : spa A) (u : units (A⁺)) :
  v ((algebra_map A : (A⁺) → A) u) = 1 :=
begin
  have h₁ := map_plus v u,
  have h₂ := map_plus v (u⁻¹ : _),
  have := actual_ordered_comm_monoid.mul_eq_one_iff_of_le_one' h₁ h₂,
  apply (this.mp _).left,
  erw ← valuation.map_mul,
  rw ← is_ring_hom.map_mul (algebra_map A : (A⁺) → A),
  simp only [units.mul_inv, algebra.map_one, valuation.map_one]
end

-- We are now going to setup the topology on `spa A`.
-- A basis of the topology is indexed by the following data:

/--A rational open subset of `spa A` is indexed by:
* an element s of A, and
* a finite set T ⊆ A that generates an open ideal in A.

In the literature, these sets are commonly denoted by D(T,s).-/
structure rational_open_data (A : Huber_pair) :=
(s : A)
(T : set A)
[Tfin : fintype T]
(Hopen : is_open ((ideal.span T) : set A))

namespace rational_open_data
variables (r : rational_open_data A)

attribute [instance] Tfin

@[ext]
lemma ext {r₁ r₂ : rational_open_data A} (hs : r₁.s = r₂.s) (hT : r₁.T = r₂.T) :
  r₁ = r₂ :=
begin
  cases r₁, cases r₂,
  congr; assumption
end

/--The subset of the adic spectrum associated with the data for a rational open subset.

In the literature, these sets are commonly denoted by D(T,s).-/
def open_set (r : rational_open_data A) : set (spa A) :=
{v : spa A | (∀ t ∈ r.T, (v t ≤ v r.s)) ∧ (v r.s ≠ 0)}

variable (A)

/--The rational open subset covering the entire adic spectrum.-/
def univ : rational_open_data A :=
{ s := 1,
  T := {1},
  Hopen := by { rw ideal.span_singleton_one, exact is_open_univ } }

variable {A}

@[simp] lemma univ_s : (univ A).s = 1 := rfl

@[simp] lemma univ_T : (univ A).T = {1} := rfl

@[simp] lemma univ_open_set :
  (univ A).open_set = set.univ :=
begin
  rw eq_univ_iff_forall,
  intros v,
  split,
  { intros t ht,
    erw mem_singleton_iff at ht,
    rw [ht, univ_s], },
  { erw [univ_s, Spv.map_one],
    exact one_ne_zero }
end

/--The rational open subset D(T,s) is the same as D(T ∪ {s}, s).-/
noncomputable def insert_s (r : rational_open_data A) : rational_open_data A :=
{ s := r.s,
  T := insert r.s r.T,
  Hopen := submodule.is_open_of_open_submodule
    ⟨ideal.span (r.T), r.Hopen, ideal.span_mono $ set.subset_insert _ _⟩ }

@[simp] lemma insert_s_s (r : rational_open_data A) :
(insert_s r).s = r.s := rfl

@[simp] lemma insert_s_T (r : rational_open_data A) :
(insert_s r).T = insert r.s r.T := rfl

@[simp] lemma insert_s_open_set (r : rational_open_data A) :
(insert_s r).open_set = r.open_set :=
begin
  ext v,
  split; rintros ⟨h₁, h₂⟩; split; try { exact h₂ }; intros t ht,
  { apply h₁ t,
    exact mem_insert_of_mem _ ht },
  { cases ht,
    { rw [ht, insert_s_s], },
    { exact h₁ t ht } },
end

lemma mem_insert_s (r : rational_open_data A) :
r.s ∈ (insert_s r).T := by {left, refl}

/-- Auxilliary definition for the intersection of two rational open sets.-/
noncomputable def inter_aux (r1 r2 : rational_open_data A) : rational_open_data A :=
{ s := r1.s * r2.s,
  T := r1.T * r2.T,
  Tfin := set.pointwise_mul_fintype _ _,
  Hopen :=
  begin
    rcases Huber_ring.exists_pod_subset _ (mem_nhds_sets r1.Hopen $ ideal.zero_mem $ ideal.span r1.T)
      with ⟨A₀, _, _, _, ⟨_, emb, I, fg, top⟩, hI⟩,
    dsimp only at hI,
    resetI,
    rw is_ideal_adic_iff at top,
    cases top.2 (algebra_map A ⁻¹' ↑(ideal.span r2.T)) _ with n hn,
    { apply submodule.is_open_of_open_submodule,
      use ideal.map (of_id A₀ A) (I^(n+1)),
      refine ⟨is_open_ideal_map_open_embedding emb _ (top.1 (n+1)), _⟩,
      delta ideal.span,
      erw [pow_succ, ideal.map_mul, ← submodule.span_mul_span],
      apply submodule.mul_le_mul,
      { exact (ideal.span_le.mpr hI) },
      { rw ← image_subset_iff at hn,
        exact (ideal.span_le.mpr hn) } },
    { apply emb.continuous.tendsto,
      rw show algebra.to_fun A (0:A₀) = 0,
      { haveI : is_ring_hom (algebra.to_fun A : A₀ → A) := algebra.is_ring_hom,
        apply is_ring_hom.map_zero },
      exact (mem_nhds_sets r2.Hopen $ ideal.zero_mem $ ideal.span r2.T) }
  end }

/--The intersection of two rational open sets is a rational open set.-/
noncomputable def inter (r1 r2 : rational_open_data A) : rational_open_data A :=
inter_aux (rational_open_data.insert_s r1) (rational_open_data.insert_s r2)

@[simp] lemma inter_s (r1 r2 : rational_open_data A) :
  (r1.inter r2).s = r1.s * r2.s := rfl

@[simp] lemma inter_T (r1 r2 : rational_open_data A) :
  (r1.inter r2).T = (insert r1.s r1.T) * (insert r2.s r2.T) := rfl

lemma inter_open_set (r1 r2 : rational_open_data A) :
(inter r1 r2).open_set = r1.open_set ∩ r2.open_set :=
begin
  rw [← insert_s_open_set r1, ← insert_s_open_set r2],
  apply le_antisymm,
  {  rintros v ⟨hv, hs⟩,
    have vmuls : v (r1.s * r2.s) = v r1.s * v r2.s := valuation.map_mul _ _ _,
    have hs₁ : v r1.s ≠ 0 := λ H, by simpa [-coe_fn_coe_base, vmuls, H] using hs,
    have hs₂ : v r2.s ≠ 0 := λ H, by simpa [-coe_fn_coe_base, vmuls, H] using hs,
    split; split; try { assumption };
    intros t ht,
    { suffices H : v t * v r2.s ≤ v r1.s * v r2.s,
      { simpa [hs₂, mul_assoc, -coe_fn_coe_base] using
          linear_ordered_structure.mul_le_mul_right H (group_with_zero.mk₀ _ hs₂)⁻¹, },
      { simpa using hv (t * r2.s) ⟨t, ht, r2.s, mem_insert_s r2, rfl⟩, } },
    { suffices H : v r1.s * v t ≤ v r1.s * v r2.s,
      { simpa [hs₁, mul_assoc, -coe_fn_coe_base] using
          linear_ordered_structure.mul_le_mul_left H (group_with_zero.mk₀ _ hs₁)⁻¹, },
      { simpa using hv (r1.s * t) ⟨r1.s, mem_insert_s r1, t, ht, rfl⟩, } } },
  { rintros v ⟨⟨hv₁, hs₁⟩, ⟨hv₂, hs₂⟩⟩,
    split,
    { rintros t ⟨t₁, ht₁, t₂, ht₂, rfl⟩,
      convert le_trans
        (linear_ordered_structure.mul_le_mul_right (hv₁ t₁ ht₁) _)
        (linear_ordered_structure.mul_le_mul_left  (hv₂ t₂ ht₂) _);
      apply valuation.map_mul },
    { assume eq_zero, simp at eq_zero, tauto }, }
end

lemma inter_symm (r1 r2 : rational_open_data A) :
  r1.inter r2 = r2.inter r1 :=
ext (mul_comm _ _) (mul_comm _ _)

end rational_open_data

variable (A)

/--The basis for the topology on the adic spectrum, consisting of rational open sets.-/
def rational_basis := {U : set (spa A) | ∃ r : rational_open_data A, U = r.open_set}

/--The topology on the adic spectrum, generated by rational open sets.-/
instance : topological_space (spa A) :=
topological_space.generate_from (rational_basis A)

variable {A}

/--The rational open sets form a basis for the topology on the adic spectrum.-/
lemma rational_basis.is_basis : topological_space.is_topological_basis (rational_basis A) :=
begin
  refine ⟨_, _, rfl⟩,
  { rintros _ ⟨r₁, rfl⟩ _ ⟨r₂, rfl⟩ x hx,
    refine ⟨_, ⟨_, (rational_open_data.inter_open_set r₁ r₂).symm⟩, hx, subset.refl _⟩, },
  { apply subset.antisymm (subset_univ _) (subset_sUnion_of_mem _),
    exact ⟨_, rational_open_data.univ_open_set.symm⟩ }
end

end spa