Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 14,662 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
import for_mathlib.topological_field
import for_mathlib.topology
import for_mathlib.uniform_space.uniform_field
import valuation.topology
import valuation.with_zero_topology
import topology.algebra.ordered
/-!
In this file we study the topology of a field `K` endowed with a valuation (in our application
to adic spaces, `K` will be the valuation field associated to some valuation on a ring, defined in
valuation.basic).
We already know from valuation.topology that one can build a topology on `K` which
makes it a topological ring.
The first goal is to show `K` is a topological *field*, ie inversion is continuous
at every non-zero element.
The next goal is to prove `K` is a *completable* topological field. This gives us
a completion `hat K` which is a topological field. We also prove that `K` is automatically
separated, so the map from `K` to `hat K` is injective.
Then we extend the valuation given on `K` to a valuation on `hat K`.
-/
open filter set linear_ordered_structure
local attribute [instance, priority 0] classical.DLO
local notation `𝓝` x: 70 := nhds x
section division_ring
variables {K : Type*} [division_ring K]
section valuation_topological_division_ring
section inversion_estimate
variables {Γ₀ : Type*} [linear_ordered_comm_group_with_zero Γ₀] (v : valuation K Γ₀)
-- The following is the main technical lemma ensuring that inversion is continuous
-- in the topology induced by a valuation on a division ring (ie the next instance)
-- and the fact that a valued field is completable
-- [BouAC, VI.5.1 Lemme 1]
lemma valuation.inversion_estimate {x y : K} {γ : units Γ₀} (y_ne : y ≠ 0)
(h : v (x - y) < min (γ * ((v y) * (v y))) (v y)) :
v (x⁻¹ - y⁻¹) < γ :=
begin
have hyp1 : v (x - y) < γ * ((v y) * (v y)),
from lt_of_lt_of_le h (min_le_left _ _),
have hyp1' : v (x - y) * ((v y) * (v y))⁻¹ < γ,
from mul_inv_lt_of_lt_mul' hyp1,
have hyp2 : v (x - y) < v y,
from lt_of_lt_of_le h (min_le_right _ _),
have key : v x = v y, from valuation.map_eq_of_sub_lt v hyp2,
have x_ne : x ≠ 0,
{ intro h,
apply y_ne,
rw [h, v.map_zero] at key,
exact v.zero_iff.1 key.symm },
have decomp : x⁻¹ - y⁻¹ = x⁻¹ * (y - x) * y⁻¹,
by rw [mul_sub_left_distrib, sub_mul, mul_assoc,
show y * y⁻¹ = 1, from mul_inv_cancel y_ne,
show x⁻¹ * x = 1, from inv_mul_cancel x_ne, mul_one, one_mul],
calc
v (x⁻¹ - y⁻¹) = v (x⁻¹ * (y - x) * y⁻¹) : by rw decomp
... = (v x⁻¹) * (v $ y - x) * (v y⁻¹) : by repeat { rw valuation.map_mul }
... = (v x)⁻¹ * (v $ y - x) * (v y)⁻¹ : by rw [v.map_inv' x_ne, v.map_inv' y_ne]
... = (v $ y - x) * ((v y) * (v y))⁻¹ : by
rw [mul_assoc, mul_comm, key, mul_assoc, ← group_with_zero.mul_inv_rev]
... = (v $ y - x) * ((v y) * (v y))⁻¹ : rfl
... = (v $ x - y) * ((v y) * (v y))⁻¹ : by rw valuation.map_sub_swap
... < γ : hyp1',
end
end inversion_estimate
local attribute [instance] valued.subgroups_basis subgroups_basis.topology
ring_filter_basis.topological_ring
local notation `v` := valued.value
/-- The topology coming from a valuation on a division rings make it a topological division ring
[BouAC, VI.5.1 middle of Proposition 1] -/
instance valued.topological_division_ring [valued K] : topological_division_ring K :=
{ continuous_inv :=
begin
intros x x_ne s s_in,
cases valued.mem_nhds.mp s_in with γ hs, clear s_in,
rw [mem_map, valued.mem_nhds],
change ∃ (γ : units (valued.Γ₀ K)), {y : K | v (y - x) < γ} ⊆ {x : K | x⁻¹ ∈ s},
have vx_ne := (valuation.ne_zero_iff $ valued.v K).mpr x_ne,
let γ' := group_with_zero.mk₀ _ vx_ne,
use min (γ * (γ'*γ')) γ',
intros y y_in,
apply hs,
change v (y⁻¹ - x⁻¹) < γ,
simp only [mem_set_of_eq] at y_in,
rw [coe_min, units.coe_mul, units.coe_mul] at y_in,
exact valuation.inversion_estimate _ x_ne y_in
end,
..(by apply_instance : topological_ring K) }
section
local attribute [instance]
linear_ordered_comm_group_with_zero.topological_space
linear_ordered_comm_group_with_zero.regular_space
linear_ordered_comm_group_with_zero.nhds_basis
lemma valued.continuous_valuation [valued K] : continuous (v : K → valued.Γ₀ K) :=
begin
rw continuous_iff_continuous_at,
intro x,
classical,
by_cases h : x = 0,
{ rw h,
change tendsto _ _ (𝓝 (valued.v K 0)),
erw valuation.map_zero,
rw linear_ordered_comm_group_with_zero.tendsto_zero,
intro γ,
rw valued.mem_nhds_zero,
use [γ, set.subset.refl _] },
{ change tendsto _ _ _,
have v_ne : v x ≠ 0, from (valuation.ne_zero_iff _).mpr h,
rw linear_ordered_comm_group_with_zero.tendsto_nonzero v_ne,
apply valued.loc_const v_ne },
end
end
section
-- until the end of this section, all linearly ordered commutative groups will be endowed with
-- the discrete topology
-- In the next lemma, K will be endowed with its left uniformity coming from the valuation topology
local attribute [instance] valued.uniform_space
/-- A valued division ring is separated. -/
instance valued_ring.separated [valued K] : separated K :=
begin
apply topological_add_group.separated_of_zero_sep,
intros x x_ne,
refine ⟨{k | v k < v x}, _, λ h, lt_irrefl _ h⟩,
rw valued.mem_nhds,
have vx_ne := (valuation.ne_zero_iff $ valued.v K).mpr x_ne,
let γ' := group_with_zero.mk₀ _ vx_ne,
exact ⟨γ', λ y hy, by simpa using hy⟩,
end
end
end valuation_topological_division_ring
end division_ring
section valuation_on_valued_field_completion
open uniform_space
-- In this section K is commutative (hence a field), and equipped with a valuation
variables {K : Type*} [discrete_field K] [vK : valued K]
include vK
open valued
local notation `v` := valued.value
local attribute [instance, priority 0] valued.uniform_space valued.uniform_add_group
local notation `hat` K := completion K
set_option class.instance_max_depth 300
-- The following instances helps going over the uniform_add_group/topological_add_group loop
lemma hatK_top_group : topological_add_group (hat K) := uniform_add_group.to_topological_add_group
local attribute [instance] hatK_top_group
lemma hatK_top_monoid : topological_add_monoid (hat K) :=
topological_add_group.to_topological_add_monoid _
local attribute [instance] hatK_top_monoid
/-- A valued field is completable. -/
instance valued.completable : completable_top_field K :=
{ separated := by apply_instance,
nice := begin
rintros F hF h0,
have : ∃ (γ₀ : units (Γ₀ K)) (M ∈ F), ∀ x ∈ M, (γ₀ : Γ₀ K) ≤ v x,
{ rcases (filter.inf_eq_bot_iff _ _).1 h0 with ⟨U, U_in, M, M_in, H⟩,
rcases valued.mem_nhds_zero.mp U_in with ⟨γ₀, hU⟩,
existsi [γ₀, M, M_in],
intros x xM,
apply le_of_not_lt _,
intro hyp,
have : x ∈ U ∩ M := ⟨hU hyp, xM⟩,
rwa H at this },
rcases this with ⟨γ₀, M₀, M₀_in, H₀⟩,
rw valued.cauchy_iff at hF ⊢,
refine ⟨map_ne_bot hF.1, _⟩,
replace hF := hF.2,
intros γ,
rcases hF (min (γ * γ₀ * γ₀) γ₀) with ⟨M₁, M₁_in, H₁⟩, clear hF,
use (λ x : K, x⁻¹) '' (M₀ ∩ M₁),
split,
{ rw mem_map,
apply mem_sets_of_superset (filter.inter_mem_sets M₀_in M₁_in),
exact subset_preimage_image _ _ },
{ rintros _ _ ⟨x, ⟨x_in₀, x_in₁⟩, rfl⟩ ⟨y, ⟨y_in₀, y_in₁⟩, rfl⟩,
simp only [mem_set_of_eq],
specialize H₁ x y x_in₁ y_in₁,
replace x_in₀ := H₀ x x_in₀,
replace y_in₀ := H₀ y y_in₀, clear H₀,
apply valuation.inversion_estimate,
{ have : v x ≠ 0,
{ intro h, rw h at x_in₀, simpa using x_in₀, },
exact (valuation.ne_zero_iff _).mp this },
{ refine lt_of_lt_of_le H₁ _,
rw coe_min,
apply min_le_min _ x_in₀,
rw mul_assoc,
have : ((γ₀ * γ₀ : units (Γ₀ K)) : Γ₀ K) ≤ v x * v x,
from calc ↑γ₀ * ↑γ₀ ≤ ↑γ₀ * v x : actual_ordered_comm_monoid.mul_le_mul_left' x_in₀
... ≤ _ : actual_ordered_comm_monoid.mul_le_mul_right' x_in₀,
exact actual_ordered_comm_monoid.mul_le_mul_left' this } }
end }
local attribute [instance]
linear_ordered_comm_group_with_zero.topological_space
linear_ordered_comm_group_with_zero.regular_space
linear_ordered_comm_group_with_zero.nhds_basis
linear_ordered_comm_group_with_zero.t2_space
linear_ordered_comm_group_with_zero.ordered_topology
/-- The extension of the valuation of a valued field to the completion of the field. -/
noncomputable def valued.extension : (hat K) → Γ₀ K :=
completion.dense_inducing_coe.extend (v : K → Γ₀ K)
lemma valued.continuous_extension : continuous (valued.extension : (hat K) → Γ₀ K) :=
begin
refine completion.dense_inducing_coe.continuous_extend _,
intro x₀,
by_cases h : x₀ = coe 0,
{ refine ⟨0, _⟩,
erw [h, ← completion.dense_inducing_coe.to_inducing.nhds_eq_comap]; try { apply_instance },
rw linear_ordered_comm_group_with_zero.tendsto_zero,
intro γ₀,
rw valued.mem_nhds,
exact ⟨γ₀, by simp⟩ },
{ have preimage_one : v ⁻¹' {(1 : Γ₀ K)} ∈ 𝓝 (1 : K),
{ have : v (1 : K) ≠ 0, { rw valued.map_one, exact zero_ne_one.symm },
convert valued.loc_const this,
ext x,
rw [valued.map_one, mem_preimage, mem_singleton_iff, mem_set_of_eq] },
obtain ⟨V, V_in, hV⟩ : ∃ V ∈ 𝓝 (1 : hat K), ∀ x : K, (x : hat K) ∈ V → v x = 1,
{ rwa [completion.dense_inducing_coe.nhds_eq_comap, mem_comap_sets] at preimage_one,
rcases preimage_one with ⟨V, V_in, hV⟩,
use [V, V_in],
intros x x_in,
specialize hV x_in,
rwa [mem_preimage, mem_singleton_iff] at hV },
have : ∃ V' ∈ (𝓝 (1 : hat K)), (0 : hat K) ∉ V' ∧ ∀ x y ∈ V', x*y⁻¹ ∈ V,
{ have : tendsto (λ p : (hat K) × hat K, p.1*p.2⁻¹) ((𝓝 1).prod 𝓝 1) 𝓝 1,
{ rw ← nhds_prod_eq,
conv {congr, skip, skip, rw ← (one_mul (1 : hat K))},
refine tendsto.mul continuous_fst.continuous_at (tendsto.comp _ continuous_snd.continuous_at),
convert topological_division_ring.continuous_inv (1 : hat K) zero_ne_one.symm,
exact inv_one.symm },
rcases tendsto_prod_self_iff.mp this V V_in with ⟨U, U_in, hU⟩,
let hatKstar := (-{0} : set $ hat K),
have : hatKstar ∈ 𝓝 (1 : hat K),
{ haveI : t1_space (hat K) := @t2_space.t1_space (hat K) _ (@separated_t2 (hat K) _ _),
exact compl_singleton_mem_nhds zero_ne_one.symm },
use [U ∩ hatKstar, filter.inter_mem_sets U_in this],
split,
{ rintro ⟨h, h'⟩,
rw mem_compl_singleton_iff at h',
exact h' rfl },
{ rintros x y ⟨hx, _⟩ ⟨hy, _⟩,
apply hU ; assumption } },
rcases this with ⟨V', V'_in, zeroV', hV'⟩,
have nhds_right : (λ x, x*x₀) '' V' ∈ 𝓝 x₀,
{ have l : function.left_inverse (λ (x : hat K), x * x₀⁻¹) (λ (x : hat K), x * x₀),
{ intro x,
simp only [mul_assoc, mul_inv_cancel h, mul_one] },
have r: function.right_inverse (λ (x : hat K), x * x₀⁻¹) (λ (x : hat K), x * x₀),
{ intro x,
simp only [mul_assoc, inv_mul_cancel h, mul_one] },
have c : continuous (λ (x : hat K), x * x₀⁻¹),
from continuous_id.mul continuous_const,
rw image_eq_preimage_of_inverse l r,
rw ← mul_inv_cancel h at V'_in,
exact c.continuous_at V'_in },
have : ∃ (z₀ : K) (y₀ ∈ V'), coe z₀ = y₀*x₀ ∧ z₀ ≠ 0,
{ rcases dense_range.mem_nhds completion.dense nhds_right with ⟨z₀, y₀, y₀_in, h⟩,
refine ⟨z₀, y₀, y₀_in, ⟨h.symm, _⟩⟩,
intro hz,
rw hz at h,
cases discrete_field.eq_zero_or_eq_zero_of_mul_eq_zero _ _ h ; finish },
rcases this with ⟨z₀, y₀, y₀_in, hz₀, z₀_ne⟩,
have vz₀_ne: valued.v K z₀ ≠ 0 := by rwa valuation.ne_zero_iff,
refine ⟨valued.v K z₀, _⟩,
rw [linear_ordered_comm_group_with_zero.tendsto_nonzero vz₀_ne, mem_comap_sets],
use [(λ x, x*x₀) '' V', nhds_right],
intros x x_in,
rcases mem_preimage.1 x_in with ⟨y, y_in, hy⟩, clear x_in,
change y*x₀ = coe x at hy,
have : valued.v K (x*z₀⁻¹) = 1,
{ apply hV,
rw [completion.coe_mul, is_ring_hom.map_inv' (coe : K → hat K) z₀_ne, ← hy, hz₀, mul_inv'],
assoc_rw mul_inv_cancel h,
rw mul_one,
solve_by_elim },
calc valued.v K x = valued.v K (x*z₀⁻¹*z₀) : by rw [mul_assoc, inv_mul_cancel z₀_ne, mul_one]
... = valued.v K (x*z₀⁻¹)*valued.v K z₀ : valuation.map_mul _ _ _
... = valued.v K z₀ : by rw [this, one_mul] },
end
@[elim_cast]
lemma valued.extension_extends (x : K) : valued.extension (x : hat K) = v x :=
begin
haveI : t2_space (valued.Γ₀ K) := regular_space.t2_space _,
exact completion.dense_inducing_coe.extend_eq_of_cont valued.continuous_valuation x
end
/-- the extension of a valuation on a division ring to its completion. -/
noncomputable def valued.extension_valuation :
valuation (hat K) (Γ₀ K) :=
{ to_fun := valued.extension,
map_zero' := by exact_mod_cast valuation.map_zero _,
map_one' := by { rw [← completion.coe_one, valued.extension_extends (1 : K)], exact valuation.map_one _ },
map_mul' := λ x y, begin
apply completion.induction_on₂ x y,
{ have c1 : continuous (λ (x : (hat K) × hat K), valued.extension (x.1 * x.2)),
from valued.continuous_extension.comp (continuous_fst.mul continuous_snd),
have c2 : continuous (λ (x : (hat K) × hat K), valued.extension x.1 * valued.extension x.2),
from (valued.continuous_extension.comp continuous_fst).mul
(valued.continuous_extension.comp continuous_snd),
exact is_closed_eq c1 c2 },
{ intros x y,
norm_cast,
exact valuation.map_mul _ _ _ },
end,
map_add' := λ x y, begin
rw le_max_iff,
apply completion.induction_on₂ x y,
{ exact is_closed_union
(is_closed_le ((valued.continuous_extension).comp continuous_add)
((valued.continuous_extension).comp continuous_fst))
(is_closed_le ((valued.continuous_extension).comp continuous_add)
((valued.continuous_extension).comp continuous_snd)) },
{ intros x y,
norm_cast,
rw ← le_max_iff,
exact valuation.map_add _ _ _ },
end }
end valuation_on_valued_field_completion
|