Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 14,662 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import for_mathlib.topological_field
import for_mathlib.topology
import for_mathlib.uniform_space.uniform_field
import valuation.topology
import valuation.with_zero_topology
import topology.algebra.ordered

/-!
In this file we study the topology of a field `K` endowed with a valuation (in our application
to adic spaces, `K` will be the valuation field associated to some valuation on a ring, defined in
valuation.basic).

We already know from valuation.topology that one can build a topology on `K` which
makes it a topological ring.

The first goal is to show `K` is a topological *field*, ie inversion is continuous
at every non-zero element.

The next goal is to prove `K` is a *completable* topological field. This gives us
a completion `hat K` which is a topological field. We also prove that `K` is automatically
separated, so the map from `K` to `hat K` is injective.

Then we extend the valuation given on `K` to a valuation on `hat K`.
-/

open filter set linear_ordered_structure

local attribute [instance, priority 0] classical.DLO

local notation `𝓝` x: 70 := nhds x

section division_ring

variables {K : Type*} [division_ring K]


section valuation_topological_division_ring

section inversion_estimate
variables {Γ₀ : Type*} [linear_ordered_comm_group_with_zero Γ₀] (v : valuation K Γ₀)

-- The following is the main technical lemma ensuring that inversion is continuous
-- in the topology induced by a valuation on a division ring (ie the next instance)
-- and the fact that a valued field is completable
-- [BouAC, VI.5.1 Lemme 1]
lemma valuation.inversion_estimate {x y : K} {γ : units Γ₀} (y_ne : y ≠ 0)
  (h : v (x - y) < min (γ * ((v y) * (v y))) (v y)) :
  v (x⁻¹ - y⁻¹) < γ :=
begin
  have hyp1 : v (x - y) < γ * ((v y) * (v y)),
    from lt_of_lt_of_le h (min_le_left _ _),
  have hyp1' : v (x - y) * ((v y) * (v y))⁻¹ < γ,
    from mul_inv_lt_of_lt_mul' hyp1,
  have hyp2 : v (x - y) < v y,
    from lt_of_lt_of_le h (min_le_right _ _),
  have key : v x = v y, from valuation.map_eq_of_sub_lt v hyp2,
  have x_ne : x ≠ 0,
  { intro h,
    apply y_ne,
    rw [h, v.map_zero] at key,
    exact v.zero_iff.1 key.symm },
  have decomp : x⁻¹ - y⁻¹ = x⁻¹ * (y - x) * y⁻¹,
  by rw [mul_sub_left_distrib, sub_mul, mul_assoc,
        show y * y⁻¹ = 1, from mul_inv_cancel y_ne,
        show x⁻¹ * x = 1, from inv_mul_cancel x_ne, mul_one, one_mul],
  calc
    v (x⁻¹ - y⁻¹) = v (x⁻¹ * (y - x) * y⁻¹) : by rw decomp
    ... = (v x⁻¹) * (v $ y - x) * (v y⁻¹) : by repeat { rw valuation.map_mul }
    ... = (v x)⁻¹ * (v $ y - x) * (v y)⁻¹ : by rw [v.map_inv' x_ne, v.map_inv' y_ne]
    ... = (v $ y - x) * ((v y) * (v y))⁻¹ : by
      rw [mul_assoc, mul_comm, key, mul_assoc, ← group_with_zero.mul_inv_rev]
    ... = (v $ y - x) * ((v y) * (v y))⁻¹ : rfl
    ... = (v $ x - y) * ((v y) * (v y))⁻¹ : by rw valuation.map_sub_swap
    ... < γ : hyp1',
end
end inversion_estimate

local attribute [instance] valued.subgroups_basis subgroups_basis.topology
  ring_filter_basis.topological_ring

local notation `v` := valued.value

/-- The topology coming from a valuation on a division rings make it a topological division ring
    [BouAC, VI.5.1 middle of Proposition 1] -/
instance valued.topological_division_ring [valued K] : topological_division_ring K :=
{ continuous_inv :=
    begin
      intros x x_ne s s_in,
      cases valued.mem_nhds.mp s_in with γ hs, clear s_in,
      rw [mem_map, valued.mem_nhds],
      change ∃ (γ : units (valued.Γ₀ K)), {y : K | v (y - x) < γ} ⊆ {x : K | x⁻¹ ∈ s},
      have vx_ne := (valuation.ne_zero_iff $ valued.v K).mpr x_ne,
      let γ' := group_with_zero.mk₀ _ vx_ne,
      use min (γ * (γ'*γ')) γ',
      intros y y_in,
      apply hs,
      change v (y⁻¹ - x⁻¹) < γ,
      simp only [mem_set_of_eq] at y_in,
      rw [coe_min, units.coe_mul, units.coe_mul] at y_in,
      exact valuation.inversion_estimate _ x_ne y_in
    end,
  ..(by apply_instance : topological_ring K) }

section
local attribute [instance]
  linear_ordered_comm_group_with_zero.topological_space
  linear_ordered_comm_group_with_zero.regular_space
  linear_ordered_comm_group_with_zero.nhds_basis

lemma valued.continuous_valuation [valued K] : continuous (v : K → valued.Γ₀ K) :=
begin
  rw continuous_iff_continuous_at,
  intro x,
  classical,
  by_cases h : x = 0,
  { rw h,
    change tendsto _ _ (𝓝 (valued.v K 0)),
    erw valuation.map_zero,
    rw linear_ordered_comm_group_with_zero.tendsto_zero,
    intro γ,
    rw valued.mem_nhds_zero,
    use [γ, set.subset.refl _] },
  { change tendsto _ _ _,
    have v_ne : v x ≠ 0, from (valuation.ne_zero_iff _).mpr h,
    rw linear_ordered_comm_group_with_zero.tendsto_nonzero v_ne,
    apply valued.loc_const v_ne },
end
end

section
-- until the end of this section, all linearly ordered commutative groups will be endowed with
-- the discrete topology

-- In the next lemma, K will be endowed with its left uniformity coming from the valuation topology
local attribute [instance] valued.uniform_space

/-- A valued division ring is separated. -/
instance valued_ring.separated [valued K] : separated K :=
begin
  apply topological_add_group.separated_of_zero_sep,
  intros x x_ne,
  refine ⟨{k | v k < v x}, _, λ h, lt_irrefl _ h⟩,
  rw valued.mem_nhds,
  have vx_ne := (valuation.ne_zero_iff $ valued.v K).mpr x_ne,
  let γ' := group_with_zero.mk₀ _ vx_ne,
  exact ⟨γ', λ y hy, by simpa using hy⟩,
end

end
end valuation_topological_division_ring

end division_ring

section valuation_on_valued_field_completion
open uniform_space
-- In this section K is commutative (hence a field), and equipped with a valuation
variables {K : Type*} [discrete_field K] [vK : valued K]
include vK

open valued

local notation `v` := valued.value

local attribute [instance, priority 0] valued.uniform_space valued.uniform_add_group

local notation `hat` K := completion K

set_option class.instance_max_depth 300

-- The following instances helps going over the uniform_add_group/topological_add_group loop
lemma hatK_top_group : topological_add_group (hat K) := uniform_add_group.to_topological_add_group
local attribute [instance] hatK_top_group

lemma hatK_top_monoid : topological_add_monoid (hat K) :=
topological_add_group.to_topological_add_monoid _
local attribute [instance] hatK_top_monoid

/-- A valued field is completable. -/
instance valued.completable : completable_top_field K :=
{ separated := by apply_instance,
  nice := begin
    rintros F hF h0,
    have : ∃ (γ₀ : units (Γ₀ K)) (M ∈ F), ∀ x ∈ M, (γ₀ : Γ₀ K) ≤ v x,
    { rcases (filter.inf_eq_bot_iff _ _).1 h0 with ⟨U, U_in, M, M_in, H⟩,
      rcases valued.mem_nhds_zero.mp U_in with ⟨γ₀, hU⟩,
      existsi [γ₀, M, M_in],
      intros x xM,
      apply le_of_not_lt _,
      intro hyp,
      have : x ∈ U ∩ M := ⟨hU hyp, xM⟩,
      rwa H at this },
    rcases this with ⟨γ₀, M₀, M₀_in, H₀⟩,
    rw valued.cauchy_iff at hF ⊢,
    refine ⟨map_ne_bot hF.1, _⟩,
    replace hF := hF.2,
    intros γ,
    rcases hF (min (γ * γ₀ * γ₀) γ₀) with ⟨M₁, M₁_in, H₁⟩, clear hF,
    use (λ x : K, x⁻¹) '' (M₀ ∩ M₁),
    split,
    { rw mem_map,
      apply mem_sets_of_superset (filter.inter_mem_sets M₀_in M₁_in),
      exact subset_preimage_image _ _ },
    { rintros _ _ ⟨x, ⟨x_in₀, x_in₁⟩, rfl⟩ ⟨y, ⟨y_in₀, y_in₁⟩, rfl⟩,
      simp only [mem_set_of_eq],
      specialize H₁ x y x_in₁ y_in₁,
      replace x_in₀ := H₀ x x_in₀,
      replace y_in₀ := H₀ y y_in₀, clear H₀,
      apply valuation.inversion_estimate,
      { have : v x ≠ 0,
        { intro h, rw h at x_in₀, simpa using x_in₀, },
        exact (valuation.ne_zero_iff _).mp this },
      { refine lt_of_lt_of_le H₁ _,
        rw coe_min,
        apply min_le_min _ x_in₀,
        rw mul_assoc,
        have : ((γ₀ * γ₀ : units (Γ₀ K)) : Γ₀ K) ≤ v x * v x,
          from calc ↑γ₀ * ↑γ₀ ≤ ↑γ₀ * v x : actual_ordered_comm_monoid.mul_le_mul_left' x_in₀
                          ... ≤ _ : actual_ordered_comm_monoid.mul_le_mul_right' x_in₀,
        exact actual_ordered_comm_monoid.mul_le_mul_left' this } }
  end  }

local attribute [instance]
  linear_ordered_comm_group_with_zero.topological_space
  linear_ordered_comm_group_with_zero.regular_space
  linear_ordered_comm_group_with_zero.nhds_basis
  linear_ordered_comm_group_with_zero.t2_space
  linear_ordered_comm_group_with_zero.ordered_topology

/-- The extension of the valuation of a valued field to the completion of the field. -/
noncomputable def valued.extension : (hat K) → Γ₀ K :=
completion.dense_inducing_coe.extend (v : K → Γ₀ K)

lemma valued.continuous_extension : continuous (valued.extension : (hat K) → Γ₀ K) :=
 begin
  refine completion.dense_inducing_coe.continuous_extend _,
  intro x₀,
  by_cases h : x₀ = coe 0,
  { refine ⟨0, _⟩,
    erw [h, ← completion.dense_inducing_coe.to_inducing.nhds_eq_comap]; try { apply_instance },
    rw linear_ordered_comm_group_with_zero.tendsto_zero,
    intro γ₀,
    rw valued.mem_nhds,
    exact ⟨γ₀, by simp⟩ },
  { have preimage_one : v ⁻¹' {(1 : Γ₀ K)} ∈ 𝓝 (1 : K),
    { have : v (1 : K) ≠ 0, { rw valued.map_one, exact zero_ne_one.symm },
      convert valued.loc_const this,
      ext x,
      rw [valued.map_one, mem_preimage, mem_singleton_iff, mem_set_of_eq] },
    obtain ⟨V, V_in, hV⟩ : ∃ V ∈ 𝓝 (1 : hat K), ∀ x : K, (x : hat K) ∈ V → v x = 1,
    { rwa [completion.dense_inducing_coe.nhds_eq_comap, mem_comap_sets] at preimage_one,
      rcases preimage_one with ⟨V, V_in, hV⟩,
      use [V, V_in],
      intros x x_in,
      specialize hV x_in,
      rwa [mem_preimage, mem_singleton_iff] at hV },

    have : ∃ V' ∈ (𝓝 (1 : hat K)), (0 : hat K) ∉ V' ∧ ∀ x y ∈ V', x*y⁻¹ ∈ V,
    { have : tendsto (λ p : (hat K) × hat K, p.1*p.2⁻¹) ((𝓝 1).prod 𝓝 1) 𝓝 1,
      { rw ← nhds_prod_eq,
        conv {congr, skip, skip, rw ← (one_mul (1 : hat K))},
        refine tendsto.mul continuous_fst.continuous_at (tendsto.comp _ continuous_snd.continuous_at),
        convert topological_division_ring.continuous_inv (1 : hat K) zero_ne_one.symm,
        exact inv_one.symm },
      rcases tendsto_prod_self_iff.mp this V V_in with ⟨U, U_in, hU⟩,
      let hatKstar := (-{0} : set $ hat K),
      have : hatKstar ∈ 𝓝 (1 : hat K),
      { haveI : t1_space (hat K) := @t2_space.t1_space (hat K) _ (@separated_t2 (hat K) _ _),
        exact compl_singleton_mem_nhds zero_ne_one.symm },
      use  [U ∩ hatKstar, filter.inter_mem_sets U_in this],
      split,
      { rintro ⟨h, h'⟩,
        rw mem_compl_singleton_iff at h',
        exact h' rfl },
      { rintros x y ⟨hx, _⟩ ⟨hy, _⟩,
        apply hU ; assumption } },
    rcases this with ⟨V', V'_in, zeroV', hV'⟩,
    have nhds_right : (λ x, x*x₀) '' V' ∈ 𝓝 x₀,
    { have l : function.left_inverse (λ (x : hat K), x * x₀⁻¹) (λ (x : hat K), x * x₀),
      { intro x,
        simp only [mul_assoc, mul_inv_cancel h, mul_one] },
      have r: function.right_inverse (λ (x : hat K), x * x₀⁻¹) (λ (x : hat K), x * x₀),
      { intro x,
        simp only [mul_assoc, inv_mul_cancel h, mul_one] },
      have c : continuous  (λ (x : hat K), x * x₀⁻¹),
        from continuous_id.mul continuous_const,
      rw image_eq_preimage_of_inverse l r,
      rw ← mul_inv_cancel h at V'_in,
      exact c.continuous_at V'_in },
    have : ∃ (z₀ : K) (y₀ ∈ V'), coe z₀ = y₀*x₀ ∧ z₀ ≠ 0,
    { rcases dense_range.mem_nhds completion.dense nhds_right with ⟨z₀, y₀, y₀_in, h⟩,
      refine ⟨z₀, y₀, y₀_in, ⟨h.symm, _⟩⟩,
      intro hz,
      rw hz at h,
      cases discrete_field.eq_zero_or_eq_zero_of_mul_eq_zero _ _ h ; finish },
    rcases this with ⟨z₀, y₀, y₀_in, hz₀, z₀_ne⟩,
    have vz₀_ne: valued.v K z₀ ≠ 0 := by rwa valuation.ne_zero_iff,
    refine ⟨valued.v K z₀, _⟩,
    rw [linear_ordered_comm_group_with_zero.tendsto_nonzero vz₀_ne, mem_comap_sets],
    use [(λ x, x*x₀) '' V', nhds_right],
    intros x x_in,
    rcases mem_preimage.1 x_in with ⟨y, y_in, hy⟩, clear x_in,
    change y*x₀ = coe x at hy,
    have : valued.v K (x*z₀⁻¹) = 1,
    { apply hV,
      rw [completion.coe_mul, is_ring_hom.map_inv' (coe : K → hat K) z₀_ne, ← hy, hz₀, mul_inv'],
      assoc_rw mul_inv_cancel h,
      rw mul_one,
      solve_by_elim },
    calc   valued.v K x = valued.v K (x*z₀⁻¹*z₀) : by rw [mul_assoc, inv_mul_cancel z₀_ne, mul_one]
      ... = valued.v K (x*z₀⁻¹)*valued.v K z₀ : valuation.map_mul _ _ _
      ... = valued.v K z₀ : by rw [this, one_mul]  },
end

@[elim_cast]
lemma valued.extension_extends (x : K) : valued.extension (x : hat K) = v x :=
begin
  haveI : t2_space (valued.Γ₀ K) := regular_space.t2_space _,
  exact completion.dense_inducing_coe.extend_eq_of_cont valued.continuous_valuation x
end

/-- the extension of a valuation on a division ring to its completion. -/
noncomputable def valued.extension_valuation :
valuation (hat K) (Γ₀ K) :=
{ to_fun := valued.extension,
  map_zero' := by exact_mod_cast valuation.map_zero _,
  map_one' := by { rw [← completion.coe_one, valued.extension_extends (1 : K)], exact valuation.map_one _ },
  map_mul' := λ x y, begin
    apply completion.induction_on₂ x y,
    { have c1 : continuous (λ (x : (hat K) × hat K), valued.extension (x.1 * x.2)),
        from valued.continuous_extension.comp (continuous_fst.mul continuous_snd),

      have c2 : continuous (λ (x : (hat K) × hat K), valued.extension x.1 * valued.extension x.2),
        from (valued.continuous_extension.comp continuous_fst).mul
              (valued.continuous_extension.comp continuous_snd),
      exact is_closed_eq c1 c2 },
    { intros x y,
      norm_cast,
      exact valuation.map_mul _ _ _ },
  end,
  map_add' := λ x y, begin
    rw le_max_iff,
    apply completion.induction_on₂ x y,
    { exact is_closed_union
        (is_closed_le ((valued.continuous_extension).comp continuous_add)
        ((valued.continuous_extension).comp continuous_fst))
        (is_closed_le ((valued.continuous_extension).comp continuous_add)
        ((valued.continuous_extension).comp continuous_snd)) },
    { intros x y,
      norm_cast,
      rw ← le_max_iff,
      exact valuation.map_add _ _ _ },
  end }

end valuation_on_valued_field_completion