Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 12,250 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
section \<open>Counterclockwise\<close>
theory Counterclockwise
imports "HOL-Analysis.Multivariate_Analysis"
begin
text \<open>\label{sec:counterclockwise}\<close>
subsection \<open>Auxiliary Lemmas\<close>
lemma convex3_alt:
fixes x y z::"'a::real_vector"
assumes "0 \<le> a" "0 \<le> b" "0 \<le> c" "a + b + c = 1"
obtains u v where "a *\<^sub>R x + b *\<^sub>R y + c *\<^sub>R z = x + u *\<^sub>R (y - x) + v *\<^sub>R (z - x)"
and "0 \<le> u" "0 \<le> v" "u + v \<le> 1"
proof -
from convex_hull_3[of x y z] have "a *\<^sub>R x + b *\<^sub>R y + c *\<^sub>R z \<in> convex hull {x, y, z}"
using assms by auto
also note convex_hull_3_alt
finally obtain u v where "a *\<^sub>R x + b *\<^sub>R y + c *\<^sub>R z = x + u *\<^sub>R (y - x) + v *\<^sub>R (z - x)"
and uv: "0 \<le> u" "0 \<le> v" "u + v \<le> 1"
by auto
thus ?thesis ..
qed
lemma (in ordered_ab_group_add) add_nonpos_eq_0_iff:
assumes x: "0 \<ge> x" and y: "0 \<ge> y"
shows "x + y = 0 \<longleftrightarrow> x = 0 \<and> y = 0"
proof -
from add_nonneg_eq_0_iff[of "-x" "-y"] assms
have "- (x + y) = 0 \<longleftrightarrow> - x = 0 \<and> - y = 0"
by simp
also have "(- (x + y) = 0) = (x + y = 0)" unfolding neg_equal_0_iff_equal ..
finally show ?thesis by simp
qed
lemma sum_nonpos_eq_0_iff:
fixes f :: "'a \<Rightarrow> 'b::ordered_ab_group_add"
shows "\<lbrakk>finite A; \<forall>x\<in>A. f x \<le> 0\<rbrakk> \<Longrightarrow> sum f A = 0 \<longleftrightarrow> (\<forall>x\<in>A. f x = 0)"
by (induct set: finite) (simp_all add: add_nonpos_eq_0_iff sum_nonpos)
lemma fold_if_in_set:
"fold (\<lambda>x m. if P x m then x else m) xs x \<in> set (x#xs)"
by (induct xs arbitrary: x) auto
subsection \<open>Sort Elements of a List\<close>
locale linorder_list0 = fixes le::"'a \<Rightarrow> 'a \<Rightarrow> bool"
begin
definition "min_for a b = (if le a b then a else b)"
lemma min_for_in[simp]: "x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> min_for x y \<in> S"
by (auto simp: min_for_def)
lemma fold_min_eqI1: "fold min_for ys y \<notin> set ys \<Longrightarrow> fold min_for ys y = y"
using fold_if_in_set[of _ ys y]
by (auto simp: min_for_def[abs_def])
function selsort where
"selsort [] = []"
| "selsort (y#ys) = (let
xm = fold min_for ys y;
xs' = List.remove1 xm (y#ys)
in (xm#selsort xs'))"
by pat_completeness auto
termination
by (relation "Wellfounded.measure length")
(auto simp: length_remove1 intro!: fold_min_eqI1 dest!: length_pos_if_in_set)
lemma in_set_selsort_eq: "x \<in> set (selsort xs) \<longleftrightarrow> x \<in> (set xs)"
by (induct rule: selsort.induct) (auto simp: Let_def intro!: fold_min_eqI1)
lemma set_selsort[simp]: "set (selsort xs) = set xs"
using in_set_selsort_eq by blast
lemma length_selsort[simp]: "length (selsort xs) = length xs"
proof (induct xs rule: selsort.induct)
case (2 x xs)
from 2[OF refl refl]
show ?case
unfolding selsort.simps
by (auto simp: Let_def length_remove1
simp del: selsort.simps split: if_split_asm
intro!: Suc_pred
dest!: fold_min_eqI1)
qed simp
lemma distinct_selsort[simp]: "distinct (selsort xs) = distinct xs"
by (auto intro!: card_distinct dest!: distinct_card)
lemma selsort_eq_empty_iff[simp]: "selsort xs = [] \<longleftrightarrow> xs = []"
by (cases xs) (auto simp: Let_def)
inductive sortedP :: "'a list \<Rightarrow> bool" where
Nil: "sortedP []"
| Cons: "\<forall>y\<in>set ys. le x y \<Longrightarrow> sortedP ys \<Longrightarrow> sortedP (x # ys)"
inductive_cases
sortedP_Nil: "sortedP []" and
sortedP_Cons: "sortedP (x#xs)"
inductive_simps
sortedP_Nil_iff: "sortedP Nil" and
sortedP_Cons_iff: "sortedP (Cons x xs)"
lemma sortedP_append_iff:
"sortedP (xs @ ys) = (sortedP xs & sortedP ys & (\<forall>x \<in> set xs. \<forall>y \<in> set ys. le x y))"
by (induct xs) (auto intro!: Nil Cons elim!: sortedP_Cons)
lemma sortedP_appendI:
"sortedP xs \<Longrightarrow> sortedP ys \<Longrightarrow> (\<And>x y. x \<in> set xs \<Longrightarrow> y \<in> set ys \<Longrightarrow> le x y) \<Longrightarrow> sortedP (xs @ ys)"
by (induct xs) (auto intro!: Nil Cons elim!: sortedP_Cons)
lemma sorted_nth_less: "sortedP xs \<Longrightarrow> i < j \<Longrightarrow> j < length xs \<Longrightarrow> le (xs ! i) (xs ! j)"
by (induct xs arbitrary: i j) (auto simp: nth_Cons split: nat.split elim!: sortedP_Cons)
lemma sorted_butlastI[intro, simp]: "sortedP xs \<Longrightarrow> sortedP (butlast xs)"
by (induct xs) (auto simp: elim!: sortedP_Cons intro!: sortedP.Cons dest!: in_set_butlastD)
lemma sortedP_right_of_append1:
assumes "sortedP (zs@[z])"
assumes "y \<in> set zs"
shows "le y z"
using assms
by (induct zs arbitrary: y z) (auto elim!: sortedP_Cons)
lemma sortedP_right_of_last:
assumes "sortedP zs"
assumes "y \<in> set zs" "y \<noteq> last zs"
shows "le y (last zs)"
using assms
apply (intro sortedP_right_of_append1[of "butlast zs" "last zs" y])
subgoal by (metis append_is_Nil_conv list.distinct(1) snoc_eq_iff_butlast split_list)
subgoal by (metis List.insert_def append_butlast_last_id insert_Nil list.distinct(1) rotate1.simps(2)
set_ConsD set_rotate1)
done
lemma selsort_singleton_iff: "selsort xs = [x] \<longleftrightarrow> xs = [x]"
by (induct xs) (auto simp: Let_def)
lemma hd_last_sorted:
assumes "sortedP xs" "length xs > 1"
shows "le (hd xs) (last xs)"
proof (cases xs)
case (Cons y ys)
note ys = this
thus ?thesis
using ys assms
by (auto elim!: sortedP_Cons)
qed (insert assms, simp)
end
lemma (in comm_monoid_add) sum_list_distinct_selsort:
assumes "distinct xs"
shows "sum_list (linorder_list0.selsort le xs) = sum_list xs"
using assms
apply (simp add: distinct_sum_list_conv_Sum linorder_list0.distinct_selsort)
apply (rule sum.cong)
subgoal by (simp add: linorder_list0.set_selsort)
subgoal by simp
done
declare linorder_list0.sortedP_Nil_iff[code]
linorder_list0.sortedP_Cons_iff[code]
linorder_list0.selsort.simps[code]
linorder_list0.min_for_def[code]
locale linorder_list = linorder_list0 le for le::"'a::ab_group_add \<Rightarrow> _" +
fixes S
assumes order_refl: "a \<in> S \<Longrightarrow> le a a"
assumes trans': "a \<in> S \<Longrightarrow> b \<in> S \<Longrightarrow> c \<in> S \<Longrightarrow> a \<noteq> b \<Longrightarrow> b \<noteq> c \<Longrightarrow> a \<noteq> c \<Longrightarrow>
le a b \<Longrightarrow> le b c \<Longrightarrow> le a c"
assumes antisym: "a \<in> S \<Longrightarrow> b \<in> S \<Longrightarrow> le a b \<Longrightarrow> le b a \<Longrightarrow> a = b"
assumes linear': "a \<in> S \<Longrightarrow> b \<in> S \<Longrightarrow> a \<noteq> b \<Longrightarrow> le a b \<or> le b a"
begin
lemma trans: "a \<in> S \<Longrightarrow> b \<in> S \<Longrightarrow> c \<in> S \<Longrightarrow> le a b \<Longrightarrow> le b c \<Longrightarrow> le a c"
by (cases "a = b" "b = c" "a = c"
rule: bool.exhaust[case_product bool.exhaust[case_product bool.exhaust]])
(auto simp: order_refl intro: trans')
lemma linear: "a \<in> S \<Longrightarrow> b \<in> S \<Longrightarrow> le a b \<or> le b a"
by (cases "a = b") (auto simp: linear' order_refl)
lemma min_le1: "w \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> le (min_for w y) y"
and min_le2: "w \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> le (min_for w y) w"
using linear
by (auto simp: min_for_def refl)
lemma fold_min:
assumes "set xs \<subseteq> S"
shows "list_all (\<lambda>y. le (fold min_for (tl xs) (hd xs)) y) xs"
proof (cases xs)
case (Cons y ys)
hence subset: "set (y#ys) \<subseteq> S" using assms
by auto
show ?thesis
unfolding Cons list.sel
using subset
proof (induct ys arbitrary: y)
case (Cons z zs)
hence IH: "\<And>y. y \<in> S \<Longrightarrow> list_all (le (fold min_for zs y)) (y # zs)"
by simp
let ?f = "fold min_for zs (min_for z y)"
have "?f \<in> set ((min_for z y)#zs)"
unfolding min_for_def[abs_def]
by (rule fold_if_in_set)
also have "\<dots> \<subseteq> S" using Cons.prems by auto
finally have "?f \<in> S" .
have "le ?f (min_for z y)"
using IH[of "min_for z y"] Cons.prems
by auto
moreover have "le (min_for z y) y" "le (min_for z y) z" using Cons.prems
by (auto intro!: min_le1 min_le2)
ultimately have "le ?f y" "le ?f z" using Cons.prems \<open>?f \<in> S\<close>
by (auto intro!: trans[of ?f "min_for z y"])
thus ?case
using IH[of "min_for z y"]
using Cons.prems
by auto
qed (simp add: order_refl)
qed simp
lemma
sortedP_selsort:
assumes "set xs \<subseteq> S"
shows "sortedP (selsort xs)"
using assms
proof (induction xs rule: selsort.induct)
case (2 z zs)
from this fold_min[of "z#zs"]
show ?case
by (fastforce simp: list_all_iff Let_def
simp del: remove1.simps
intro: Cons intro!: 2(1)[OF refl refl]
dest!: rev_subsetD[OF _ set_remove1_subset])+
qed (auto intro!: Nil)
end
subsection \<open>Abstract CCW Systems\<close>
locale ccw_system0 =
fixes ccw::"'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
and S::"'a set"
begin
abbreviation "indelta t p q r \<equiv> ccw t q r \<and> ccw p t r \<and> ccw p q t"
abbreviation "insquare p q r s \<equiv> ccw p q r \<and> ccw q r s \<and> ccw r s p \<and> ccw s p q"
end
abbreviation "distinct3 p q r \<equiv> \<not>(p = q \<or> p = r \<or> q = r)"
abbreviation "distinct4 p q r s \<equiv> \<not>(p = q \<or> p = r \<or> p = s \<or> \<not> distinct3 q r s)"
abbreviation "distinct5 p q r s t \<equiv> \<not>(p = q \<or> p = r \<or> p = s \<or> p = t \<or> \<not> distinct4 q r s t)"
abbreviation "in3 S p q r \<equiv> p \<in> S \<and> q \<in> S \<and> r \<in> S"
abbreviation "in4 S p q r s \<equiv> in3 S p q r \<and> s \<in> S"
abbreviation "in5 S p q r s t \<equiv> in4 S p q r s \<and> t \<in> S"
locale ccw_system12 = ccw_system0 +
assumes cyclic: "ccw p q r \<Longrightarrow> ccw q r p"
assumes ccw_antisym: "distinct3 p q r \<Longrightarrow> in3 S p q r \<Longrightarrow> ccw p q r \<Longrightarrow> \<not> ccw p r q"
locale ccw_system123 = ccw_system12 +
assumes nondegenerate: "distinct3 p q r \<Longrightarrow> in3 S p q r \<Longrightarrow> ccw p q r \<or> ccw p r q"
begin
lemma not_ccw_eq: "distinct3 p q r \<Longrightarrow> in3 S p q r \<Longrightarrow> \<not> ccw p q r \<longleftrightarrow> ccw p r q"
using ccw_antisym nondegenerate by blast
end
locale ccw_system4 = ccw_system123 +
assumes interior:
"distinct4 p q r t \<Longrightarrow> in4 S p q r t \<Longrightarrow> ccw t q r \<Longrightarrow> ccw p t r \<Longrightarrow> ccw p q t \<Longrightarrow> ccw p q r"
begin
lemma interior':
"distinct4 p q r t \<Longrightarrow> in4 S p q r t \<Longrightarrow> ccw p q t \<Longrightarrow> ccw q r t \<Longrightarrow> ccw r p t \<Longrightarrow> ccw p q r"
by (metis ccw_antisym cyclic interior nondegenerate)
end
locale ccw_system1235' = ccw_system123 +
assumes dual_transitive:
"distinct5 p q r s t \<Longrightarrow> in5 S p q r s t \<Longrightarrow>
ccw s t p \<Longrightarrow> ccw s t q \<Longrightarrow> ccw s t r \<Longrightarrow> ccw t p q \<Longrightarrow> ccw t q r \<Longrightarrow> ccw t p r"
locale ccw_system1235 = ccw_system123 +
assumes transitive: "distinct5 p q r s t \<Longrightarrow> in5 S p q r s t \<Longrightarrow>
ccw t s p \<Longrightarrow> ccw t s q \<Longrightarrow> ccw t s r \<Longrightarrow> ccw t p q \<Longrightarrow> ccw t q r \<Longrightarrow> ccw t p r"
begin
lemmas ccw_axioms = cyclic nondegenerate ccw_antisym transitive
sublocale ccw_system1235'
proof (unfold_locales, rule ccontr, goal_cases)
case prems: (1 p q r s t)
hence "ccw s p q \<Longrightarrow> ccw s r p"
by (metis ccw_axioms prems)
moreover
have "ccw s r p \<Longrightarrow> ccw s q r"
by (metis ccw_axioms prems)
moreover
have "ccw s q r \<Longrightarrow> ccw s p q"
by (metis ccw_axioms prems)
ultimately
have "ccw s p q \<and> ccw s r p \<and> ccw s q r \<or> ccw s q p \<and> ccw s p r \<and> ccw s r q"
by (metis ccw_axioms prems)
thus False
by (metis ccw_axioms prems)
qed
end
locale ccw_system = ccw_system1235 + ccw_system4
end
|