Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 12,250 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
section \<open>Counterclockwise\<close>
theory Counterclockwise
imports "HOL-Analysis.Multivariate_Analysis"
begin
text \<open>\label{sec:counterclockwise}\<close>

subsection \<open>Auxiliary Lemmas\<close>

lemma convex3_alt:
  fixes x y z::"'a::real_vector"
  assumes "0 \<le> a" "0 \<le> b" "0 \<le> c" "a + b + c = 1"
  obtains u v  where "a *\<^sub>R x + b *\<^sub>R y + c *\<^sub>R z = x + u *\<^sub>R (y - x) + v *\<^sub>R (z - x)"
    and "0 \<le> u" "0 \<le> v" "u + v \<le> 1"
proof -
  from convex_hull_3[of x y z] have "a *\<^sub>R x + b *\<^sub>R y + c *\<^sub>R z \<in> convex hull {x, y, z}"
    using assms by auto
  also note convex_hull_3_alt
  finally obtain u v where "a *\<^sub>R x + b *\<^sub>R y + c *\<^sub>R z = x + u *\<^sub>R (y - x) + v *\<^sub>R (z - x)"
    and uv: "0 \<le> u" "0 \<le> v" "u + v \<le> 1"
    by auto
  thus ?thesis ..
qed

lemma (in ordered_ab_group_add) add_nonpos_eq_0_iff:
  assumes x: "0 \<ge> x" and y: "0 \<ge> y"
  shows "x + y = 0 \<longleftrightarrow> x = 0 \<and> y = 0"
proof -
  from add_nonneg_eq_0_iff[of "-x" "-y"] assms
  have "- (x + y) = 0 \<longleftrightarrow> - x = 0 \<and> - y = 0"
    by simp
  also have "(- (x + y) = 0) = (x + y = 0)" unfolding neg_equal_0_iff_equal ..
  finally show ?thesis by simp
qed

lemma sum_nonpos_eq_0_iff:
  fixes f :: "'a \<Rightarrow> 'b::ordered_ab_group_add"
  shows "\<lbrakk>finite A; \<forall>x\<in>A. f x \<le> 0\<rbrakk> \<Longrightarrow> sum f A = 0 \<longleftrightarrow> (\<forall>x\<in>A. f x = 0)"
  by (induct set: finite) (simp_all add: add_nonpos_eq_0_iff sum_nonpos)

lemma fold_if_in_set:
  "fold (\<lambda>x m. if P x m then x else m) xs x \<in> set (x#xs)"
  by (induct xs arbitrary: x) auto

subsection \<open>Sort Elements of a List\<close>

locale linorder_list0 = fixes le::"'a \<Rightarrow> 'a \<Rightarrow> bool"
begin

definition "min_for a b = (if le a b then a else b)"

lemma min_for_in[simp]: "x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> min_for x y \<in> S"
  by (auto simp: min_for_def)

lemma fold_min_eqI1: "fold min_for ys y \<notin> set ys \<Longrightarrow> fold min_for ys y = y"
  using fold_if_in_set[of _ ys y]
  by (auto simp: min_for_def[abs_def])

function selsort where
  "selsort [] = []"
| "selsort (y#ys) = (let
      xm = fold min_for ys y;
      xs' = List.remove1 xm (y#ys)
    in (xm#selsort xs'))"
  by pat_completeness auto
termination
  by (relation "Wellfounded.measure length")
    (auto simp: length_remove1 intro!: fold_min_eqI1 dest!: length_pos_if_in_set)

lemma in_set_selsort_eq: "x \<in> set (selsort xs) \<longleftrightarrow> x \<in> (set xs)"
  by (induct rule: selsort.induct) (auto simp: Let_def intro!: fold_min_eqI1)

lemma set_selsort[simp]: "set (selsort xs) = set xs"
  using in_set_selsort_eq by blast

lemma length_selsort[simp]: "length (selsort xs) = length xs"
proof (induct xs rule: selsort.induct)
  case (2 x xs)
  from 2[OF refl refl]
  show ?case
    unfolding selsort.simps
    by (auto simp: Let_def length_remove1
      simp del: selsort.simps split: if_split_asm
      intro!: Suc_pred
      dest!: fold_min_eqI1)
qed simp

lemma distinct_selsort[simp]: "distinct (selsort xs) = distinct xs"
  by (auto intro!: card_distinct dest!: distinct_card)

lemma selsort_eq_empty_iff[simp]: "selsort xs = [] \<longleftrightarrow> xs = []"
  by (cases xs) (auto simp: Let_def)


inductive sortedP :: "'a list \<Rightarrow> bool" where
  Nil: "sortedP []"
| Cons: "\<forall>y\<in>set ys. le x y \<Longrightarrow> sortedP ys \<Longrightarrow> sortedP (x # ys)"

inductive_cases
  sortedP_Nil: "sortedP []" and
  sortedP_Cons: "sortedP (x#xs)"
inductive_simps
  sortedP_Nil_iff: "sortedP Nil" and
  sortedP_Cons_iff: "sortedP (Cons x xs)"

lemma sortedP_append_iff:
  "sortedP (xs @ ys) = (sortedP xs & sortedP ys & (\<forall>x \<in> set xs. \<forall>y \<in> set ys. le x y))"
  by (induct xs) (auto intro!: Nil Cons elim!: sortedP_Cons)

lemma sortedP_appendI:
  "sortedP xs \<Longrightarrow> sortedP ys \<Longrightarrow> (\<And>x y. x \<in> set xs \<Longrightarrow> y \<in> set ys \<Longrightarrow> le x y) \<Longrightarrow> sortedP (xs @ ys)"
  by (induct xs) (auto intro!: Nil Cons elim!: sortedP_Cons)

lemma sorted_nth_less: "sortedP xs \<Longrightarrow> i < j \<Longrightarrow> j < length xs \<Longrightarrow> le (xs ! i) (xs ! j)"
  by (induct xs arbitrary: i j) (auto simp: nth_Cons split: nat.split elim!: sortedP_Cons)

lemma sorted_butlastI[intro, simp]: "sortedP xs \<Longrightarrow> sortedP (butlast xs)"
  by (induct xs) (auto simp: elim!: sortedP_Cons intro!: sortedP.Cons dest!: in_set_butlastD)

lemma sortedP_right_of_append1:
  assumes "sortedP (zs@[z])"
  assumes "y \<in> set zs"
  shows "le y z"
  using assms
  by (induct zs arbitrary: y z) (auto elim!: sortedP_Cons)

lemma sortedP_right_of_last:
  assumes "sortedP zs"
  assumes "y \<in> set zs" "y \<noteq> last zs"
  shows "le y (last zs)"
  using assms
  apply (intro sortedP_right_of_append1[of "butlast zs" "last zs" y])
  subgoal by (metis append_is_Nil_conv list.distinct(1) snoc_eq_iff_butlast split_list)
  subgoal by (metis List.insert_def append_butlast_last_id insert_Nil list.distinct(1) rotate1.simps(2)
    set_ConsD set_rotate1)
  done

lemma selsort_singleton_iff: "selsort xs = [x] \<longleftrightarrow> xs = [x]"
  by (induct xs) (auto simp: Let_def)

lemma hd_last_sorted:
  assumes "sortedP xs" "length xs > 1"
  shows "le (hd xs) (last xs)"
proof (cases xs)
  case (Cons y ys)
  note ys = this
  thus ?thesis
    using ys assms
    by (auto elim!: sortedP_Cons)
qed (insert assms, simp)

end

lemma (in comm_monoid_add) sum_list_distinct_selsort:
  assumes "distinct xs"
  shows "sum_list (linorder_list0.selsort le xs) = sum_list xs"
  using assms
  apply (simp add: distinct_sum_list_conv_Sum linorder_list0.distinct_selsort)
  apply (rule sum.cong)
  subgoal by (simp add: linorder_list0.set_selsort)
  subgoal by simp
  done

declare linorder_list0.sortedP_Nil_iff[code]
  linorder_list0.sortedP_Cons_iff[code]
  linorder_list0.selsort.simps[code]
  linorder_list0.min_for_def[code]

locale linorder_list = linorder_list0 le for le::"'a::ab_group_add \<Rightarrow> _" +
  fixes S
  assumes order_refl: "a \<in> S \<Longrightarrow> le a a"
  assumes trans': "a \<in> S \<Longrightarrow> b \<in> S \<Longrightarrow> c \<in> S \<Longrightarrow> a \<noteq> b \<Longrightarrow> b \<noteq> c \<Longrightarrow> a \<noteq> c \<Longrightarrow>
    le a b \<Longrightarrow> le b c \<Longrightarrow> le a c"
  assumes antisym: "a \<in> S \<Longrightarrow> b \<in> S \<Longrightarrow> le a b \<Longrightarrow> le b a \<Longrightarrow> a = b"
  assumes linear': "a \<in> S \<Longrightarrow> b \<in> S \<Longrightarrow> a \<noteq> b \<Longrightarrow> le a b \<or> le b a"
begin

lemma trans: "a \<in> S \<Longrightarrow> b \<in> S \<Longrightarrow> c \<in> S \<Longrightarrow> le a b \<Longrightarrow> le b c \<Longrightarrow> le a c"
  by (cases "a = b" "b = c" "a = c"
    rule: bool.exhaust[case_product bool.exhaust[case_product bool.exhaust]])
    (auto simp: order_refl intro: trans')

lemma linear: "a \<in> S \<Longrightarrow> b \<in> S \<Longrightarrow> le a b \<or> le b a"
  by (cases "a = b") (auto simp: linear' order_refl)

lemma min_le1: "w \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> le (min_for w y) y"
  and min_le2: "w \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> le (min_for w y) w"
  using linear
  by (auto simp: min_for_def refl)

lemma fold_min:
  assumes "set xs \<subseteq> S"
  shows "list_all (\<lambda>y. le (fold min_for (tl xs) (hd xs)) y) xs"
proof (cases xs)
  case (Cons y ys)
  hence subset: "set (y#ys) \<subseteq> S" using assms
    by auto
  show ?thesis
    unfolding Cons list.sel
    using subset
  proof (induct ys arbitrary: y)
    case (Cons z zs)
    hence IH: "\<And>y. y \<in> S \<Longrightarrow> list_all (le (fold min_for zs y)) (y # zs)"
      by simp
    let ?f = "fold min_for zs (min_for z y)"
    have "?f \<in> set ((min_for z y)#zs)"
      unfolding min_for_def[abs_def]
      by (rule fold_if_in_set)
    also have "\<dots> \<subseteq> S" using Cons.prems by auto
    finally have "?f \<in> S" .

    have "le ?f (min_for z y)"
      using IH[of "min_for z y"] Cons.prems
      by auto
    moreover have "le (min_for z y) y" "le (min_for z y) z" using Cons.prems
      by (auto intro!: min_le1 min_le2)
    ultimately have "le ?f y" "le ?f z" using Cons.prems \<open>?f \<in> S\<close>
      by (auto intro!: trans[of ?f "min_for z y"])
    thus ?case
      using IH[of "min_for z y"]
      using Cons.prems
      by auto
  qed (simp add: order_refl)
qed simp

lemma
  sortedP_selsort:
  assumes "set xs \<subseteq> S"
  shows "sortedP (selsort xs)"
  using assms
proof (induction xs rule: selsort.induct)
  case (2 z zs)
  from this fold_min[of "z#zs"]
  show ?case
    by (fastforce simp: list_all_iff Let_def
        simp del: remove1.simps
        intro: Cons intro!: 2(1)[OF refl refl]
        dest!: rev_subsetD[OF _ set_remove1_subset])+
qed (auto intro!: Nil)

end


subsection \<open>Abstract CCW Systems\<close>

locale ccw_system0 =
  fixes ccw::"'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
    and S::"'a set"
begin

abbreviation "indelta t p q r \<equiv> ccw t q r \<and> ccw p t r \<and> ccw p q t"
abbreviation "insquare p q r s \<equiv> ccw p q r \<and> ccw q r s \<and> ccw r s p \<and> ccw s p q"

end

abbreviation "distinct3 p q r \<equiv> \<not>(p = q \<or> p = r \<or> q = r)"
abbreviation "distinct4 p q r s \<equiv> \<not>(p = q \<or> p = r \<or> p = s \<or> \<not> distinct3 q r s)"
abbreviation "distinct5 p q r s t \<equiv> \<not>(p = q \<or> p = r \<or> p = s \<or> p = t \<or> \<not> distinct4 q r s t)"

abbreviation "in3 S p q r \<equiv> p \<in> S \<and> q \<in> S \<and> r \<in> S"
abbreviation "in4 S p q r s \<equiv> in3 S p q r \<and> s \<in> S"
abbreviation "in5 S p q r s t \<equiv> in4 S p q r s \<and> t \<in> S"

locale ccw_system12 = ccw_system0 +
  assumes cyclic: "ccw p q r \<Longrightarrow> ccw q r p"
  assumes ccw_antisym: "distinct3 p q r \<Longrightarrow> in3 S p q r \<Longrightarrow> ccw p q r \<Longrightarrow> \<not> ccw p r q"

locale ccw_system123 = ccw_system12 +
  assumes nondegenerate: "distinct3 p q r \<Longrightarrow> in3 S p q r \<Longrightarrow> ccw p q r \<or> ccw p r q"
begin

lemma not_ccw_eq: "distinct3 p q r \<Longrightarrow> in3 S p q r \<Longrightarrow> \<not> ccw p q r \<longleftrightarrow> ccw p r q"
  using ccw_antisym nondegenerate by blast

end

locale ccw_system4 = ccw_system123 +
  assumes interior:
    "distinct4 p q r t \<Longrightarrow> in4 S p q r t \<Longrightarrow> ccw t q r \<Longrightarrow> ccw p t r \<Longrightarrow> ccw p q t \<Longrightarrow> ccw p q r"
begin

lemma interior':
  "distinct4 p q r t \<Longrightarrow> in4 S p q r t \<Longrightarrow> ccw p q t \<Longrightarrow> ccw q r t \<Longrightarrow> ccw r p t \<Longrightarrow> ccw p q r"
  by (metis ccw_antisym cyclic interior nondegenerate)

end

locale ccw_system1235' = ccw_system123 +
  assumes dual_transitive:
    "distinct5 p q r s t \<Longrightarrow> in5 S p q r s t \<Longrightarrow>
      ccw s t p \<Longrightarrow> ccw s t q \<Longrightarrow> ccw s t r \<Longrightarrow> ccw t p q \<Longrightarrow> ccw t q r \<Longrightarrow> ccw t p r"

locale ccw_system1235 = ccw_system123 +
  assumes transitive: "distinct5 p q r s t \<Longrightarrow> in5 S p q r s t \<Longrightarrow>
    ccw t s p \<Longrightarrow> ccw t s q \<Longrightarrow> ccw t s r \<Longrightarrow> ccw t p q \<Longrightarrow> ccw t q r \<Longrightarrow> ccw t p r"
begin

lemmas ccw_axioms = cyclic nondegenerate ccw_antisym transitive

sublocale ccw_system1235'
proof (unfold_locales, rule ccontr, goal_cases)
  case prems: (1 p q r s t)
  hence "ccw s p q \<Longrightarrow> ccw s r p"
    by (metis ccw_axioms prems)
  moreover
  have "ccw s r p \<Longrightarrow> ccw s q r"
    by (metis ccw_axioms prems)
  moreover
  have "ccw s q r \<Longrightarrow> ccw s p q"
    by (metis ccw_axioms prems)
  ultimately
  have "ccw s p q \<and> ccw s r p \<and> ccw s q r \<or> ccw s q p \<and> ccw s p r \<and> ccw s r q"
    by (metis ccw_axioms prems)
  thus False
    by (metis ccw_axioms prems)
qed

end

locale ccw_system = ccw_system1235 + ccw_system4

end