Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 6,341 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
(*
File: Connectivity.thy
Author: Bohua Zhan
*)
section \<open>Connectedness for a set of undirected edges.\<close>
theory Connectivity
imports Union_Find
begin
text \<open>A simple application of union-find for graph connectivity.\<close>
fun is_path :: "nat \<Rightarrow> (nat \<times> nat) set \<Rightarrow> nat list \<Rightarrow> bool" where
"is_path n S [] = False"
| "is_path n S (x # xs) =
(if xs = [] then x < n else ((x, hd xs) \<in> S \<or> (hd xs, x) \<in> S) \<and> is_path n S xs)"
setup \<open>fold add_rewrite_rule @{thms is_path.simps}\<close>
definition has_path :: "nat \<Rightarrow> (nat \<times> nat) set \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool" where [rewrite]:
"has_path n S i j \<longleftrightarrow> (\<exists>p. is_path n S p \<and> hd p = i \<and> last p = j)"
lemma is_path_nonempty [forward]: "is_path n S p \<Longrightarrow> p \<noteq> []" by auto2
lemma nonempty_is_not_path [resolve]: "\<not>is_path n S []" by auto2
lemma is_path_extend [forward]:
"is_path n S p \<Longrightarrow> S \<subseteq> T \<Longrightarrow> is_path n T p"
@proof @induct p @qed
lemma has_path_extend [forward]:
"has_path n S i j \<Longrightarrow> S \<subseteq> T \<Longrightarrow> has_path n T i j" by auto2
definition joinable :: "nat list \<Rightarrow> nat list \<Rightarrow> bool" where [rewrite]:
"joinable p q \<longleftrightarrow> (last p = hd q)"
definition path_join :: "nat list \<Rightarrow> nat list \<Rightarrow> nat list" where [rewrite]:
"path_join p q = p @ tl q"
setup \<open>register_wellform_data ("path_join p q", ["joinable p q"])\<close>
setup \<open>add_prfstep_check_req ("path_join p q", "joinable p q")\<close>
lemma path_join_hd [rewrite]: "p \<noteq> [] \<Longrightarrow> hd (path_join p q) = hd p" by auto2
lemma path_join_last [rewrite]: "joinable p q \<Longrightarrow> q \<noteq> [] \<Longrightarrow> last (path_join p q) = last q"
@proof @have "q = hd q # tl q" @case "tl q = []" @qed
lemma path_join_is_path [backward]:
"joinable p q \<Longrightarrow> is_path n S p \<Longrightarrow> is_path n S q \<Longrightarrow> is_path n S (path_join p q)"
@proof @induct p @qed
lemma has_path_trans [forward]:
"has_path n S i j \<Longrightarrow> has_path n S j k \<Longrightarrow> has_path n S i k"
@proof
@obtain p where "is_path n S p" "hd p = i" "last p = j"
@obtain q where "is_path n S q" "hd q = j" "last q = k"
@have "is_path n S (path_join p q)"
@qed
definition is_valid_graph :: "nat \<Rightarrow> (nat \<times> nat) set \<Rightarrow> bool" where [rewrite]:
"is_valid_graph n S \<longleftrightarrow> (\<forall>p\<in>S. fst p < n \<and> snd p < n)"
lemma has_path_single1 [backward1]:
"is_valid_graph n S \<Longrightarrow> (a, b) \<in> S \<Longrightarrow> has_path n S a b"
@proof @have "is_path n S [a, b]" @qed
lemma has_path_single2 [backward1]:
"is_valid_graph n S \<Longrightarrow> (a, b) \<in> S \<Longrightarrow> has_path n S b a"
@proof @have "is_path n S [b, a]" @qed
lemma has_path_refl [backward2]:
"is_valid_graph n S \<Longrightarrow> a < n \<Longrightarrow> has_path n S a a"
@proof @have "is_path n S [a]" @qed
definition connected_rel :: "nat \<Rightarrow> (nat \<times> nat) set \<Rightarrow> (nat \<times> nat) set" where
"connected_rel n S = {(a,b). has_path n S a b}"
lemma connected_rel_iff [rewrite]:
"(a, b) \<in> connected_rel n S \<longleftrightarrow> has_path n S a b" using connected_rel_def by simp
lemma connected_rel_trans [forward]:
"trans (connected_rel n S)" by auto2
lemma connected_rel_refl [backward2]:
"is_valid_graph n S \<Longrightarrow> a < n \<Longrightarrow> (a, a) \<in> connected_rel n S" by auto2
lemma is_path_per_union [rewrite]:
"is_valid_graph n (S \<union> {(a, b)}) \<Longrightarrow>
has_path n (S \<union> {(a, b)}) i j \<longleftrightarrow> (i, j) \<in> per_union (connected_rel n S) a b"
@proof
@let "R = connected_rel n S"
@let "S' = S \<union> {(a, b)}" @have "S \<subseteq> S'"
@case "(i, j) \<in> per_union R a b" @with
@case "(i, a) \<in> R \<and> (b, j) \<in> R" @with
@have "has_path n S' i a" @have "has_path n S' a b" @have "has_path n S' b j"
@end
@case "(i, b) \<in> R \<and> (a, j) \<in> R" @with
@have "has_path n S' i b" @have "has_path n S' b a" @have "has_path n S' a j"
@end
@end
@case "has_path n S' i j" @with
@have (@rule) "\<forall>p. is_path n S' p \<longrightarrow> (hd p, last p) \<in> per_union R a b" @with
@induct p @with
@subgoal "p = x # xs" @case "xs = []"
@have "(x, hd xs) \<in> per_union R a b" @with
@have "is_valid_graph n S"
@case "(x, hd xs) \<in> S'" @with @case "(x, hd xs) \<in> S" @end
@case "(hd xs, x) \<in> S'" @with @case "(hd xs, x) \<in> S" @end
@end
@endgoal @end
@end
@obtain p where "is_path n S' p" "hd p = i" "last p = j"
@end
@qed
lemma connected_rel_union [rewrite]:
"is_valid_graph n (S \<union> {(a, b)}) \<Longrightarrow>
connected_rel n (S \<union> {(a, b)}) = per_union (connected_rel n S) a b" by auto2
lemma connected_rel_init [rewrite]:
"connected_rel n {} = uf_init_rel n"
@proof
@have "is_valid_graph n {}"
@have "\<forall>i j. has_path n {} i j \<longleftrightarrow> (i, j) \<in> uf_init_rel n" @with
@case "has_path n {} i j" @with
@obtain p where "is_path n {} p" "hd p = i" "last p = j"
@have "p = hd p # tl p"
@end
@end
@qed
fun connected_rel_ind :: "nat \<Rightarrow> (nat \<times> nat) list \<Rightarrow> nat \<Rightarrow> (nat \<times> nat) set" where
"connected_rel_ind n es 0 = uf_init_rel n"
| "connected_rel_ind n es (Suc k) =
(let R = connected_rel_ind n es k; p = es ! k in
per_union R (fst p) (snd p))"
setup \<open>fold add_rewrite_rule @{thms connected_rel_ind.simps}\<close>
lemma connected_rel_ind_rule [rewrite]:
"is_valid_graph n (set es) \<Longrightarrow> k \<le> length es \<Longrightarrow>
connected_rel_ind n es k = connected_rel n (set (take k es))"
@proof @induct k @with
@subgoal "k = Suc m"
@have "is_valid_graph n (set (take (Suc m) es))"
@endgoal @end
@qed
text \<open>Correctness of the functional algorithm.\<close>
theorem connected_rel_ind_compute [rewrite]:
"is_valid_graph n (set es) \<Longrightarrow>
connected_rel_ind n es (length es) = connected_rel n (set es)" by auto2
end
|