Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 6,341 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
(*
  File: Connectivity.thy
  Author: Bohua Zhan
*)

section \<open>Connectedness for a set of undirected edges.\<close>

theory Connectivity
  imports Union_Find
begin

text \<open>A simple application of union-find for graph connectivity.\<close>

fun is_path :: "nat \<Rightarrow> (nat \<times> nat) set \<Rightarrow> nat list \<Rightarrow> bool" where
  "is_path n S [] = False"
| "is_path n S (x # xs) =
   (if xs = [] then x < n else ((x, hd xs) \<in> S \<or> (hd xs, x) \<in> S) \<and> is_path n S xs)"
setup \<open>fold add_rewrite_rule @{thms is_path.simps}\<close>

definition has_path :: "nat \<Rightarrow> (nat \<times> nat) set \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool" where [rewrite]:
  "has_path n S i j \<longleftrightarrow> (\<exists>p. is_path n S p \<and> hd p = i \<and> last p = j)"

lemma is_path_nonempty [forward]: "is_path n S p \<Longrightarrow> p \<noteq> []" by auto2
lemma nonempty_is_not_path [resolve]: "\<not>is_path n S []" by auto2

lemma is_path_extend [forward]:
  "is_path n S p \<Longrightarrow> S \<subseteq> T \<Longrightarrow> is_path n T p"
@proof @induct p @qed

lemma has_path_extend [forward]:
  "has_path n S i j \<Longrightarrow> S \<subseteq> T \<Longrightarrow> has_path n T i j" by auto2

definition joinable :: "nat list \<Rightarrow> nat list \<Rightarrow> bool" where [rewrite]:
  "joinable p q \<longleftrightarrow> (last p = hd q)"

definition path_join :: "nat list \<Rightarrow> nat list \<Rightarrow> nat list" where [rewrite]:
  "path_join p q = p @ tl q"
setup \<open>register_wellform_data ("path_join p q", ["joinable p q"])\<close>
setup \<open>add_prfstep_check_req ("path_join p q", "joinable p q")\<close>

lemma path_join_hd [rewrite]: "p \<noteq> [] \<Longrightarrow> hd (path_join p q) = hd p" by auto2

lemma path_join_last [rewrite]: "joinable p q \<Longrightarrow> q \<noteq> [] \<Longrightarrow> last (path_join p q) = last q"
@proof @have "q = hd q # tl q" @case "tl q = []" @qed

lemma path_join_is_path [backward]:
  "joinable p q \<Longrightarrow> is_path n S p \<Longrightarrow> is_path n S q \<Longrightarrow> is_path n S (path_join p q)"
@proof @induct p @qed

lemma has_path_trans [forward]:
  "has_path n S i j \<Longrightarrow> has_path n S j k \<Longrightarrow> has_path n S i k"
@proof
  @obtain p where "is_path n S p" "hd p = i" "last p = j"
  @obtain q where "is_path n S q" "hd q = j" "last q = k"
  @have "is_path n S (path_join p q)"
@qed

definition is_valid_graph :: "nat \<Rightarrow> (nat \<times> nat) set \<Rightarrow> bool" where [rewrite]:
  "is_valid_graph n S \<longleftrightarrow> (\<forall>p\<in>S. fst p < n \<and> snd p < n)"

lemma has_path_single1 [backward1]:
  "is_valid_graph n S \<Longrightarrow> (a, b) \<in> S \<Longrightarrow> has_path n S a b"
@proof @have "is_path n S [a, b]" @qed

lemma has_path_single2 [backward1]:
  "is_valid_graph n S \<Longrightarrow> (a, b) \<in> S \<Longrightarrow> has_path n S b a"
@proof @have "is_path n S [b, a]" @qed

lemma has_path_refl [backward2]:
  "is_valid_graph n S \<Longrightarrow> a < n \<Longrightarrow> has_path n S a a"
@proof @have "is_path n S [a]" @qed

definition connected_rel :: "nat \<Rightarrow> (nat \<times> nat) set \<Rightarrow> (nat \<times> nat) set" where
  "connected_rel n S = {(a,b). has_path n S a b}"

lemma connected_rel_iff [rewrite]:
  "(a, b) \<in> connected_rel n S \<longleftrightarrow> has_path n S a b" using connected_rel_def by simp

lemma connected_rel_trans [forward]:
  "trans (connected_rel n S)" by auto2

lemma connected_rel_refl [backward2]:
  "is_valid_graph n S \<Longrightarrow> a < n \<Longrightarrow> (a, a) \<in> connected_rel n S" by auto2

lemma is_path_per_union [rewrite]:
  "is_valid_graph n (S \<union> {(a, b)}) \<Longrightarrow>
   has_path n (S \<union> {(a, b)}) i j \<longleftrightarrow> (i, j) \<in> per_union (connected_rel n S) a b"
@proof
  @let "R = connected_rel n S"
  @let "S' = S \<union> {(a, b)}" @have "S \<subseteq> S'"
  @case "(i, j) \<in> per_union R a b" @with
    @case "(i, a) \<in> R \<and> (b, j) \<in> R" @with
      @have "has_path n S' i a" @have "has_path n S' a b" @have "has_path n S' b j"
    @end
    @case "(i, b) \<in> R \<and> (a, j) \<in> R" @with
      @have "has_path n S' i b" @have "has_path n S' b a" @have "has_path n S' a j"
    @end
  @end
  @case "has_path n S' i j" @with
    @have (@rule) "\<forall>p. is_path n S' p \<longrightarrow> (hd p, last p) \<in> per_union R a b" @with
      @induct p @with
      @subgoal "p = x # xs" @case "xs = []"
        @have "(x, hd xs) \<in> per_union R a b" @with
          @have "is_valid_graph n S"
          @case "(x, hd xs) \<in> S'" @with @case "(x, hd xs) \<in> S" @end
          @case "(hd xs, x) \<in> S'" @with @case "(hd xs, x) \<in> S" @end
        @end
      @endgoal @end
    @end
    @obtain p where "is_path n S' p" "hd p = i" "last p = j"
  @end
@qed

lemma connected_rel_union [rewrite]:
  "is_valid_graph n (S \<union> {(a, b)}) \<Longrightarrow>
   connected_rel n (S \<union> {(a, b)}) = per_union (connected_rel n S) a b" by auto2

lemma connected_rel_init [rewrite]:
  "connected_rel n {} = uf_init_rel n"
@proof
  @have "is_valid_graph n {}"
  @have "\<forall>i j. has_path n {} i j \<longleftrightarrow> (i, j) \<in> uf_init_rel n" @with
    @case "has_path n {} i j" @with
      @obtain p where "is_path n {} p" "hd p = i" "last p = j"
      @have "p = hd p # tl p"
    @end
  @end
@qed

fun connected_rel_ind :: "nat \<Rightarrow> (nat \<times> nat) list \<Rightarrow> nat \<Rightarrow> (nat \<times> nat) set" where
  "connected_rel_ind n es 0 = uf_init_rel n"
| "connected_rel_ind n es (Suc k) =
   (let R = connected_rel_ind n es k; p = es ! k in
      per_union R (fst p) (snd p))"
setup \<open>fold add_rewrite_rule @{thms connected_rel_ind.simps}\<close>

lemma connected_rel_ind_rule [rewrite]:
  "is_valid_graph n (set es) \<Longrightarrow> k \<le> length es \<Longrightarrow>
   connected_rel_ind n es k = connected_rel n (set (take k es))"
@proof @induct k @with
  @subgoal "k = Suc m"
    @have "is_valid_graph n (set (take (Suc m) es))"
  @endgoal @end
@qed

text \<open>Correctness of the functional algorithm.\<close>
theorem connected_rel_ind_compute [rewrite]:
  "is_valid_graph n (set es) \<Longrightarrow>
   connected_rel_ind n es (length es) = connected_rel n (set es)" by auto2

end