Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 10,092 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
(*
  File: Interval_Tree.thy
  Author: Bohua Zhan
*)

section \<open>Interval tree\<close>

theory Interval_Tree
  imports Lists_Ex Interval
begin

text \<open>
  Functional version of interval tree. This is an augmented data
  structure on top of regular binary search trees (see BST.thy).
  See \cite[Section 14.3]{cormen2009introduction} for a reference.
\<close>

subsection \<open>Definition of an interval tree\<close>

datatype interval_tree =
   Tip
 | Node (lsub: interval_tree) (val: "nat idx_interval") (tmax: nat) (rsub: interval_tree)
where
  "tmax Tip = 0"

setup \<open>add_resolve_prfstep @{thm interval_tree.distinct(1)}\<close>
setup \<open>fold add_rewrite_rule @{thms interval_tree.sel}\<close>
setup \<open>add_forward_prfstep @{thm interval_tree.collapse}\<close>
setup \<open>add_var_induct_rule @{thm interval_tree.induct}\<close>

subsection \<open>Inorder traversal, and set of elements of a tree\<close>

fun in_traverse :: "interval_tree \<Rightarrow> nat idx_interval list" where
  "in_traverse Tip = []"
| "in_traverse (Node l it m r) = in_traverse l @ it # in_traverse r"
setup \<open>fold add_rewrite_rule @{thms in_traverse.simps}\<close>

fun tree_set :: "interval_tree \<Rightarrow> nat idx_interval set" where
  "tree_set Tip = {}"
| "tree_set (Node l it m r) = {it} \<union> tree_set l \<union> tree_set r"
setup \<open>fold add_rewrite_rule @{thms tree_set.simps}\<close>

fun tree_sorted :: "interval_tree \<Rightarrow> bool" where
  "tree_sorted Tip = True"
| "tree_sorted (Node l it m r) = ((\<forall>x\<in>tree_set l. x < it) \<and> (\<forall>x\<in>tree_set r. it < x)
                                   \<and> tree_sorted l \<and> tree_sorted r)"
setup \<open>fold add_rewrite_rule @{thms tree_sorted.simps}\<close>

lemma tree_sorted_lr [forward]:
  "tree_sorted (Node l it m r) \<Longrightarrow> tree_sorted l \<and> tree_sorted r" by auto2

lemma tree_sortedD1 [forward]:
  "tree_sorted (Node l it m r) \<Longrightarrow> x \<in> tree_set l \<Longrightarrow> x < it" by auto2

lemma tree_sortedD2 [forward]:
  "tree_sorted (Node l it m r) \<Longrightarrow> x \<in> tree_set r \<Longrightarrow> x > it" by auto2

lemma inorder_preserve_set [rewrite]:
  "tree_set t = set (in_traverse t)"
@proof @induct t @qed

lemma inorder_sorted [rewrite]:
  "tree_sorted t \<longleftrightarrow> strict_sorted (in_traverse t)"
@proof @induct t @qed

text \<open>Use definition in terms of in\_traverse from now on.\<close>
setup \<open>fold del_prfstep_thm (@{thms tree_set.simps} @ @{thms tree_sorted.simps})\<close>

subsection \<open>Invariant on the maximum\<close>

definition max3 :: "nat idx_interval \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat" where [rewrite]:
  "max3 it b c = max (high (int it)) (max b c)"

fun tree_max_inv :: "interval_tree \<Rightarrow> bool" where
  "tree_max_inv Tip = True"
| "tree_max_inv (Node l it m r) \<longleftrightarrow> (tree_max_inv l \<and> tree_max_inv r \<and> m = max3 it (tmax l) (tmax r))"
setup \<open>fold add_rewrite_rule @{thms tree_max_inv.simps}\<close>

lemma tree_max_is_max [resolve]:
  "tree_max_inv t \<Longrightarrow> it \<in> tree_set t \<Longrightarrow> high (int it) \<le> tmax t"
@proof @induct t @qed

lemma tmax_exists [backward]:
  "tree_max_inv t \<Longrightarrow> t \<noteq> Tip \<Longrightarrow> \<exists>p\<in>tree_set t. high (int p) = tmax t"
@proof @induct t @with
  @subgoal "t = Node l it m r"
    @case "l = Tip" @with @case "r = Tip" @end
    @case "r = Tip"
  @endgoal @end
@qed

text \<open>For insertion\<close>
lemma max3_insert [rewrite]: "max3 it 0 0 = high (int it)" by auto2

setup \<open>del_prfstep_thm @{thm max3_def}\<close>

subsection \<open>Condition on the values\<close>

definition tree_interval_inv :: "interval_tree \<Rightarrow> bool" where [rewrite]:
  "tree_interval_inv t \<longleftrightarrow> (\<forall>p\<in>tree_set t. is_interval (int p))"

definition is_interval_tree :: "interval_tree \<Rightarrow> bool" where [rewrite]:
  "is_interval_tree t \<longleftrightarrow> (tree_sorted t \<and> tree_max_inv t \<and> tree_interval_inv t)"

lemma is_interval_tree_lr [forward]:
  "is_interval_tree (Node l x m r) \<Longrightarrow> is_interval_tree l \<and> is_interval_tree r" by auto2

subsection \<open>Insertion on trees\<close>

fun insert :: "nat idx_interval \<Rightarrow> interval_tree \<Rightarrow> interval_tree" where
  "insert x Tip = Node Tip x (high (int x)) Tip"
| "insert x (Node l y m r) =
    (if x = y then Node l y m r
     else if x < y then
       let l' = insert x l in
           Node l' y (max3 y (tmax l') (tmax r)) r
     else
       let r' = insert x r in
           Node l y (max3 y (tmax l) (tmax r')) r')"
setup \<open>fold add_rewrite_rule @{thms insert.simps}\<close>

lemma tree_insert_in_traverse [rewrite]:
  "tree_sorted t \<Longrightarrow> in_traverse (insert x t) = ordered_insert x (in_traverse t)"
@proof @induct t @qed

lemma tree_insert_max_inv [forward]:
  "tree_max_inv t \<Longrightarrow> tree_max_inv (insert x t)"
@proof @induct t @qed

text \<open>Correctness of insertion.\<close>
theorem tree_insert_all_inv [forward]:
  "is_interval_tree t \<Longrightarrow> is_interval (int it) \<Longrightarrow> is_interval_tree (insert it t)" by auto2

theorem tree_insert_on_set [rewrite]:
  "tree_sorted t \<Longrightarrow> tree_set (insert it t) = {it} \<union> tree_set t" by auto2

subsection \<open>Deletion on trees\<close>

fun del_min :: "interval_tree \<Rightarrow> nat idx_interval \<times> interval_tree" where
  "del_min Tip = undefined"
| "del_min (Node lt v m rt) =
   (if lt = Tip then (v, rt) else
    let lt' = snd (del_min lt) in
    (fst (del_min lt), Node lt' v (max3 v (tmax lt') (tmax rt)) rt))"
setup \<open>add_rewrite_rule @{thm del_min.simps(2)}\<close>
setup \<open>register_wellform_data ("del_min t", ["t \<noteq> Tip"])\<close>

lemma delete_min_del_hd:
  "t \<noteq> Tip \<Longrightarrow> fst (del_min t) # in_traverse (snd (del_min t)) = in_traverse t"
@proof @induct t @qed
setup \<open>add_forward_prfstep_cond @{thm delete_min_del_hd} [with_term "in_traverse (snd (del_min ?t))"]\<close>

lemma delete_min_max_inv [forward_arg]:
  "tree_max_inv t \<Longrightarrow> t \<noteq> Tip \<Longrightarrow> tree_max_inv (snd (del_min t))"
@proof @induct t @qed

lemma delete_min_on_set:
  "t \<noteq> Tip \<Longrightarrow> {fst (del_min t)} \<union> tree_set (snd (del_min t)) = tree_set t" by auto2
setup \<open>add_forward_prfstep_cond @{thm delete_min_on_set} [with_term "tree_set (snd (del_min ?t))"]\<close>

lemma delete_min_interval_inv [forward_arg]:
  "tree_interval_inv t \<Longrightarrow> t \<noteq> Tip \<Longrightarrow> tree_interval_inv (snd (del_min t))" by auto2

lemma delete_min_all_inv [forward_arg]:
  "is_interval_tree t \<Longrightarrow> t \<noteq> Tip \<Longrightarrow> is_interval_tree (snd (del_min t))" by auto2

fun delete_elt_tree :: "interval_tree \<Rightarrow> interval_tree" where
  "delete_elt_tree Tip = undefined"
| "delete_elt_tree (Node lt x m rt) =
    (if lt = Tip then rt else if rt = Tip then lt else
     let x' = fst (del_min rt);
         rt' = snd (del_min rt);
         m' = max3 x' (tmax lt) (tmax rt') in
       Node lt (fst (del_min rt)) m' rt')"
setup \<open>add_rewrite_rule @{thm delete_elt_tree.simps(2)}\<close>

lemma delete_elt_in_traverse [rewrite]:
  "in_traverse (delete_elt_tree (Node lt x m rt)) = in_traverse lt @ in_traverse rt" by auto2

lemma delete_elt_max_inv [forward_arg]:
  "tree_max_inv t \<Longrightarrow> t \<noteq> Tip \<Longrightarrow> tree_max_inv (delete_elt_tree t)" by auto2

lemma delete_elt_on_set [rewrite]:
  "t \<noteq> Tip \<Longrightarrow> tree_set (delete_elt_tree (Node lt x m rt)) = tree_set lt \<union> tree_set rt" by auto2

lemma delete_elt_interval_inv [forward_arg]:
  "tree_interval_inv t \<Longrightarrow> t \<noteq> Tip \<Longrightarrow> tree_interval_inv (delete_elt_tree t)" by auto2

lemma delete_elt_all_inv [forward_arg]:
  "is_interval_tree t \<Longrightarrow> t \<noteq> Tip \<Longrightarrow> is_interval_tree (delete_elt_tree t)" by auto2

fun delete :: "nat idx_interval \<Rightarrow> interval_tree \<Rightarrow> interval_tree" where
  "delete x Tip = Tip"
| "delete x (Node l y m r) =
    (if x = y then delete_elt_tree (Node l y m r)
     else if x < y then
       let l' = delete x l;
           m' = max3 y (tmax l') (tmax r) in Node l' y m' r
     else
       let r' = delete x r;
           m' = max3 y (tmax l) (tmax r') in Node l y m' r')"
setup \<open>fold add_rewrite_rule @{thms delete.simps}\<close>

lemma tree_delete_in_traverse [rewrite]:
  "tree_sorted t \<Longrightarrow> in_traverse (delete x t) = remove_elt_list x (in_traverse t)"
@proof @induct t @qed

lemma tree_delete_max_inv [forward]:
  "tree_max_inv t \<Longrightarrow> tree_max_inv (delete x t)"
@proof @induct t @qed

text \<open>Correctness of deletion.\<close>
theorem tree_delete_all_inv [forward]:
  "is_interval_tree t \<Longrightarrow> is_interval_tree (delete x t)"
@proof @have "tree_set (delete x t) \<subseteq> tree_set t" @qed

theorem tree_delete_on_set [rewrite]:
  "tree_sorted t \<Longrightarrow> tree_set (delete x t) = tree_set t - {x}" by auto2

subsection \<open>Search on interval trees\<close>

fun search :: "interval_tree \<Rightarrow> nat interval \<Rightarrow> bool" where
  "search Tip x = False"
| "search (Node l y m r) x =
   (if is_overlap (int y) x then True
    else if l \<noteq> Tip \<and> tmax l \<ge> low x then search l x
    else search r x)"
setup \<open>fold add_rewrite_rule @{thms search.simps}\<close>

text \<open>Correctness of search\<close>
theorem search_correct [rewrite]:
  "is_interval_tree t \<Longrightarrow> is_interval x \<Longrightarrow> search t x \<longleftrightarrow> has_overlap (tree_set t) x"
@proof
  @induct t @with
    @subgoal "t = Node l y m r"
      @let "t = Node l y m r"
      @case "is_overlap (int y) x"
      @case "l \<noteq> Tip \<and> tmax l \<ge> low x" @with
        @obtain "p\<in>tree_set l" where "high (int p) = tmax l"
        @case "is_overlap (int p) x"
      @end
      @case "l = Tip"
    @endgoal
  @end
@qed

end